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We show that a class of L-loop conformal ladder graphs are intimately related to twisted partition
functions of free massive complex scalars in d ¼ 2Lþ 1 dimensions. The graphs arise as four-point
functions in certain two- and four-dimensional conformal fishnet models. The twisted thermal two-point
function of the scalars becomes a generator of conformal ladder graphs for all loops. We argue that this
correspondence is seeded by a system of two decoupled harmonic oscillators twisted by an imaginary
chemical potential. We find a number of algebraic and differential relations among the conformal graphs
that mirror the underlying free dynamics.
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Introduction and summary.—In [1], one of the authors
observed that the logarithm of the partition function ZL
of a free massive complex scalar ϕðxÞ, twisted by the
global Uð1Þ charge along the thermal circle in d ¼ 2Lþ 1
dimensions, is given in terms of a class of single-valued
polylogarithms. The latter functions are ubiquitous in
multiloop quantum field theory (QFT) calculations (see,
e.g., [2] for a recent review), and their intriguing math-
ematical properties have been discussed in a number of
works [3,4]. The twisting parameter μ corresponds to an
imaginary chemical potential for the Abelian “charge”

operator Q ¼ ϕ†D
↔

τϕ, with Dτ ¼ ∂τ − iμ, which together
with O ¼ jϕj2 can be viewed as integrable relevant defor-
mations of the massless free theory. From lnZL we can
calculate the thermal one-point functions hOiL and hQiL,
respectively, and it was shown in [1] that hQiL is essentially
given by the L-loop Davydychev-Usyukina conformal
ladder graph [5,6].
We show here that lnZL itself is also given by an L-loop

conformal ladder graph that evaluates a certain four-point
function of the singular two-dimensional conformal fishnet
model of Kazakov and Olivucci [7]. Consequently, the
differential equations satisfied by hOiL and hQiL presented
in [1] become differential relations among four-point
ladder graphs of conformal fishnet models in two and four
dimensions. The observations above prompt us to consider

the twisted thermal two-point function hϕ†ðxÞϕð0ÞiL.
When m ¼ μ ¼ 0 this is expanded in thermal conformal
blocks with constant coefficients corresponding to the
thermal one-point functions of conformal quasiprimary
operators with definite dimension and spin [see (24) later
on]. We show that for nonzero values of m and μ the above
two-point function can also be expanded in terms of
thermal conformal blocks, but with coefficients now given
by single-valued polylogarithms. The latter are recursively
related to linear combinations of hOiL and hQiL, and hence
of conformal ladder graphs. In other words hϕ†ðxÞϕð0ÞiL is
a generating function of all-loop conformal ladder graphs.
Some implications of our results and a number of future
directions are discussed.
From relativistic Bose gases to single-valued

polylogarithms.—We firstly rederive the results in [1] from
a new perspective. Consider the following twisted partition
function of two decoupled harmonic oscillators with unit
mass and common frequency m:

Z0 ¼ TrH1;2
½e−βðH0þm2OÞe−iβμQ�: ð1Þ

This can be viewed as a deformation of the free
Hamiltonian H0¼ðp̂2

1þ p̂2
2Þ=2 by the operators O ¼

1
2
ðx̂21 þ x̂22Þ and Q ¼ p̂2x̂1 − p̂1x̂2 [8]. The twisting param-

eter μ acts effectively as an imaginary chemical potential
for Q. Z0 is the grand canonical partition function. Using
the complex variable z ¼ e−βm−iβμ one finds

lnZ0 ¼
Z

z

0

dz0

1 − z0
þ
Z

z̄

0

dz0

1 − z0
−
Z

1

jzj

dz0

z0
: ð2Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 231601 (2024)

