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In this Letter, we demonstrate how to use the generalized δN formalism, which enables us to
compute the evolution of all the large-scale fluctuations, including gravitational waves, solely by
solving the evolution of the background homogeneous Universe. Using the Noether charge density, we
derive an analytic formula which describes the mapping between the fluctuations at the horizon
crossing and the sourced gravitational waves at the end of inflation. This formula can apply also to
an inflation model with an anisotropic background. Using this formula, we discuss the condition for
the nonvanishing linear polarization and the qualitative difference between single- and multigauge
field models.
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Introduction.—The δN formalism [1–3], which is based
on the separate universe approach [4,5], has played the
central role to connect the prediction of each inflation
model with various observations, enabling a simple com-
putation of the superhorizon dynamics and also providing
an intuitive understanding on the evolution of primordial
fluctuations. However, their application was limited to a
system which contains only scalar fields, and it could not be
used even to compute gravitational waves (GWs). In
Ref. [6], we have shown that the separate universe approach
can be applied under a rather general setup. Based on this,
we can generalize the δN formalism to compute the
adiabatic perturbation and GWs sourced by nonzero spin
fields. In this Letter, we demonstrate this computation,
considering a model with U(1) gauge fields which have the
kinetic mixing with scalar fields, which ubiquitously
appear, e.g., in the 4D low-energy effective field theory
of string theory.
gδN formalism.—The δN formalism computes the evo-

lution of fluctuations at the leading order of the gradient
expansion [4,7], which is an expansion schemewith respect
to the spatial gradient. The gradient expansion starts with
smoothing the small-scale fluctuations. As a consequence
of the smoothing, operating the spatial gradient gives rise to
the suppression by a small quantity ϵ, which is usually

characterized by the spatial variation of the fields within
each causally connected patch. At the leading order of the
gradient expansion, we simply send ϵ to 0. As shown in [6],
the separate universe approach and the δN formalism
generically apply to a theory which satisfies the spatial
diffeomorphism invariance and the locality.
Under these two conditions, one can compute the time

evolution of the inhomogeneous universe simply by solv-
ing a set of the corresponding ordinary differential equa-
tions for different initial conditions specified at around the
horizon crossing. The conventional δN formalism can be
applied only to a system with scalar fields, while the
generalized δN formalism (gδN formalism) can be applied
broadly to a general model that satisfies the above-
mentioned two conditions [6].
Preliminaries.—In this Letter, we consider a system with

D scalar fields ϕI and D0 U(1) gauge fields Aμ
ðαÞ whose

Lagrangian density is given by

Lmat ¼ PðXIJ;ϕIÞ −
f2ðαÞðϕIÞ

4
FμνðαÞF

μν
ðαÞ; ð1Þ

where FμνðαÞ denotes the field strengths of the gauge fields
Aμ
ðαÞ. We do not explicitly write the summation over the

label of the gauge fields α.
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We express the four-dimensional line element as

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð2Þ
with i; j ¼ 1;…; 3. We express the spatial metric as
gij ¼ e2ψγij, where γij satisfies det½γ� ¼ 1. Using ψ , the
determinant of gij is given by g ¼ e6ψ. In the separate
universe evolution, we need to employ local gauge con-
ditions [6]. Here, we adopt Ni ¼ 0 and A0 ¼ 0. In Ni ¼ 0

gauge, the expansion K and the shear Ai
j, given by the

trace part and the traceless part of the extrinsic curvature,
read K ¼ 3ψ̇=N and Ai

j ¼ γimγ̇mj=2N, respectively, with
a dot being the time derivative with respect to t.
We determine the time slicing at the horizon crossing,
requiring δψðt�; xÞ ¼ 0, and the one at t ¼ tf, requiring
δKðtf; xÞ ¼ 0. The residual gauge degrees of freedom
are eliminated by imposing additional gauge conditions
on the initial condition at the horizon crossing [8]. We
introduce δγij and δγij as γijðt; xÞ≡ γ̄ikðtÞ½eδγðt;xÞ�kj and
δγijðt; xÞ≡ γ̄ikðtÞδγkjðt; xÞ. Here and hereafter, we put a
bar on background variables.
The Maxwell equations are given by π̇iðαÞ ¼ Oðϵ2Þ with

the conjugate momenta being

πiðαÞ ≡
∂ðN ffiffiffi

g
p

LmatterÞ
∂ȦiðαÞ

¼ ffiffiffi
g

p
f2ðαÞðϕIÞgij ȦjðαÞ

N
;

which correspond to the Noether charge densities at the
leading order of the gradient expansion [6]. The energy
densities of the gauge fields are given by

