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This Letter presents a determination of the quark Collins-Soper kernel, which relates transverse-
momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum
chromodynamics (QCD). This is the first such determination with systematic control of quark mass,
operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match
lattice-calculable distributions to the corresponding TMDs. The continuum-extrapolated lattice QCD
results are consistent with several recent phenomenological parametrizations of the Collins-Soper kernel
and are precise enough to disfavor other parametrizations.
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Elucidating the three-dimensional structure of the proton
is a key target of current and future experimental programs
worldwide, including the COMPASS [1-7] experiment at
CERN, RHIC [8,9] at Brookhaven National Laboratory, the
12 GeV program [10-15] at Thomas Jefferson National
Accelerator Facility, and future experiments at the planned
Electron-lIon Collider [16-21]. In recent years, consider-
able developments have been made to constrain the pro-
ton’s transverse structure, in particular, as parametrized
by transverse-momentum-dependent parton distributions
(TMDs) [22-24].

In this context, a quantity of particular importance is the
Collins-Soper (CS) kernel: a fundamental nonperturbative
function that appears as the universal rapidity evolution
kernel for TMDs, which can be considered to characterize
the QCD vacuum [22-24]. The CS kernel is not only a
fundamental proton and nuclear structure observable of
importance in its own right, it is also needed to compare
TMDs measured at different scales and is required as input
into measurements of electroweak observables including
the W-boson mass [25] and in various nuclear structure
studies [20].

Phenomenological extractions of the CS kernel from
global fits of experimental data from Drell-Yan and semi-
inclusive deep-inelastic scattering processes, however, are
largely unconstrained in the nonperturbative region, with
inconsistencies between different extractions arising, in
particular, for kinematics with small transverse-momentum
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scale g7 < 0.3 GeV. First constraints of the CS kernel from
lattice QCD calculations [26—35] demonstrate the potential
of this approach to provide first-principles information
with sufficient precision to distinguish between different
phenomenological models in this regime. Nevertheless,
key systematic uncertainties, in particular, discretization
effects, remain to be controlled in all such calculations
to date.

This Letter presents a new lattice QCD determination of
the CS kernel, which includes systematic control of quark
mass, operator renormalization, and discretization effects
and uses next-to-next-to-leading logarithmic matching to
TMDs from the corresponding lattice-calculable distribu-
tions. This allows a parametrization of the CS kernel to be
constrained entirely by first-principles calculations for the
first time.

The Collins-Soper kernel—The transverse momentum
of a parton of flavor 7 in a given hadron state is encoded in
the TMDs f™P(x, by, pu,{), which are functions of the
longitudinal momentum fraction x carried by the parton,
the transverse displacement by (the Fourier conjugate
of gr), the virtuality scale u, and the hadron momentum
through the rapidity scale {. Unlike the u evolution of the
TMDs, which is perturbative for perturbative scales 4 and
£, the ¢ evolution of TMDs is nonperturbative and is
encoded in the CS kernel [22,23],

vilbr.p) =2 In f7MP (x, br. p. ). (1)

dIn(

The quark CS kernel y, (b7, u) is independent of flavor. The
kinematic regime of particular interest is for by 2 0.6 fm,
where there is some tension between different phenom-
enological parametrizations of the kernel [36—41].
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Lattice QCD calculation.—Constraints on the quark CS
kernel are extracted from lattice QCD calculations on three
ensembles of gauge fields produced by the MILC
Collaboration [42] with 2 + 1 + 1 dynamical quark flavors,
the one-loop Symanzik improved gauge action [43-46], and
the highly improved staggered quark action with sea quark
masses tuned to reproduce the physical pion mass [47—49].
The calculations are performed as detailed in Ref. [35],
which presented results on one ensemble of lattice gauge
fields with four-volume L3 x T = (48a)? x 64a with
a = 0.12 fm. This Letter adds calculations on an additional
two ensembles of gauge fields with four-volumes L x T =
(32a)? x 48a with @ =0.15 fm and L3 x T = (64a)’ x
96a with a = 0.09 fm, enabling systematic investigation of

J

-0 27

yﬁ(bp ) = lim lim

discretization effects for the first time. A summary of the
computation and analysis are included below, with further
details and figures provided in Supplemental Material [50],
which also includes Refs. [51-62].

