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We make forecasts for the constraining power of the 1D wavelet scattering transform when used with a
Lyman-α forest cosmology survey. Using mock simulations and a Fisher matrix, we show that there is
considerable cosmological information in the scattering transform coefficients not captured by the flux
power spectrum. We estimate mock covariance matrices assuming uncorrelated Gaussian pixel noise for
each quasar at a level drawn from a simple log-normal model. The extra information comes from a smaller
estimated covariance in the first-order wavelet power and from second-order wavelet coefficients that probe
non-Gaussian information in the forest. Forecast constraints on cosmological parameters from the wavelet
scattering transform are more than an order of magnitude tighter than for the power spectrum, shrinking a
4D parameter space by a factor of 106. Should these improvements be realized with the Dark Energy
Spectroscopic Instrument, inflationary running would be constrained to test common inflationary models
predicting αs ¼ −6 × 10−4 and neutrino mass constraints would be improved enough for a 5 − σ detection
of the minimal neutrino mass.
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Introduction.—An important probe of small-scale struc-
tures is the Lyman-α forest absorption features of neutral
hydrogen. The Lyman-α forest allows us to explore
fundamental questions about the Universe, such as the
nature of dark matter, the total neutrino mass, and the
physics of the inflationary era [1–4], as well as measure the
thermal history of the intergalactic medium (IGM) [5].
However, as the Lyman-α forest probes the nonlinear
regime, hydrodynamic simulations are needed to accurately
predict its behavior under different cosmological para-
meters. There are a variety of Lyman-α forest surveys
(e.g., [6–9]), with the largest statistical sample being from
the extended Baryon Oscillation Spectroscopic Survey
(eBOSS) [10]. The ongoing Dark Energy Spectroscopic
Instrument (DESI) [11,12] and WEAVE-QSO [13] surveys
will vastly increase the number of spectra. However, the
Sloan Digital Sky Survey and DESI will be systematics
dominated in the flux power spectrum, suggesting a need
for new summary statistics, especially those that can extract
non-Gaussian information from the nonlinear density field.
Higher order n-point functions such as the bispectrum

have been calculated for galaxy and weak lensing surveys
[14–19]. However, they suffer from increased variance and
reduced robustness to outliers [20]. In highly non-Gaussian
distributions with heavy tails, there can be significant
fluctuations or noise in the data that make it difficult to
extract meaningful features related to interactions and
correlations. These fluctuations become more pronounced

as we move toward higher orders and dilute important
features [21].
Here, we investigate using the wavelet scattering trans-

form for Lyman-α forest cosmology. The wavelet scattering
transform (WST) was initially proposed by Mallat for
signal processing [22]. In recent years, it has been used
successfully in several signal processing fields [23,24].
Each order of the WST is fully deterministic, mathe-
matically robust, has clearly interpretable structures, and
does not require any training of the model [25,26]. The
WST convolves signals with a complex-valued wavelet at
different scales, selecting Fourier modes around a central
frequency and thus separating information from different
scales. This first-order WST is conceptually similar to the
power spectrum, but may be applied repeatedly to extract
higher order summary statistics.
The WST has been applied to weak lensing shear maps,

where it has been shown to outperform the power spectrum
and achieve similar constraining power to neural network
techniques [27]. While forecasts suggest that convolutional
neural networks can improve cosmological inference over
two-point statistics, particularly for weak lensing data [28],
other forecasts have suggested that scattering architectures
are able to outperform a convolutional neural network [29]
and are more interpretable [30]. The WST has also been
applied to mock 21-cm data, where it forecast tighter
constraints than the 3D spherically averaged power spec-
trum [31]. Finally, 3D WST has been shown to preserve
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50% more of the information in an idealized mock density
field than the marked power spectrum [32].
The wavelet power has been used to extract thermal

history information from the Lyman-α forest by Ref. [33],
although constraints are similar to those from the flux
power spectrum [34]. We make forecasts for an extended
wavelet-based analysis that both considers cosmological
parameters and uses higher order WST coefficients to
extract non-Gaussian information. We use the Fisher infor-
mation matrix to make forecast constraints from a mock
survey for both the WST and the power spectrum, finding
that the WST substantially improves constraining power.
Our analysis suggests a novel approach for extracting
cosmological information from the Lyman-α forest.
Mock data for analysis.—We use ten hydrodynamic