0031-9007=24=132(23)=231601(7) 231601-1 Published by the American Physical Society

https://orcid.org/0000-0003-2788-6297
https://orcid.org/0000-0003-2665-2931
https://orcid.org/0000-0003-0283-1732
https://orcid.org/0000-0001-5835-4141
https://ror.org/05e94g991
https://ror.org/02j61yw88
https://ror.org/02bsd9p69
https://ror.org/02bsd9p69
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.231601&domain=pdf&date_stamp=2024-06-07
https://doi.org/10.1103/PhysRevLett.132.231601
https://doi.org/10.1103/PhysRevLett.132.231601
https://doi.org/10.1103/PhysRevLett.132.231601
https://doi.org/10.1103/PhysRevLett.132.231601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


From (2) we can construct the logarithm of the partition
function of a free charged scalar field in d dimensions
with mass m and twisting parameter μ [9] as that of a
d ¼ 2Lþ 1-dimensional relativistic thermal gas (see
Appendix B for details),

lnZL ¼
Z

dωρLðω;mÞ lnZ0: ð3Þ

The calculations are considerably simpler for integer L
(d odd) to which we restrict from now on.
After some straightforward manipulations (3) can be

brought into the form of an iterated integral for L > 1 as

lnZL ¼ ð−2α2ÞL
YL−1
i¼0

�Z
wiþ1

0

dwi

wi
lnwi

�
lnZ0; ð4Þ

where lnZ0 is taken to be a function of z0; z̄0 with
z0 ¼ w0e−iβμ, wL ¼ jzj, and the integrals are performed
in the order w0 ↦ w1:: ↦ wL. Here, α2 ¼ l2=4πβ2 is a
dimensionless parameter. By virtue of (2) we see that (4)
coincides with the class of iterated integrals that give rise to
single-valued polylogarithms [4]. We obtain [10]

lnZL ¼ α2L
ð−1ÞLL!

2ð2Lþ 1Þ! ð2 log jzjÞ
2Lþ1

þ α2L
XL
n¼0

ð2L − nÞ!ð−2 log jzjÞn
ðL − nÞ!n! 2ℜ½Li2Lþ1−nðzÞ�;

ð5Þ

hQiL¼α2L
XL
n¼0

ð2L−nÞ!ð−2 logjzjÞn
ðL−nÞ!n! 2iℑ½Li2L−nðzÞ�: ð6Þ

The formulas above correspond to the class of single-
valued polylogarithms discussed in many places in the
literature. The functions (6) correspond to the graphical
functions nicely discussed in [4,11]. However, to our
knowledge the functions (5) have not been discussed in
terms of graphical functions until now. Below we show that
they correspond to conformal ladder graphs of a two-
dimensional conformal field theory (CFT).
It is useful to introduce the differential operators

D̂ ¼ 1

β2
∂

∂m2
¼ 1

2 ln jzj ðz∂z þ z̄∂z̄Þ; ð7Þ

L̂ ¼ i
β

∂

∂μ
¼ ðz∂z − z̄∂z̄Þ: ð8Þ

Explicit calculations yield the following set of first order
differential equations [1]:

hOiL ¼ −βD̂ lnZL ¼ βα2 lnZL−1; ð9Þ

hQiL ¼ L̂ lnZL ¼ −D̂ · hQiLþ1=α
2: ð10Þ

Notice that D̂ acts on lnZL and hQiL as a dimension
lowering operator. Introducing the Laplacian in the vari-
ables m and μ as

Δ̂ ¼ 4β2zz̄∂z∂z̄ ¼
∂
2

∂m2
þ ∂

2

∂μ2
; ð11Þ

we further find

Δ̂fLðz; z̄Þ ¼ −4β2Lα2fL−1ðz; z̄Þ ð12Þ

for fLðz; z̄Þ ¼ flnZL; hQiLg. We can combine (12) with
(9), (10) to obtain the second order equation

