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In this Letter, we demonstrate how to use the generalized 6N formalism, which enables us to
compute the evolution of all the large-scale fluctuations, including gravitational waves, solely by
solving the evolution of the background homogeneous Universe. Using the Noether charge density, we
derive an analytic formula which describes the mapping between the fluctuations at the horizon
crossing and the sourced gravitational waves at the end of inflation. This formula can apply also to
an inflation model with an anisotropic background. Using this formula, we discuss the condition for
the nonvanishing linear polarization and the qualitative difference between single- and multigauge

field models.
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Introduction.—The 6N formalism [1-3], which is based
on the separate universe approach [4,5], has played the
central role to connect the prediction of each inflation
model with various observations, enabling a simple com-
putation of the superhorizon dynamics and also providing
an intuitive understanding on the evolution of primordial
fluctuations. However, their application was limited to a
system which contains only scalar fields, and it could not be
used even to compute gravitational waves (GWs). In
Ref. [6], we have shown that the separate universe approach
can be applied under a rather general setup. Based on this,
we can generalize the SN formalism to compute the
adiabatic perturbation and GWs sourced by nonzero spin
fields. In this Letter, we demonstrate this computation,
considering a model with U(1) gauge fields which have the
kinetic mixing with scalar fields, which ubiquitously
appear, e.g., in the 4D low-energy effective field theory
of string theory.

goN formalism.—The 6N formalism computes the evo-
lution of fluctuations at the leading order of the gradient
expansion [4,7], which is an expansion scheme with respect
to the spatial gradient. The gradient expansion starts with
smoothing the small-scale fluctuations. As a consequence
of the smoothing, operating the spatial gradient gives rise to
the suppression by a small quantity e, which is usually
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characterized by the spatial variation of the fields within
each causally connected patch. At the leading order of the
gradient expansion, we simply send € to 0. As shown in [6],
the separate universe approach and the SN formalism
generically apply to a theory which satisfies the spatial
diffeomorphism invariance and the locality.

Under these two conditions, one can compute the time
evolution of the inhomogeneous universe simply by solv-
ing a set of the corresponding ordinary differential equa-
tions for different initial conditions specified at around the
horizon crossing. The conventional SN formalism can be
applied only to a system with scalar fields, while the
generalized SN formalism (goN formalism) can be applied
broadly to a general model that satisfies the above-
mentioned two conditions [6].

Preliminaries.—In this Letter, we consider a system with

D scalar fields ¢ and D’ U(1) gauge fields A’(‘a) whose
Lagrangian density is given by
(@)
Low =P ¢) == FuwFlay. (1)

where F,,(4) denotes the field strengths of the gauge fields
A’Za). We do not explicitly write the summation over the
label of the gauge fields a.
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We express the four-dimensional line element as
ds? = =N?di* + g;;(dx' + N'dt)(dx/ + Nidt), (2)

with i,j=1,...,3. We express the spatial metric as
gij = €*y;j, where y,; satisfies det[y] = 1. Using y, the
determinant of g;; is given by g = e%. In the separate
universe evolution, we need to employ local gauge con-
ditions [6]. Here, we adopt N; =0 and Ap = 0. In N; =0
gauge, the expansion K and the shear A; given by the
trace part and the traceless part of the extrinsic curvature,
read K = 3ys/N and A} = y™y,,;/2N, respectively, with
a dot being the time derivative with respect to t.
We determine the time slicing at the horizon crossing,
requiring Sy (t,,x) = 0, and the one at ¢ = t;, requiring
6K (t;,x) = 0. The residual gauge degrees of freedom
are eliminated by imposing additional gauge conditions
on the initial condition at the horizon crossing [8]. We
introduce &% and &y;; as y;;(1,x) = 7u(1)[”)]% and
5yi;(t.x) = ;7,~k(t)5yj?(t,x). Here and hereafter, we put a
bar on background variables.