ρAðαÞ ¼
γijπ

i
ðαÞπ

j
ðαÞ

2f2ðαÞe
4ψ þOðϵ2Þ; ð3Þ

which indicates that ρAðαÞ grows when fðαÞ decreases faster
than e−2ψ .
Primordial GWs.—In this Letter, we assume the near de

Sitter evolution and that the shear is much smaller than the
expansion, i.e.,

ðA1Þ − 3K̇
NK2

≪ 1;
Ai
jA

j
i

K2
≪ 1: ð4Þ

The second assumption in (A1) can be verified when the
summation of the energy densities of all the gauge fields
remains much smaller than the total one, ρ. From the
conservation of the Noether charge density [6], we can
obtain γij evaluated at the reheating surface tf as (the
derivation can be found in Supplemental Material [9])

γijðtf; xÞ ¼ γij�ðxÞ − 2½γil�ðxÞγjm�ðxÞ�TL
× πlðαÞðxÞπmðαÞðxÞI ðαÞfðfφa0� g0Þ þOðϵ2Þ; ð5Þ

with I ðαÞf being

I ðαÞfðfφa0� g0Þ ≃
1

ρ�

Z
ψf

ψ�

dψ
f2ðαÞðϕIÞe4ψ ; ð6Þ

where fφa0� g0 denotes the set of the fields by which we
provide the initial condition at the horizon crossing t� (a
detailed argument can be found in [8]) and ρ� denotes the
total energy density at t ¼ t�. Here, TL denotes the trace-
less part about the ði; jÞ indices defined by using the spatial
metric γij�. In Eq. (5), only the leading contribution of the
gauge fields to γij is taken into account.
Linear perturbation and polarization bases.—In the

conventional δN formalism, the adiabatic curvature per-
turbation ζ is given by computing the e-folding number
under different initial conditions. Similarly, we can com-
pute GWs simply by computing the anisotropic expansion,
which is given by Eq. (5). In this Letter, we consider the
linear perturbation except for the paragraph of the primor-
dial non-Gaussianity.
In what follows, we set the background spatial metric at

the reheating surface tf as γ̄ijðtfÞ ¼ δij. Then, at t ¼ tf, we
can define GWs as usual by using the polarization tensors

e
ðλgwÞ
ij with λgw ¼ þ;×, which satisfy k̂ie

ðλgwÞ
ij ðk̂Þ ¼ 0,

e
ðλgwÞ
ii ðk̂Þ ¼ 0, and e

ðλgwÞ
ij ðk̂Þeðλ0gwÞij ðk̂Þ ¼ δλgwλ

0
gw . The adia-

batic curvature perturbation is also given by the usual
definition as ζðtfÞ ¼ δψðtfÞ − 1

4
k̂ik̂jδγijðtfÞ. Here, k̂

denotes the unit wave number k=k. Here and hereafter,

we lower and raise the indices k̂i and e
ðλgwÞ
ij by using

γ̄ijðtfÞ ¼ δij and γ̄ijðtfÞ ¼ δij. [When the background shear
had already become negligible at t ¼ tf, the background
spatial metric remains γ̄ijðtÞ ¼ δij all the time after tf,
ensuring the linear decomposition among the scalar-,
vector-, and tensor-type perturbations.] Using the two

polarization bases of the gauge fields, eðλÞi ðk̂Þ with

λ ¼ 1, 2, we define e
ðλgwÞ
ij ðk̂Þ as eðþÞ

ij ≡ ðeð1Þi eð1Þj −
eð2Þi eð2Þj Þ= ffiffiffi

2
p

and eð×Þij ≡ ðeð1Þi eð2Þj þ eð2Þi eð1Þj Þ= ffiffiffi
2

p
.