½m2Δ̂ − 4Lβ2m2D̂�fLðz; z̄Þ ¼ 0: ð13Þ

Notice that m2Δ̂ is the Laplacian on the upper half plane
H2 with coordinates m, μ, and 2β2m2D̂ ¼ mð∂=∂mÞ is the
radial derivative. Equation (13) is reminiscent of
similar results for partition functions in [12] where the
connection to the huge literature of string scattering
amplitudes [13–15] was noted. Another interpretation
of (13) is as the Laplace-Beltrami operator of AdS2Lþ2

with metric

ds2 ¼ 1

m2

�
dm2 þ dμ2 þ

X2L
i¼1

dxidxi
�

ð14Þ

acting on functions of just m and μ. Since m and μ
parametrize relevant deformations of a free CFT, such an
interpretation may be related to RG flow.
Conformal graphs as thermal partition functions.—We

will now show that formulas (5) and (6) arise in an
apparently unrelated context: as four-point correlators in
conformal fishnet models. The latter are particular limits of
the generalized biscalar theory in D dimensions introduced
in [7] with Lagrangian

L¼NcTr½ϕ†
1ð−∂2Þωϕ1þϕ†

2ð−∂2Þ
D−2ω

2 ϕ2þa2D;ωϕ
†
1ϕ

†
2ϕ1ϕ2�:

ð15Þ

ϕ1;2 belong to the adjoint of SUðNcÞ, ω∈ ½0; ðD=2Þ� and
coupling a2D;ω is classically dimensionless. We consider the
four-point function

GðLÞ
D;ωðfxigÞ ¼ hTr½ϕL

2 ðx1Þϕ1ðx3Þϕ†L
2 ðx2Þϕ†

1ðx4Þ�i; ð16Þ

whose leadingNc contribution comes from a unique L-loop
conformal ladder graph. It is well known that due to
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conformal invariance GðLÞ
D;ω depends on two conformal

ratios, or equivalently a complex variable z, and can be
represented by an integral of the form depicted in Fig. 1.
For D ¼ 4, ω ¼ 1 the model coincides with the original
four-dimensional conformal fishnet CFT introduced in [16],

and then GðLÞ
4;1 is proportional to the Davydychev-Usuykina

L-loop conformal ladder graphs [5,6]. Up to overall nor-
malizations and using (9) we verify that

G̃ðLÞ
4;1 ðz; z̄Þ ¼

1

L!
1

z − z̄
hQiLðz; z̄Þ ð17Þ

when we set a24;1 ¼ α2. In writing (17) we have identified
(i) the variable z representing conformal ratios on the lhs
with the modularlike parameter z of the thermal QFT on
the rhs and (ii) the number of loops L on the lhs with
L ¼ ðd − 1Þ=2 on the rhs.

For D ¼ 2, ω ¼ 1 the model (15) is singular as GðLÞ
2;1

would seem to vanish [17]. Nevertheless, a nonzero result
can be obtained if we define the effective coupling

ãD;ω ¼ aD;ω
1

ΓðD=2 − ωÞ ; ð18Þ

which remains finite as D ↦ 2, ω ↦ 1. Then, following
the graph-building techniques introduced in [18–21] we
can show that the appropriately normalized four-point
function of Fig. 1 is given by

G̃ðLÞ
2;1 ðz; z̄Þ ¼ ã2L2;1

X
m∈Z

Z
dν

ðzz̄Þiνðz=z̄Þm=2

ðm2

4
þ ν2ÞLþ1

: ð19Þ

Since jzj < 1we compute the integrals above using contour
integration. When m ≠ 0 we can close the contour from
below and pick up the residues in the lower half complex
plane. We obtain

X
m≠0

Z
dν

ðzz̄Þiνðz=z̄Þm=2

ðm2

4
þν2ÞLþ1

¼2π

L!

XL
n¼0

ð2L−nÞ!ð−2 log jzjÞn
ðL−nÞ!n! 2ℜ½Li2Lþ1−nðzÞ�: ð20Þ

Form ¼ 0 the contour integral appears to be zero, but there
is a pole on the real axis. Taking the Cauchy principal value
we obtain

−
Z
Cϵ

dν
jzj2iν
ν2Lþ2

¼ −i
Z

2π

π
dθ

exp ð2iϵ log jzjeiθÞ
ϵ2Lþ1eið2Lþ1Þθ : ð21Þ

For ϵ ↦ 0 we encounter 2Lþ 1 divergent terms, which we
discard, and a finite contribution that reads