Within the large-momentum effective theory [63-65]
framework, the lightlike-separated operators that define
physical TMDs are related to lattice-calculable “quasi-
distributions” defined by matrix elements of purely space-
like-separated operators at large hadron momentum
|P| > Aqcp [66-80] with matching coefficients computed
perturbatively. Using this approach, the quark CS kernel
may be extracted from ratios of matrix elements of staple-
shaped Wilson line operators in hadron states at different
boost momenta P, P [66,68,71],

o0, L 1P PN (PF) S 205 (0. @)W “”(br,bz Pi.¢,a)

a—0¢—o0 ln(PZ/PZ)

foo db*

+ 8y (u, x, P3, P) + poc.

Here, the perturbative matching correction is denoted
Sy (u, x, P5, P%), p.c. denotes (x-dependent) power cor-
rections proportional to powers of 1/(bP%)? and (A/P%)?,
where A is a generic hadronic scale, Np(P%) are
normalization factors corresponding to N, (P%) =
—imy/P* and N, (P*) = m;,/E,(P*), where m, and

E,(P%) are the hadron mass and energy, respectively,

MS
ZIT’

space, and W(ro)(br,bz,PZ,f, a) denotes ratios of bare
quark quasi-TMD wave functions (quasi-TMD WFs),

(4) are 16 x 16 renormalization matrices in Dirac

ér(br, b, P*, £, q)

(0)
Wy (b, b*, P*, ¢, a) = = .
i ( ! a) ¢y475 (bT’ O’ O’ f, a)

Here (?)r(br, b*, P*, ¢, a) are defined as matrix elements of
nonlocal quark bilinear operators (’)l;a(bT, b*,¢) with the u

and d quarks separated by four-vector b = (b, b*,0) and
connected by a staple-shaped Wilson line of total length
¢ + by, between the QCD vacuum and a hadron state at
boost P?,
Dr(br. b, 5, £,a) = (0108, (by, b, £ h(P)), (4)

computed with lattice discretization scale a. Because the
kernel is independent of the choice of hadron state, pion
states are used here for simplicity. Similar approaches have
been used in previous lattice QCD studies to constrain
the quark CS kernel [26-34] and other TMD quantities
[28,29,34,81,82].

The numerical
in Ref. [35]:

calculation proceeds as detailed

Z
1
IR PIN(PS) Yo 2 (., a) Wy

O by, b7, P3, ¢, a)
(2)

Computation of bare quasi-TMD WF ratios.—Bare
quasi-TMD WFs ¢(by, b?, P, £, a) are extracted from
bootstrap-level fits to the Euclidean time dependence of
two-point correlation functions both with and without
staple-shaped operators. Pion states are created with
momentum-smeared interpolating fields [83], and the
tree-level O(a)-improved Wilson clover fermion action
[84-86] is used for propagator computation, with clover
term coefficient c,, = 1.0. Hopping parameters are
k€{0.12575,0.12547,0.1252} for calculations on the
ensembles with a€{0.15,0.12,0.09} fm, respectively,
yielding close-to-physical values of the pion mass
m, €{172(3),149(1),179(1)} MeV, and field configura-
tions are treated with Wilson flow to flow time t = 1.0 [87]
and gauge fixed to Landau gauge before measurements are
made. (Gauge fixing is necessary for the computation of the
renormalization factors discussed below.)

Calculations are performed on each ensemble for the
operator choices (defined by I'" and the staple geometry
specified by Z, b*, br), choices of momenta P?, and the
numbers of configurations specified in Table 1. For the
geometries with odd #/a where no b* = 0 matrix elements
are available [as used in the denominator of Eq. (3) to form
ratios], the average of those with b*/a = £1 are used.