For our later use, let us introduce the polar and azimuthal
angles as k̂ · ¯̂πðαÞ ¼ cosΘα, eð1Þ · ¯̂πðαÞ ¼ sinΘα cosΨα, and
eð2Þ · ¯̂πðαÞ ¼ sinΘα sinΨα for each α, where ¯̂πiðαÞ denotes the
background component of the normalized conjugate
momenta, given by

π̂iðαÞ ≡
πiðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γij�πiðαÞπ
j
ðαÞ

q ¼ γij� ȦjðαÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γkl� ȦkðαÞ�ȦlðαÞ�

q : ð7Þ

For an arbitrary k̂i, we can choose eð2Þi such that it is
orthogonal to one of the background gauge fields, e.g.,

Ψ1 ¼ 0. In fact, we can choose eð1Þi in the 2D plane spanned

by k̂i and ¯̂πið1Þ, ensuring eð2Þi
¯̂πið1Þ ¼ 0.
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Linearly polarized GWs.—The two linear polarization
modes, defined as γðλgwÞðtf; kÞ≡ e

ðλgwÞ
ij ðk̂Þδγijðtf; kÞ, in

general, evolve differently in superhorizon scales, generat-
ing the linear polarization. Here, let us discuss when the
linear polarization becomes nonzero, focusing on the case
where the two linear polarization modes of the gauge fields

have the same amplitudes at t�, i.e., jeð1Þi δπiðαÞj ¼ jeð2Þi δπiðαÞj
(without having cross-correlation among them). When the
fluctuations of I ðαÞf and γij� are negligible in the second
term in Eq. (5), i.e., when the fluctuation of the gauge field
δπiðαÞ yields the dominant contribution, this sourced con-

tribution does not generate the linear polarization. Since the
contribution of δγij� becomes smaller than that of δπi, as
will be discussed shortly, let us focus on the fluctuation of
I ðαÞf. Since I ðαÞf is the time integral of the functional of the
scalar fields, δI ðαÞf is generated by the intrinsic fluctuations
of the scalar fields and the fluctuations sourced by the
gauge fields. Even if the intrinsic one is negligible, when
the backreaction of the increasing gauge fields on the scalar
fields starts to be important, the fluctuations of the gauge
fields perturb I ðαÞf through the sourced fluctuations,
resulting in the superhorizon generation of the linear
polarization. In the model of anisotropic inflation discussed
in Refs. [10,11] (exclusively for the specific parameter
choice there), the gauge field does not effectively change
the equation of motion of the scalar field. Therefore, the
linear polarization was negligibly small [8].
Slow-roll evolution and asymptotic solution.—Let us

introduce Î ðαÞf ≡ γij�πiðαÞπ
j
ðαÞI ðαÞf, which is given by

Î ðαÞfðfφa0� g0Þ ≃
2

ρ�

Z
ψf

ψ�
dψρAðαÞðψÞ; ð8Þ

since the time variation of γij becomes higher order and πiðαÞ
is constant in time. When ρAðαÞ takes a maximum value

ρmax
AðαÞ during Δψ ðαÞ after the horizon crossing, Î ðαÞf is

roughly given by Î ðαÞf ∼ 2Δψ ðαÞρmax
AðαÞ=ρ�. When the scalar

fields which directly interact with the gauge fields undergo
the slow-roll evolution, one can broadly find a solution
where ρAðαÞ approaches an almost constant value, whose
time variation is suppressed by the slow-roll parameters [8].
An explicit example can be found, e.g., in Ref. [12]. In such
cases,