−i
Z

2π

π
dθ

ð2i log jzjÞ2Lþ1

ð2Lþ 1Þ! ¼ ð−ÞLπ ð2 log jzjÞ
2Lþ1

ð2Lþ 1Þ! : ð22Þ

Putting together (20) and (22) we finally obtain

GðLÞ
2;1 ðz; z̄Þ ¼

2π

L!
lnZLðz; z̄Þ ð23Þ

when we set ã22;1 ¼ α2. This is one of the main results of the
present work. Notice that the leading “zero temperature”
contributions in (19) and (4) arise after the subtraction of a
finite number of divergent terms. Acting with L̂ on both
sides of (23) and using (10) we see that the ladder graphs
of the four-dimensional CFT are derivatives of the corre-
sponding ladder graphs of the two-dimensional CFT. This
dimension-shift property between conformal ladder graphs
generalizes to all even dimensions.
Twisted thermal one-point functions and multiloop

conformal graphs.—The thermal one-point functions
hOiL and hQiL appear in the expansion of the thermal
two-point function hϕ†ðxÞϕð0Þi ¼ gðLÞðτ;xÞ. This moti-
vates us to ask whether thermal one-point functions of
higher spin operators are also related to conformal ladder
graphs. It is usually highly nontrivial to calculate thermal
one-point functions in a generic QFT. However, for a
CFT with a complex scalar ϕðxÞ having dimension Δϕ in
d ¼ 2Lþ 1 we have [22]

gðLÞðτ;xÞ ¼
X
Os

aLOs

�
r
β

�
ΔOs Cν

sðcos θÞ
r2Δϕ

; ð24Þ

where ν ¼ d=2 − 1. The main assumption behind (24) is
the existence of a conformal operator product expansion at
zero temperature such that ϕ† × ϕ can be expanded in a
sum of quasiprimary operators Os with definite spins s and
scaling dimensions ΔOs

. The latter are represented by
symmetric, traceless rank-s tensors, and their one-point
functions depend on a single parameter that is proportional
to the coefficient aLOs

. For example, for free massless
complex scalars when Δϕ ¼ L − 1=2 one obtains [23–25]

aLOs
¼ 2CL

ϕð1Þζð2L − 1þ sÞ; s ¼ 0; 2; 4…: ð25Þ

In that case, only symmetric and conserved higher-spin
operators with dimensions ΔOs

¼ d − 2þ s and even spin

FIG. 1. The graph contributing to GðLÞ
D;ω.
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s appear in (24). Each term in the sum (24) is of the form
rsCL−1=2

s ðcos θÞ and we find □dGðLÞðxÞ ¼ 0 with □d the
d-dimensional Laplacian. This is the usual free field theory
result away from the origin.
In nontrivial CFTs the operator spectrum, their scaling

dimensions, and aLOs
change in a way determined by the

dynamics; hence, the thermal two-point function does not
satisfy a simple equation in general, although the form of
the expansion (24) remains the same. The latter property is
not expected to be true in a generic QFT. Nevertheless,
remarkably, the thermal two-point functions of the complex
scalars ϕðxÞ in the massive free theory with partition
function (4) do admit an expansion of the form (24) and
contain a part that is annihilated by the d-dimensional
Laplacian, albeit with different coefficients aLOs

from (25).
This might not be surprising as the theory is Gaussian;
nevertheless, the theory is not generically a CFT. gðLÞðτ;xÞ
is obtained as the Fourier transform of the unit normalized
momentum space two-point function with twisted boun-
dary conditions [9] on S1β. We obtain (setting β ¼ 1 for
simplicity)

gðLÞðτ;xÞ ¼ 1

ð2πÞν
X∞
n¼−∞

eiμn
�
m
jXnj

�
ν

KνðmjXnjÞ; ð26Þ

with Xn ¼ ðτ − n;xÞ andKν the modified Bessel functions.
The coefficients aLOs

can be calculated from (26) using the
inversion method of [24], as it was done in [25], but taking
now care that the two-point function is complex so that the
discontinuities along the cuts in the positive and negative r
axis are complex conjugates [26]. We focus on the part
of GðLÞðτ; x⃗Þ that is annihilated by the d-dimensional
Laplacian, namely to the contribution of the would-be
higher-spin currents with dimensions ΔOs

¼ 2L − 1þ s.
We obtain

aLOs
¼ ΓðL − 1

2
Þ

ΓðLþ s − 1
2
Þð4πÞL22s

×
XL−1þs

n¼0

2n

n!
ðβmÞnð2L − 2þ s − nÞ!