Determination of renormalization factors Z¥3 (u, a)—

The 16 x 16 matrices of renormalization factors ZM (u, a)
are computed using the RI/xMOM renormalization scheme
[88-90] and converted to MS using a conversion coefficient
computed in continuum perturbation theory [90].
Calculations use N, € {120, 32,30} gauge field configu-
rations on the ensembles with a € {0.15,0.12,0.09} fm,

and statistical uncertainties are estimated using bootstrap
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TABLEI. Details of the parameters used for calculation on each
ensemble of lattice gauge fields. Lattice momenta are specified as
n*, with P* = (2z/L)n?. For operators with staple extent £/ a, all
geometries with —£/a < b* < ¢/a and 0 < by/a <7 along
fr € {£&, £9} are computed, for all of the 16 Dirac structures
I". The number of configurations used for each measurement is
denoted N,; on each configuration, sources on a 24 arid
bisecting the lattice along each dimension are used.

n* P? (GeV) Z/a Nt
L3 xT = (32a)’ x48a, a = 0.15 fm
0 {7,10,13,14,17,21,25} 229
3 0.77 {21,25} 1105
5 1.29 {14,17} 1105
7 1.81 {10,13} 1105
9 232 (7,10} 1105
L3 x T = (48a)® x 64a, a = 0.12 fm
0 0 {11,14,17,20,26,32} 79
4 0.86 {26,32} 469
6 1.29 {17,20} 472
8 1.72 (14,17} 523
10 2.15 {11,14} 481
L3 x T = (64a)’ x 96a, a = 0.09 fm
0 0 {12,17,22,27,32,35,43} 47
4 0.86 {35,43} 303
6 1.29 (27,32} 472
8 1.72 {17,22} 269
10 2.15 {12,17) 270

resampling. Following the procedure detailed in Ref. [35],
a range of renormalization scales and off-shell quark
momenta are used to compute the renormalization
matrices, and a systematic uncertainty, added in quadrature
with the statistical uncertainty, is defined as half
the difference between the maximum and minimum
RI/xMOM renormalization factor over the scales studied.
Further details are given in Supplemental Material [50].
Examples of the MS-renormalized quasi-TMD WF ratios,
WS (b, b3, P2, 6, a) = o ZYS (u, @)WY (b, b7, P,
¢, a), computed on each ensemble, are shown in Fig. 1.
Fourier transformation.—After renormalization and
multiplication by Np(P?), a discrete Fourier transform
(DFT) is used to realize the Fourier transforms in the
numerator and denominator of Eq. (2), where the quasi-
TMD WEF ratios for each P* are first averaged over +b*
and the relevant values of #(P?). This yields x-space-

renormalized quasi-TMD WF ratios WS (by, u, x, P*, a).
Because results are computed for a finite range of 5%, the
DFT is effectively truncated to a finite range. The effects of
this truncation are studied by comparing results using
subsets of the data with b* < b%,, and varying b3, as
well as by comparing results where an analytical model is
used to extrapolate to b* > b%,.. Truncation effects are
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FIG. 1. The real parts of the MS-renormalized quasi-TMD WF

ratios, WIMS(bT, u,b*, P*,¢,a), computed on each ensemble.
Results on ensembles with a € {0.15,0.12,0.09} fm are shown
from top to bottom, as functions of b% for ' =y,ys,
P? =1.3 GeV, and similar though not identical by values as
indicated in each panel.

found in this way to lead to negligible systematic uncer-
tainties, as detailed for the «a = 0.12 fm ensemble
in Ref. [35].

Perturbative matching.—The perturbative matching cor-
rection §y}S (u, x, P}, P3) appearing in Eq. (2) is taken to be
the “br-unexpanded resummed next-to-next-to-leading
order” (uNNLL) correction detailed in Ref. [35]. It was
found in the analysis of Ref. [35], for the same ¢ = 0.12 fm
ensemble also studied here, that this choice reduces the effect
of br-dependent power corrections and offers the best
convergence compared with other currently available match-
ing prescriptions, i.e., fixed-order [76,91-93] and resummed
[61,72,77] corrections up to next-to-next-to-leading order.