The Maxwell equations are given by 7r = O(e?) with
the conjugate momenta being
[ a(N g‘cma er) lA a
o) = \a/f;i(a) = Vsl @9

which correspond to the Noether charge densities at the
leading order of the gradient expansion [6]. The energy
densities of the gauge fields are given by

i j
Vijt
PAa) = zjfz() + O(e?), 3)

which indicates that p4(,) grows when f ) decreases faster
than e~V

Primordial GWs.—In this Letter, we assume the near de
Sitter evolution and that the shear is much smaller than the
expansion, i.e.,

]
i

(Al)-——> <1, <1 4)

NK?
The second assumption in (A1) can be verified when the
summation of the energy densities of all the gauge fields
remains much smaller than the total one, p. From the
conservation of the Noether charge density [6], we can
obtain y;; evaluated at the reheating surface 7, as (the
derivation can be found in Supplemental Material [9])

Vij(tp. %) = 735 (%) = 2[yi0 ()7 jun ()™

X (X)) ()T (@) ({9 }) + O(7). (5)

(a

with Z 4, being

Vs dl//

where {@?}’ denotes the set of the fields by which we
provide the initial condition at the horizon crossing 7, (a
detailed argument can be found in [8]) and p, denotes the
total energy density at t = ¢,. Here, TL denotes the trace-
less part about the (i, j) indices defined by using the spatial
metric y;;,. In Eq. (5), only the leading contribution of the
gauge fields to y;; is taken into account.

Linear perturbation and polarization bases.—In the
conventional SN formalism, the adiabatic curvature per-
turbation ¢ is given by computing the e-folding number
under different initial conditions. Similarly, we can com-
pute GWs simply by computing the anisotropic expansion,
which is given by Eq. (5). In this Letter, we consider the
linear perturbation except for the paragraph of the primor-
dial non-Gaussianity.

In what follows, we set the background spatial metric at
the reheating surface ¢, as 7;;(t;) = 6;;. Then, at ¢t = 1, we
can define GWs as usual by using the polarization tensors

el(j"”) with  Ag, = +, %, which satisfy lAc,-el(-ng)(lAc) =0,

e (k) =0, and e (k)el™ (k) = 5%, The adia-
batic curvature perturbation is also given by the usual
definition as ((t;) = Sy (t;) — Lkik;6y,;(tf). Here, k

denotes the unit wave number k/ k. Here and hereafter,

we lower and raise the indices k' and e by using
7:i(ty) = 6;; and 7V (t) = 5. [When the background shear
had already become negligible at ¢ = 7, the background
spatial metric remains 7;;(t) = &;; all the time after 7,
ensuring the linear decomposition among the scalar-,
vector-, and tensor-type perturbations.] Using the two
polarization bases of the gauge fields, e? (k) with

A=1, 2, we define e(/1 >(I:t) as e(f)z(el(.l)em—
(2 )/\/_ ande

E . J
_(()eﬁ) ()())/\/_

For our later use, let us 1ntroduce the polar and azimuthal

angles as k- n( )y = = cos O,, el 71:( ) = sin ®, cos ¥, and

e - &, = sin©, sin ¥, for each a, where fz’('a) denotes the

background component of the normalized conjugate
momenta, given by

Ta 77 Aj )

= )

\/}/11*7[ () (a) \/7/* Ak (a)* Al (a)*

For an arbitrary k', we can choose 652) such that it is
orthogonal to one of the background gauge fields, e.g.,

¥, = 0. In fact, we can choose el(-l)

by k; and ), ensuring el(.z)fzé]) =0.

in the 2D plane spanned
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Linearly polarized GWs.—The twg l)inear polarization
modes, defined as y"%) (1, k) = ;" (k)6y,;(t;.k), in
general, evolve differently in superhorizon scales, generat-
ing the linear polarization. Here, let us discuss when the
linear polarization becomes nonzero, focusing on the case
where the two linear polarization modes of the gauge fields