ðL − 1þ s − nÞ!
× ½Li2L−1þs−nðzÞ þ ð−1ÞsLi2L−1þs−nðz̄Þ�: ð27Þ

If the theory were a CFT we would associate the coef-
ficients aLOs

with thermal one-point functions of conformal
quasiprimary operators. For generic values of m and μ this
is more complicated. For example, aLO2

represents the
contribution of a rank-2 symmetric traceless tensor that
is not the energy momentum tensor of the massive theory
since the latter has nonzero trace. Nevertheless, the coef-
ficients aLO0

and aLO1
do represent the thermal one-point

functions of the operators O and Q as they have been
independently calculated in (9), (6). Explicitly we have

aLO0
¼ 1

ð4πÞLβα2L hOiL; aLO1
¼ 1

ð4πÞLα2L
1

2
hQiL: ð28Þ

Using (9), (10) we see that for z ¼ z̄ ¼ 1 the above reduce
to (25) as they should. The novel result is that all
coefficients aLOs

with s ≥ 2 are related to L-loop conformal
graphs by virtue of the following recursion relations shown
by brute force calculations:

aLOsþ2
¼ 2π

2L − 1
aLþ1
Os

þ ðmβÞ2
ð2L − 1þ 2sÞð2Lþ 1þ 2sÞ a

L
Os
:

ð29Þ

Consequently, the part of the twisted thermal two-point
function (26) that is annihilated by the d-dimensional
Laplacian is a generating function for (linear combinations)
of L-loop conformal ladder graphs.
Our (29) implies that we can associate a “spin” to a

certain combination of L- and L − 1-loop conformal ladder
graphs. This is evident for s ¼ 0, and it can be generalized
for all s. We do not yet have an understanding of this “spin”
from the point of view of the conformal graphs, but from
the thermal field theory point of view it can be given
a physical interpretation in terms of the underlying free
field theory dynamics. However, we believe that they
have a simpler underlying physical interpretation. For
example, (29) corresponds to a standard thermodynamics
relationship for s ¼ 2. To see that, note that from the
twisted partition function ZL with Hamiltonian of the
form H ¼ H0 þm2Oþ iμQ one can derive the following
general result:

hHiL ¼ d − 1

β
lnZL þ 2m2hOiL þ iμhQiL; ð30Þ

where hHiL ¼ −htττiL with tμν the energy momentum
tensor of theory. For nonzero m and μ this is not traceless,
but for the massless free complex scalar with imaginary
chemical potential we can construct a traceless spin-2
operator T μν with T ττ¼ tττþ2m2O=dþ iμQ. Then (30)
becomes

−hT ττiL ¼ d − 1

β
lnZL þ 2m2

d − 1

d
hOiL: ð31Þ

The general relation connecting aLO2
with the T ττ is [27]

ð4πα2ÞL
β

aLO2
¼ 2gϕ†ϕT

ðd − 1Þðd − 2ÞCT
hT00iL

¼ −
CL
ϕð1ÞSL

2ðd − 1Þ hT ττi: ð32Þ

Using then (28), (9), and (10) we can verify that (31)
coincides with (29). We believe that similar arguments
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relating trace-full and traceless higher-spin operators of the
massive free scalar theory can provide a physical under-
standing for (29) for general s.
Discussion and outlook.—In this Letter, we have con-

nected two seemingly unrelated quantities: twisted partition
functions of a massive free complex scalar field in
d ¼ 2Lþ 1 dimensions, and four-point conformal L-loop
ladder graphs. The reason for such a relationship is that
they both satisfy the same sets of differential equations. For
the partition functions these are given by (13). For the
conformal ladder graphs they are the differential equations
discussed in number of earlier works on conformal inte-
grals [i.e., Eq. (2.15) in [28] ]. This common property begs
for a deeper explanation.
Our results draw a unifying picture for the thermal one-

point functions aLOs
in massive free complex scalar theories.