ðA2Þ
���� δÎ ðαÞf
Î ðαÞf

���� ≪ jδπ̂iðαÞj ð9Þ

naturally holds, because the fluctuation of ρmax
AðαÞ is sup-

pressed and jδΔψ ðαÞj=Δψ ðαÞ typically becomes smaller than
jδπ̂iðαÞj ∼ jδρAðαÞ�=ρAðαÞ�j by a factor of 1=Δψ ðαÞ. In order

for condition (A2) to hold, the fluctuations of the scalar
fields and the amplitude of each gauge field, γ̄ijπ̄iðαÞδπ

j
ðαÞ,

need to be tightly correlated to reduce the fluctuation of
ρAðαÞ. In this case, the backreaction of the gauge field
modifies the evolution of the scalar fields, resulting in
nonzero linear polarization [see Eq. (11)]. In the anisotropic
inflation model considered in Refs. [10,11], (A2) does not
hold exceptionally for the parameter chosen there [while
GWs can be still computed by using Eq. (5)].
Perturbative expansion in gδN formalism.—Perturbing

Eq. (5) under the assumption (A2), the linear perturbation
of γij is given by (see Supplemental Material [9])

δγijðtf;xÞ≃δγij�ðxÞ−4½γ̄il�γ̄jm��TL ¯̂πflðαÞδπ̂mg
ðαÞðxÞ ¯̂I ðαÞf; ð10Þ

where the indices l and m are symmetrized. The spatial
inhomogeneity at t ¼ t� is described by considering
separate universes with various initial conditions [6].
The first term is the usual vacuum contribution, while
the second one describes the shear fluctuation sourced by
the directional fluctuations of πiðαÞ. The fluctuation of γij�
also perturbs the second term in Eq. (5), yielding several

terms whose amplitudes amount to ¯̂I ðαÞfðH�=MplÞ∼
ðρ̄max

AðαÞ=ρ̄�ÞΔψ ðαÞðH�=MplÞ, where H denotes the Hubble
parameter. They turn out to be smaller than the second

term in Eq. (10) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄max
AðαÞ=ρ̄�

q
< 1. This suppression

originates from the difference between the amplitudes of
δγij� and δπ̂iðαÞ. A more general computation in which (A2)
is not imposed will be reported in Ref. [8].
Perturbing π̂iðαÞ, we obtain

δπ̂iðαÞ ¼
γ̄ij� δȦjðαÞ�

˙̄AðαÞ�
−
γ̄kl� ˙̄AkðαÞ�δȦlðαÞ�γ̄

ij
� ˙̄AjðαÞ�

˙̄A3
ðαÞ�

þ � � � ;

where we have introduced ˙̄AðαÞ� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̄kl� ˙̄AkðαÞ� ˙̄AlðαÞ�

q
. Here,

we abbreviated the terms with the fluctuation of the spatial
metric, which give only subdominant contributions.
Without these abbreviated terms, we find γ̄ij�δπ̂iðαÞ ¯̂π

j
ðαÞ ¼ 0.

Power spectrum of GWs.—So far, we have computed the
mapping between the horizon crossing t� and the reheating
tf simply by assuming (A1) and (A2). In what follows,
assuming further that the background anisotropy was still
very small at t ¼ t�, we compute the power spectrums of
δγij� and δȦi� by adopting the Friedmann-Lemaître-
Robertson-Walker background approximation. The ampli-
tudes of δȦðαÞ� for the two polarization modes are given by

jδȦðαÞ�ðkÞj2
˙̄A2
ðαÞ�

¼ 1

12

�
1þ

� ˙̄f�
H�f̄�

�2�
1

k3
ρ̄�

ρ̄AðαÞ�

�
H�
Mpl

�
2

;

which should be smaller than 1 to validate the perturbation,
resulting in the upper bound on the duration of the
exponential growth of each gauge field. Combining the
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expressions given above, we obtain the power spectrum of
primordial GWs as

hγðλgwÞðtf; kÞγðλgwÞðtf; pÞi

¼ δðkþ pÞ 2
k3

�
H�
Mpl

�
2
�
1þ

XD0

α¼1

g
λgw
tðαÞsin

2Θα

�
; ð11Þ

where g
λgw
tðαÞ depends on the angles Θα and Ψα as

gþtðαÞ ¼ gtðαÞ cos 2Ψαð1 − 2sin2Θα þ sin4Θαcos22ΨαÞ;
g×tðαÞ ¼ gtðαÞ cos 2Ψαð1 − sin4Θαsin22ΨαÞ;