Extraction of the CS kernel.—Each choice of x, P*, and a
defines an estimator for the CS kernel [corresponding to the
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right-hand side of Eq. (2) with the Fourier transform
implemented via DFT, neglecting the p.c. term, and without
the limit a — O being taken],

?E(bTyﬂ’xa Pians a)

B 1 , WE(bT,ﬂ,x,Pf,a)
In(P{/P3) W@(bT,,u,x, P3.a)
+ Sy (u, x, P, P3). (5)

In principle, it would be desirable to exploit the multiple
lattice ensembles available in this calculation to perform a
continuum extrapolation of the CS kernel estimator for
individual by values; this would require matched bT across
the ensembles. Alternatively, one might aim to disentangle
power corrections and discretization effects by fitting all

results for Re[pMS (b7, p, x, P, P3, a)] to a parametrization of
the CS kernel plus P?-, a-, and by-dependent terms
(Specifically, such corrections would be proportional
to terms such as a/by, a? /b2, [1/ In(P5/ P3)[{[1/b4(P3)?]—
[1/63(P5)’]}.  [A*/In(P§/P5)I{[1/(P5)*] = [1/(P5)*]},
[1/In(P§/P5)][a(P§ = P3)].  [1/In(P}/P5)][a*(P})* -
a*(P3)], ....). In practice, estimators for different {P%, P5}
are largely consistent, and as such the data are insufficient to
constrain momentum-dependent power corrections.
Instead, the CS kernel on each ensemble is determined as
a bootstrap-level weighted average of Re[fMS(by,u, x,
P35, P35, a)] over I'e€{y,ys,7375}, all available combina-
tions of {P7, P5}, and x €[0.3,0.7], with weights propor-
tional to the inverse variance, just as done in Ref. [35].
These P.-, I'-, and x-averaged CS kernel constraints,

denoted yXS(br,p, a), should agree with the CS kernel
up to discretization effects. The results (including a fit to a
parametrization of the CS kernel and the leading a/br
discretization effects, as discussed in the next section) are
shown in Fig. 2. o
Additionally, an analogous analysis of Im[JMS(by,
u,x, P{, P5,a)] can be performed. As the CS kernel is
purely real, significant deviation of the resulting numerical
results from zero would provide an indication of systematic
uncertainties beyond those that are quantified in this
calculation. This analysis is presented in Supplemental
Material [50]. Including the uNNLL matching of Ref. [35]
and recent developments [94] accounting for a linear
|

- a
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FIG. 2. Upper: averaged CS kernel estimators computed on
each ensemble, including a fit to a parametrization of the CS
kernel plus O(a/by) discretization effects, as described in the
text. The colored dashed curves correspond to y5"™" (b, u, a),
with the best-fit values of (Byp, ¢g, 1, k1, k») as described in the
text, at each corresponding value of a, while the solid black curve
shows the result at a = 0. Lower: lattice QCD constraints on the
CS kernel, with O(a/by) artifacts subtracted as defined in the
text, and the best-fit parametrization of the CS kernel fit to the
lattice results shown as a solid black curve, with the lo
uncertainty band shown as a shaded red region.

infrared renormalon in the imaginary part of the matching
coefficient for the quasi-TMD WEF, there is no evidence in
the numerical data for significant additional unconstrained
systematic uncertainties.

Parametrization.—The Lattice QCD constraints on the
CS kernel are fit to the parametrization of Ref. [40], with
the addition of terms accounting for lattice discretization
effects proportional to a/by, a*/b?,

612

-, 6

where D, (D, is given explicitly in Supplemental Material [50]) is the resummed leading power expression for the CS
kernel computed in the operator product expansion, evolved to scale u, and the parametrization of the remaining

nonperturbative piece is

b*
Dyp(br; Bap) = brb* [Co +ciln (B )] , (7)
NP
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and

b
b (b Bp) = ——— (8)
by

1—|—B

2
NP

The expression of Eq. (6) is thus a three-parameter
(Bnp, Cg- ¢1) parametrization of the CS kernel, with an
additional two parameters (k;, k,) modeling lattice discre-
tization effects.