This is depicted in Fig. 2. By the algebraic relations (29)
they are all ultimately given by aLO0

or aLO1
, and then by the

action of the differential operators D̂ and L̂ to the hOi0 and
hQi0 of the harmonic oscillator model (1).
There are many questions that arise from our observa-

tions. It would be interesting to understand the possible
relationship of our results to the integrability of fishnet
models. It would also be interesting to connect our results
to works that relate partition functions and string ampli-
tudes. Another question would be to connect our approach
to studies of nonintegrable deformations of thermal CFTs
(i.e., see Refs. [29–31] for interesting recent works).
We close with some remarks. Our iterated integral

formula (4) when applied to hQiL gives for L ¼ 1

hQi1 ¼ ð−2α2Þ
Z jzj

0

djz0j
jz0j ln jz

0jhQi0 ¼ 4iα2DðzÞ; ð33Þ

where DðzÞ ¼ ℑ½Li2ðzÞ þ ln jzj lnð1 − zÞ� is the celebrated
Bloch-Wigner function that gives the volume of an ideal
tetrahedron in three-dimensional hyperbolic space H3 with

vertices in ∂H3 [32]. It is then amusing to note that hQi0
itself has a geometric interpretation. Indeed,

hQi0 ¼
z − z̄

ð1 − zÞð1 − z̄Þ ; ð34Þ

and setting z ¼ eiϕðb=aÞ with cosϕ ¼ ða2 þ b2 − 1Þ=2ab
we find that hQi0=4i ¼ 1

2
ab sinϕ gives the area of a

triangle whose side lengths are a, b and 1, and ϕ the
angle between a and b. Then (33) gives the volume of an
ideal hyperbolic tetrahedron as an integral of the area of a
triangle. One then wonders if there is a geometric inter-
pretation for the higher order iterated integrals in (4). We
should further note that hOi0 also has an interpretation
as an area, but we are not aware of a nice geometric
interpretation of hOi1.
Another observation is that hQi0 ¼ −8πρD¼4

m0↦m1þm2

where ρDm0↦m1þm2
is the D-dimensional 1 ↦ 2 decay phase

space of relativistic massive particles. Since

ρD¼4
m0↦m1þm2

¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; m2

1=m
2
0; m

2
2=m

2
0Þ

q
ð35Þ

with λða;b;cÞ¼a2þb2þc2−2ab−2ac−2bc the Källén
triangle function, we see that if we set a ¼ m1=m0 and
b ¼ m2=m0, then hQi0 represents the phase space for a
virtual process with λ < 0 [33]. Then, our (4) is reminiscent
of Eq. (7) of [34], which gives a recurrent relationship for
higher dimensional 1 ↦ 2 relativistic phase spaces.
We further note that equations such as (9) and (10) lead

naturally to the resummation of infinite series. For example,
by virtue of (9) the infinite product Z ¼ Q∞

n¼0 Zn satisfies
the inhomogeneous first order equation

ðD̂þ α2Þ lnZ ¼ −
1

β
hOi0: ð36Þ

This can be integrated to

lnZ ¼ −βe−β2α2m2

Z
m2

eβ
2α2m̃2hOi0dm̃2: ð37Þ

An analogous result can be derived for the
hQi ¼ P∞

n¼0hQin. Given (17) and (23) these are all-loop
Borel summations of conformal ladder graphs [35]. See
Appendix A for some additional observations.
Finally, we point out the work [36] where 2-2 scattering

amplitudes are given in terms of a dispersive integral over
generating functions of knot polynomials [see, e.g., (12)
and (23) of that reference] [37]. The latter generating
functions written in terms of the variables z; z̄ correspond
to thermal averages of certain bilinear operators in a
q-deformed harmonic oscillator, much like our hOiL and
hQiL. We find the connection of the approach in [36] and
our results quite intriguing and we believe that in deserves
further study.