Vonly| = lei? onl, |

have the same amplitudes at ¢,, i.e., |e

(without having cross-correlation among them). When the
fluctuations of Z,), and y;;, are negligible in the second
term in Eq. (5), i.e., when the fluctuation of the gauge field
éﬂéa) yields the dominant contribution, this sourced con-

tribution does not generate the linear polarization. Since the
contribution of dy; I becomes smaller than that of 67!, as
will be discussed shortly, let us focus on the fluctuation of
T (a)y- Since Z 4 is the time integral of the functional of the
scalar fields, 67 s is generated by the intrinsic fluctuations
of the scalar fields and the fluctuations sourced by the
gauge fields. Even if the intrinsic one is negligible, when
the backreaction of the increasing gauge fields on the scalar
fields starts to be important, the fluctuations of the gauge
fields perturb Z(,), through the sourced fluctuations,
resulting in the superhorizon generation of the linear
polarization. In the model of anisotropic inflation discussed
in Refs. [10,11] (exclusively for the specific parameter
choice there), the gauge field does not effectively change
the equation of motion of the scalar field. Therefore, the
linear polarization was negligibly small [8].

Slow-roll evolution and_asymptotic solution.—Let us
introduce 7 (@f =7i ]*n zr’ I (a)f» Which is given by

Ny 2 vy
Lol }) = / Apan (). (8)

since the time variation of y;; becomes higher order and zri (@)

is constant in time. When py(,) takes a maximum value

A
max

Pt during Ay, after the honzon crossing, Z s is

/ p.. When the scalar

fields which directly interact w1th the gauge fields undergo
the slow-roll evolution, one can broadly find a solution
where p4(q) approaches an almost constant value, whose
time variation is suppressed by the slow-roll parameters [8].
An explicit example can be found, e.g., in Ref. [12]. In such
cases,

roughly given by 7 (@f ~ 28y )

51,
(a2)| Lt
Liayy

< o, 9)

naturally holds, because the fluctuation of pm{”‘) is sup-
pressed and [5Ay )|/ Ay 4 typically becomes smaller than
|57r \N 6P (a */pA <l by a factor of 1/Ay
for condltlon (A2) to hold, the fluctuations of the scalar
fields and the amplitude of each gauge field, ¥; jz'rl('a)ézr{w,

. In order

need to be tightly correlated to reduce the fluctuation of
PA(w)- In this case, the backreaction of the gauge field
modifies the evolution of the scalar fields, resulting in
nonzero linear polarization [see Eq. (11)]. In the anisotropic
inflation model considered in Refs. [10,11], (A2) does not
hold exceptionally for the parameter chosen there [while
GWs can be still computed by using Eq. (5)].

Perturbative expansion in goN formalism.—Perturbing
Eq. (5) under the assumption (A2), the linear perturbation
of y;; is given by (see Supplemental Material [9])

_ - ~{l cn S
67/ij(tf»x)zé}'ij*(x)_4[yil*7jm*]TLﬂ§a)5ﬂ?;})(x)z-(a)fv (10)
where the indices / and m are symmetrized. The spatial
inhomogeneity at ¢ =1¢, is described by considering
separate universes with various initial conditions [6].
The first term is the usual vacuum contribution, while
the second one describes the shear fluctuation sourced by
the directional fluctuations of néa). The fluctuation of y;;,
also perturbs the second term in Eq. (5), yielding several

terms whose amplitudes amount to I v (H. M) ~

(P /D) A (o (H. /M), where H denotes the Hubble
parameter They turn out to be smaller than the second
term in Eq. (10) by 1/,og‘*‘;‘ /p. < 1. This suppression
originates from the difference between the amplitudes of
Oyij« and 57%1((1)' A more general computation in which (A2)

is not imposed will be reported in Ref. [8].
Perturbing ﬁ’(a), we obtain

T Kl . _ii=
sa = A 7 A0 A P A @
@ A(a)* A(3a)*

where we have introduced A ), = \/7'Ag()«A(a)- Here,
we abbreviated the terms with the fluctuation of the spatial
metric, which give only subdominant contributions.
Without these abbreviated terms, we find ¥, j*éﬁéa) 71-{0() =0.