The lattice QCD constraints on the CS kernel, for each of
the three values of @ used in the numerical calculations, are
fit simultaneously to Eq. (6) to yield (Byp, ¢o, ¢1, k1, k2). To
diagnose overfitting, additional fits are performed in which
subsets of the model parameters are held fixed at reference
values, namely, c; = k; = k, = 0and Byp = 2 GeV, while
others are optimized. The Akaike information criterion
(AIC) [95] is used to quantify the relative goodness of fit
for models including different parameter subsets. The mini-
mum AIC model is found to be (¢, k; ) with ¢; =k, =0 and
Bnp = 2 GeV. The corresponding fit results are

co = 0.032(12), ki = 0.22(8), 9)
with a y?/d.o.f. = 0.39. These fit results and the resulting
parametrization of the CS kernel are shown in Fig. 2,
with the 1o uncertainty band determined as the 68%
empirical bootstrap confidence interval from fits performed
to Npoor = 200 bootstrap samples of the lattice QCD
results (constructed to preserve correlations between results
at different by values computed on the same ensemble).
Overall fit quality is illustrated through the comparison
of y§™™ (b, u, a = 0) with best-fit values for (Byp, g, ¢1,
ki,k,) with the lattice QCD results where discretiza-

tion effects have been subtracted, i.e., y}}TS(bT,,u) =

yMS(by.u, a) — ky(a/br) using the best-fit results for ;.

These continuum-limit results are compared with
phenomenological parametrizations of experimental data
in Fig. 3. In particular, the parametrization used in
Ref. [37] corresponds to the AIC-preferred parametrization
used here and leads to a consistent result ¢§¥'* = 0.043(11)
with B! = 1.9(2) GeV. The global fits performed in
Ref. [40] also give a consistent result, c5*T> = 0.037(6),
though in that work ¢ is also included as a fit parameter.

Fits to other parameter subsets (cg, k,) and (cq, ky, k»)
give consistent results for ¢, at 16 with uncertainties that
differ by <10%. The magnitudes of k; and k, range from
0.1 to 0.3 in all cases, which suggests that the size of
discretization effects is consistent with naive dimensional
analysis. Fits including Byp or ¢ as free parameters give
consistent results for ¢, with larger uncertainties.

Other parametrizations for the nonperturbative function
Dnp(b) have been used in fits to experimental data [36,97],
for example the Brock-Nadolsky-Landry-Yuan (BLNY)

1.0———
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3
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=20, ., ) ) R R
0.0 0.2 0.4 0.6 0.8 1.0
bT [fm]
FIG. 3. Comparison of lattice QCD parametrization of the CS

kernel compared with phenomenological parametrizations [36—
41] of experimental data (BLNY, SV19, Pavial9, MAP22,
ART?23, IFY23) and perturbative results from Refs. [59,60,96]
(N3LL).

parametrization DELNY(b) = g,b* with free parameters
¢» and Byp (which enters D,.). Fits to this parametrization
with Byp = 1.5 GeV lead to the result g, = 0.085(26) with
comparable goodness of fit, y*/d.o.f. = 0.58, to the fits
using the parametrization of Eq. (7) described above. This
is consistent with the phenomenological fit results of
Ref. [41], which use the same value of Byp and find
g» = 0.053(24). Alternatively, using the parametrization of
Ref. [98] yields another consistent result, with y?/d.o.f. =
0.38 [with free parameters as defined in that work such that
my is held fixed to 0.3 GeV and bx = 0.63(19) is the result
of fitting to the lattice QCD results]. These lattice QCD
constraints on the CS kernel are therefore not sufficient to
establish a clear preference between functional forms for
the kernel; however, they do provide a significant prefer-
ence for the recent fit results from Refs. [37,39-41] in
comparison with Ref. [38] and especially with older BLNY
fit results [36] at large by.

Summary.—This Letter presents the first lattice QCD
calculation of the CS kernel with systematic control of
quark mass, operator renormalization, and discretization
effects. The results are used to constrain a “pure-theory”
parametrization of the CS kernel through a direct fit to
lattice QCD results for the first time. These lattice QCD
results for the CS kernel are consistent with the most recent
phenomenological results. This opens the door for future
first-principles QCD predictions of the CS kernel beyond
the region constrained by current experiments, as well as
joint fits to experimental data and lattice QCD results. As
more precise lattice QCD results are achieved at larger
values of b7 in future calculations, this promises to be
increasingly valuable.

The cHROMA [99], QLua [100], Qupa [101-103],
QDP-JIT [104], and QpPhix [105] software libraries were used

231901-5



PHYSICAL REVIEW LETTERS 132, 231901 (2024)

in this work. Data analysis used NumPy [106] and
JjuLia [107,108], and figures were produced using
Mathematica [109].
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