FIG. 2. Differential (solid lines) and algebraic (dashed lines)
relationships among the aLOs

.
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Appendix A: Further observations.—Applying L̂ to (37)
gives

ðD̂þ α2ÞhQi ¼ D̂hQi0; ðA1Þ

where hQi ¼ P∞
L¼0hQiL. By virtue of (17) this sum can

be Borel transformed into the Broadhurst-Davydychev
infinite sum of the L-loop conformal ladder graphs in four
dimensions [38]; see also [39,40]. Indeed the solution of
the first order equation (A1) is

hQi ¼ β2e−β
2α2m2

Z
m2

eβ
2α2m̃2

D̂hQi0dm̃2 ðA2Þ

and can be thought of as a series of the form hQi≡
AðzÞ ¼ P∞

n¼0 anz
n with z ¼ α2. Its Borel transform series

B½A�ðtÞ ≔ P∞
k¼0ðak=k!Þtk is given by the contour integral

B½A�ðtÞ ¼ 1

2πi

Z
C

dz
z
ezAðt=zÞ; ðA3Þ

where C is the Hankel contour [41]. Using the following
integral representation of the Bessel function

JνðzÞ ¼
ð1
2
zÞν

2πi

Z
C
dt

1

tνþ1
et−

z2
4t ; ðA4Þ

we obtain

B½Q�ðtÞ¼β2
1

2πi

Z
m2

dm̃2ðD̂hQi0Þ
Z
C

du
u
eu−

tβ2

u ðm2−m̃2Þ

¼β2
Z

m2

dm̃2J0
h
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðm2−m̃2Þ

q i
ðD̂hQi0Þ: ðA5Þ

Using then

D̂hQi0 ¼
i

2βm
sinhðβmÞ sinðβμÞ

½coshðβmÞ − cosðβμÞ�2 ; ðA6Þ

and setting t ¼ −ðκ2=4Þ, βm̃ ¼ η, l ¼ 2βm and putting
the lower bound of the integral to be þ∞, (A5) coincides
with Eq. 15 of [38].

Appendix B: The relativistic thermal gas.—The one-
particle density of states ρLðω;mÞ for the relativistic
thermal gas in d ¼ 2Lþ 1 dimensions is found as usual
by considering the system in a (d − 1)-dimensional
spatial cubic box of volume Vd−1 ¼ ld−1 with quantized
momentum p⃗ ¼ ½ð2π=lÞn1;…; ð2π=lÞnd−1� ¼ ð2π=lÞn⃗.
The number of modes having momenta inside the
spherical shell bounded by jp⃗j and jp⃗j þ djp⃗j in d ¼
2Lþ 1 dimensions is

dn ¼
�
l2

4π2

�
L

jp⃗j2L−1djp⃗j
Z

dΩ2L; ðB1Þ

with
R
dΩ2L ¼ 2πL=ΓðLÞ. Using then the dispersion

relation ω2 ¼ p⃗2 þm2, for ρLðω;mÞ≡ dn=dω we obtain

ρLðω;mÞ ¼ 2α2β2

ðL − 1Þ!ωðω
2 −m2ÞL−1; ðB2Þ

which when substituted in (3) gives

lnZL ¼ 2α2β2

ðL − 1Þ!
Z

∞

m
ωdωðω2 −m2ÞL−1 lnZ0; ðB3Þ

or alternatively (4) in terms of the real variable
ωjzj ¼ e−βm. We can now apply our differential
operators D̂ and L̂ to this and obtain the integral
representations of all our thermal one-point functions.
In particular, applying L̂ to (B3) we will get the integral
representation of the L-loop conformal ladder graphs
given in Eq. (2.20) of [42] for purely imaginary ϕ and
up to and overall 1=L!.
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