with the overall amplitude gtðαÞ being

gtðαÞ ≡ ρ̄�
3ρ̄AðαÞ�

¯̂I
2
ðαÞf

�
1þ

� ˙̄fðαÞ�
H�f̄ðαÞ�

�2�
; ð12Þ

which is O½ðρ̄max
AðαÞ=ρ̄�Þðρ̄max

AðαÞ=ρ̄AðαÞ�ÞΔψ2
ðαÞ�. This indicates

that even if the energy density of the gauge field all the time
remains much smaller than the total energy density,
satisfying ðρ̄max

AðαÞ=ρ̄�ÞΔψ2
ðαÞ ≪ 1, the anisotropic component

of primordial GWs can be as large as or even larger than the
isotropic one [13]. This is a consequence of the enhance-
ment by ρ̄max

AðαÞ=ρ̄AðαÞ�, which becomes much larger than 1
when the mode k crosses the horizon before ρAðαÞ reaches
the maximum value. This is because the conversion from
the fluctuations of the gauge fields to GWs takes place
mainly when ρAðαÞ reaches the maximum value, while the
(normalized) power spectrum of the gauge field at the
horizon crossing is inversely proportional to ρ̄AðαÞ�.
Because of this enhancement, even if the gauge field is
sourced only by the spectator fields, which occupy only a
small fraction of the total energy density, we can obtain a
large statistical anisotropy [12]. Since the backreaction is
important when (A2) holds as discussed before, the two
linear polarization modes have a different angular depend-
ence. In general, the sourced GWs depend on both the polar
and azimuthal angles, but, exclusively for D0 ¼ 1, we can
eliminate the latter by setting it, e.g., to π. The cross-
correlation between γðþÞ and γð×Þ necessarily takes a
nonvanishing value for D0 ≥ 2, since it turns out to be
proportional to sinΨα, which cannot be set to 0 for all α’s
simultaneously [8].
Adiabatic curvature perturbation.—The (linear) adia-

batic perturbation is given by the summation of the
fluctuation of the e-folding number and the longitudinal
part of δγij at t ¼ tf, where the background spatial metric is
set to δij. Under assumptions (A1) and (A2), we obtain the
dominant contribution of the latter as

1

4
k̂ik̂jδγijðtf; kÞ ¼

XD0

α¼1

ðk̂i ¯̂πiðαÞÞ2 ¯̂I ðαÞf ¯̂π
j
ðαÞ

δȦj�ðαÞðkÞ
˙̄AðαÞ�

;

while the former depends significantly on the detail of the
models. Here, we have dropped the longitudinal mode of
δγij at t ¼ t�, which can be removed by using the residual
gauge degree of freedom.
For example, when there exist two canonical scalar fields

ϕ and σ and only the subdominant one σ interacts with one
gauge field (i.e., D ¼ 2, D0 ¼ 1), under the slow-roll
approximation, we obtain

dϕ
dψ

≃ −M2
pl

Vϕ

V þ ρσ þ ρA
;

where V and Vϕ denote the scalar potential and its
derivative with respect to ϕ, respectively, and ρσ denotes
the energy density of σ. Assuming that when the energy
density of the gauge field takes the maximum value
ðψmax ≤ ψ ≤ ψmax þ ΔψÞ both ρA and ρσ remain almost
constant, the above equation can be solved as

ψf − ψ� ≃ ðψf − ψ�Þϕ þ
ρmax
σ þ ρmax

A

V
Δψ ; ð13Þ

where the first term denotes the e-folding number, which is
determined only by the dynamics of ϕ. Here and hereafter,
we put the upper index max on the quantities evaluated
during ψmax ≤ ψ ≤ ψmax þ Δψ . The subdominant scalar
field σ can also provide an angular-independent subdomi-
nant contribution to ψmax − ψ�, which can be addressed by
using the conventional δN formalism. Here and hereafter,
we ignore it, focusing on the leading angular-dependent
contribution. Perturbing Eq. (13), we find that the dominant
angular-dependent contribution appears from the fluc-
tuation of ρmax