Power spectrum of GWs.—So far, we have computed the
mapping between the horizon crossing ¢, and the reheating
t; simply by assuming (Al) and (A2). In what follows,
assuming further that the background anisotropy was still
very small at ¢ = 7,, we compute the power spectrums of
oy;j« and 5A;, by adopting the Friedmann-Lemaitre-
Robertson-Walker background approximation. The ampli-
tudes of 5/\(,,)* for the two polarization modes are given by

6A - (R i[1+<7* )2] p. <H*>2
% 12 *f* k? pA (a)* Mpl ’

which should be smaller than 1 to validate the perturbation,
resulting in the upper bound on the duration of the
exponential growth of each gauge field. Combining the
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expressions given above, we obtain the power spectrum of
primordial GWs as

(e (27, )y (1. p))

2 (H, \?2 D 2
= 5(k +p)k3<M*l> (1 +th<g;’)sin2®a>, (11)
p a=1

where gff;") depends on the angles ®, and ¥, as

9%) = Gi(a) €05 2%, (1 — 25in*O, + sin*@,cos?2¥,,),
Tl = Iite) €05 2%o(1 = 5in*O,sin2¥, ),

with the overall amplitude g, being

y 2
_ P ~2 f(a)*
= A 1 — |, 12
91(@) 3,DA(a)* @7 |: - (H*f(a)*) :| ( )

which is O[(p}{% /p.) (P / pA(a)*)Az//(za)]. This indicates

that even if the energy density of the gauge field all the time
remains much smaller than the total energy density,
satisfying ([Jf(a(f) / ﬁ*)Ay/%a) < 1, the anisotropic component
of primordial GWs can be as large as or even larger than the
isotropic one [13]. This is a consequence of the enhance-

ment by pg‘(a; /PA(a)» Which becomes much larger than 1
when the mode k crosses the horizon before py,) reaches
the maximum value. This is because the conversion from
the fluctuations of the gauge fields to GWs takes place
mainly when p,(, reaches the maximum value, while the
(normalized) power spectrum of the gauge field at the
horizon crossing is inversely proportional 0 Py (q)s-
Because of this enhancement, even if the gauge field is
sourced only by the spectator fields, which occupy only a
small fraction of the total energy density, we can obtain a
large statistical anisotropy [12]. Since the backreaction is
important when (A2) holds as discussed before, the two
linear polarization modes have a different angular depend-
ence. In general, the sourced GWs depend on both the polar
and azimuthal angles, but, exclusively for D’ = 1, we can
eliminate the latter by setting it, e.g., to z. The cross-
correlation between y*) and y(*) necessarily takes a
nonvanishing value for D’ > 2, since it turns out to be
proportional to sin ¥, which cannot be set to O for all a’s
simultaneously [8].

Adiabatic curvature perturbation.—The (linear) adia-
batic perturbation is given by the summation of the
fluctuation of the e-folding number and the longitudinal
part of §y;; at 1 = 1, where the background spatial metric is
set to 6;;. Under assumptions (A1) and (A2), we obtain the
dominant contribution of the latter as

1 AA 7 R =7
g Kikidyy ey k) =D (kikly) L o) A (o)

N

a=1

while the former depends significantly on the detail of the
models. Here, we have dropped the longitudinal mode of
Oy;j at t = t,, which can be removed by using the residual
gauge degree of freedom.

For example, when there exist two canonical scalar fields
¢ and ¢ and only the subdominant one ¢ interacts with one
gauge field (i.e., D=2, D' =1), under the slow-roll
approximation, we obtain

9 Ve
dy PVt st pa’

where V' and V, denote the scalar potential and its
derivative with respect to ¢, respectively, and p, denotes
the energy density of . Assuming that when the energy
density of the gauge field takes the maximum value
(Wmax < W < Wnax + Ay) both p, and p, remain almost
constant, the above equation can be solved as

glax _|_ max
’%Aw, (13)

W=y (W =y, +
where the first term denotes the e-folding number, which is
determined only by the dynamics of ¢. Here and hereafter,
we put the upper index max on the quantities evaluated
during Wax <YW < Wnax + Ay, The subdominant scalar
field o can also provide an angular-independent subdomi-
nant contribution to y,,. — ., which can be addressed by
using the conventional SN formalism. Here and hereafter,
we ignore it, focusing on the leading angular-dependent
contribution. Perturbing Eq. (13), we find that the dominant
angular-dependent contribution appears from the fluc-
tuation of pI'™* under assumption (A2). Using Spo™* ~
Vmax§emax and eliminating §6™ by using SpT* ~ 0, we
obtain

Vmax —5A _
P ~ 7 <fr’ — + 2(lnf),6*56*).
(111 f),o.max A*

Using this in the perturbation of Eq. (13) and ignoring the
second term in dpTF®*, which yields only the subdominant
angular-independent contribution, we obtain

V. e #6A (k)
C(tp k) = ——5=— 5, (k) — 272 — Ay ——
! M%lv(/,* Px A*

N 1 Vmax
x | cos?@(k) — —"4_).
< (k) 2(In f) pmaplp™
The first term in the parentheses is the model-independent

contribution which comes from the longitudinal mode of
oy, i and the second one comes from the fluctuation of the
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e-folding number. For the specific choice of f and V, the
formulas given in this Letter reproduce the result obtained
in Ref. [12]. When the amplitude of the second term in the
parentheses of ¢ does not exceed O(1), the statistical
anisotropy in the power spectrum of ¢ is suppressed by the
slow-roll parameter & ~ (M, V 4/ V)?/2 compared to that of

GWs gfg“'. Then, the statistical anisotropy in the power
spectrum of GWs can be as large as O(1), keeping the
scalar spectrum consistent with the present observations
[12]. Using these formulas, we can also compute the cross-
correlation of ¢ and y™, which takes a nonvanishing value.

Primordial non-Gaussianity.—Using the gdN formal-
ism, the local type non-Gaussianity can be computed easily.
Here, let us provide only the order estimation, leaving
a detailed computation for elsewhere. We obtain the
local-type non-Gaussianity of y“s) sourced by the gauge
fields as

P R N AR I
C~D (5 w2\ 5o ) A,

a—1 PA(a)* a—1 pA(a)* Px

which can be also enhanced by the square of ﬁm(a{f

A )/ P A(a)x>
when the corresponding gauge field reaches the maximum
value after the horizon crossing. Here, we have ignored the
angular dependence which requires a more detailed com-
putation. The local-type non-Gaussianity of ¢ which stems

from the longitudinal part of Jy;; is suppressed by £

compared to f’{\if, while there is also a model-dependent
contribution in the fluctuation of the e-folding number.

Summary.—In this Letter, we showed that the géN
formalism can largely facilitate the computation of the
superhorizon evolution of { and GWs by considering an
inflation model with U(1) gauge fields. Since the géN
formalism generically applies to a model with locality and
spatial diffeomorphism invariance, various applications
will be possible. The géN formalism plays the comple-
mentary role to the cosmological bootstrap [14], which is
powerful to address the correlation functions at the horizon
crossing.

The goN formalism is useful to develop the intuitive
understanding about large-scale evolution. Along this line,
we discussed the condition for the nonzero linear polari-
zation and showed the qualitative difference between
single- and multigauge field models as an example.

The model studied here has various phenomenologically
interesting properties, e.g., predicting the O(1) statistical
anisotropy in the power spectrums of GWs, the linear
polarization, and the cross-correlation among ¢ and the two
linear polarization modes of GWSs, which will leave
characteristic signals, e.g., in the fluctuations of the cosmic
microwave background [15].
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