σ under assumption (A2). Using δρmax
σ ≃

V̄max
σ δσmax and eliminating δσmax by using δρmax

A ≃ 0, we
obtain

δρmax
σ ≃

V̄max
σ

ðln f̄Þ;σmax

�
¯̂πi
δȦi�
˙̄A�

þ 2ðln f̄Þ;σ�δσ�
�
:

Using this in the perturbation of Eq. (13) and ignoring the
second term in δρmax

σ , which yields only the subdominant
angular-independent contribution, we obtain

ζðtf; kÞ ≃ −
V̄�

M2
plV̄ϕ�

δϕ�ðkÞ − 2
ρ̄max
A

ρ̄�
Δψ

¯̂πiδȦi�ðkÞ
˙̄A�

×

�
cos2Θðk̂Þ − 1

2

Vmax
σ

ðln fÞ;σmax ρ̄max
A

�
:

The first term in the parentheses is the model-independent
contribution which comes from the longitudinal mode of
δγij, and the second one comes from the fluctuation of the
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e-folding number. For the specific choice of f and V, the
formulas given in this Letter reproduce the result obtained
in Ref. [12]. When the amplitude of the second term in the
parentheses of ζ does not exceed Oð1Þ, the statistical
anisotropy in the power spectrum of ζ is suppressed by the
slow-roll parameter ε ≃ ðMplVϕ=VÞ2=2 compared to that of

GWs g
λgw
t . Then, the statistical anisotropy in the power

spectrum of GWs can be as large as Oð1Þ, keeping the
scalar spectrum consistent with the present observations
[12]. Using these formulas, we can also compute the cross-
correlation of ζ and γþ, which takes a nonvanishing value.
Primordial non-Gaussianity.—Using the gδN formal-

ism, the local type non-Gaussianity can be computed easily.
Here, let us provide only the order estimation, leaving
a detailed computation for elsewhere. We obtain the
local-type non-Gaussianity of γðλgwÞ sourced by the gauge
fields as

fγ;ANL ∼
XD0

α¼1

�
ρ̄�

ρ̄AðαÞ�

�
2
¯̂I
3
ðαÞf ∼

XD0

α¼1

� ρ̄max
AðαÞ

ρ̄AðαÞ�

�
2 ρ̄max

AðαÞ
ρ̄�

Δψ3
ðαÞ;

which can be also enhanced by the square of ρ̄max
AðαÞ=ρ̄AðαÞ�,

when the corresponding gauge field reaches the maximum
value after the horizon crossing. Here, we have ignored the
angular dependence which requires a more detailed com-
putation. The local-type non-Gaussianity of ζ which stems
from the longitudinal part of δγij is suppressed by ε2

compared to fγ;ANL, while there is also a model-dependent
contribution in the fluctuation of the e-folding number.
Summary.—In this Letter, we showed that the gδN

formalism can largely facilitate the computation of the
superhorizon evolution of ζ and GWs by considering an
inflation model with U(1) gauge fields. Since the gδN
formalism generically applies to a model with locality and
spatial diffeomorphism invariance, various applications
will be possible. The gδN formalism plays the comple-
mentary role to the cosmological bootstrap [14], which is
powerful to address the correlation functions at the horizon
crossing.
The gδN formalism is useful to develop the intuitive

understanding about large-scale evolution. Along this line,
we discussed the condition for the nonzero linear polari-
zation and showed the qualitative difference between
single- and multigauge field models as an example.
The model studied here has various phenomenologically

interesting properties, e.g., predicting the O(1) statistical
anisotropy in the power spectrums of GWs, the linear
polarization, and the cross-correlation among ζ and the two
linear polarization modes of GWs, which will leave
characteristic signals, e.g., in the fluctuations of the cosmic
microwave background [15].
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