simulations, described fully in Ref. [35]. Since this Letter
is aimed at making forecasts for the constraining power
of different summary statistics rather than making a
comparison to observational data, we use relatively fast,
small simulations containing 2 × 2563 dark matter and
smoothed-particle hydrodynamics particles within a
40 Mpc=h box. The low resolution of these simulations
affects the flux power spectrum at the 10%–20% level at
k ¼ 0.02 s=km [36]. We pick parameters for a central
reference simulation, and every other simulation varies
exactly one parameter from this reference. For this pilot
forecast, our simulations are not fully resolved in either
resolution or box size. Reference [37] ran a suite of much
larger simulations, but their use of a Latin hypercube design
makes computing the Fisher matrix gradients more complex.
Fully hydrodynamic simulations were performed with

the simulation code MP-Gadget [38]. We generate 32 000
spectra Lyman-α absorption spectra from each simulation
at z ¼ 4, 3, 2 with “fake_spectra” [39]. Spectra are
generated parallel to the x axis of the simulation box.
We approximate a realistic survey by adding Gaussian
noise and smoothing with a Gaussian filter with width
corresponding to the spectral resolution of eBOSS. We
chose eBOSS as it is the lowest resolution large Lyman-α
survey and thus we would expect it to have the least small-
scale information, making our estimate of the amount by
which constraints will improve conservative.
Our simulation suite includes four parameters: the spectral

index, nP, and amplitude, AP, of the primordial power spec-
trum, HA which controls the IGM temperature at mean
density, and HS which controls the slope of the temperature-
density relation. The power spectrum is given by the equation

PðkÞ ¼ AP

�
k
kP

�
nP−1

; ð1Þ

where kP ¼ 2π=8 ¼ 0.78 Mpc−1. We include parameters
to model uncertainty in the thermal history of the IGM [40].
We rescale the photo-heating rate by a density-dependent
factor, ϵ̃ ¼ HAϵΔHS . ϵ is the photo-heating rate, Δ is the

overdensity of the IGM, HA controls the IGM temperature
at mean density, and HS controls the slope of the temper-
ature-density relation.
We add an extra parameter in postprocessing for the

observed mean flux in the forest, which is proportional
to the overall ionization fraction of neutral hydrogen. We
rescale our spectra to have the same mean flux by
multiplying the optical depth in each spectral pixel by a
constant factor. The mean optical depth follows the power
law redshift evolution from Ref. [41],

τ ¼ 2.3 × 10−3ð1þ zÞ3.65: ð2Þ

The 1D wavelet scattering transform.—We represent a
spectrum by its input flux field F ðxÞ, a 1D array with
velocity coordinate x. The 1D flux power spectrum is

PðkÞ ¼
D
jF̂ ðxÞj2

E
¼

D
jF ðxÞ⋆ψkðxÞj2

E
; ð3Þ

where ψk ¼ e−ikx and ⋆ is a convolution. We average
over all spectra in the box, denoted by hi. Thus, both our
summary statistics are sensitive only to line of sight
information and integrate out transverse correlations.
We define the WST coefficients via recursive convolu-

tion of the field F ðxÞ with a series of wavelets with
different numbers of octaves (denoted by Q) of different
scales (j). Each wavelet in the wavelet family maintains an
identical shape but varies in scale and orientation. After
convolution, we take the modulus of the generated fields
and use low-pass filters to smooth out the high-frequency
components of the signal. We set Q ¼ 1 to employ a
dilation factor of 2, making the wavelet’s real-space size
roughly equivalent to 2J pixels [26], where J denotes the
largest physical scale possible. By averaging the resultant
fields, we obtain scattering coefficients that describe the
statistical characteristics of the input flux. The zeroth, first-,
and second-order scattering coefficients are defined as

S0 ¼ hF ðxÞ⋆ϕ½0�i; ð4Þ

S1ðj1Þ ¼ hjF ðxÞ⋆ψ j1 j⋆ϕ½1�i; ð5Þ

S2ðj1; j2Þ ¼ hjjF ðxÞ⋆ψ j1 j⋆ψ j2 j⋆ϕ½2�i: ð6Þ

Here, ψ j are Morlet wavelet filters and ϕ½n� are low-pass
filters. We compute the coefficients for 0 ≤ j ≤ J, take their
modulus, and average over all sightlines, as denoted by hi.
Lower “j” values correspond to smaller scales, meaning
they oscillate more slowly and capture more detailed small-
scale structures. Higher order scattering coefficients are
computationally expensive [42], so we limit ourselves to
scattering coefficients up to the second order. We set J ¼ 5,
as we found that this extracted most of the information
from our simulations, although bigger boxes may need
increased J.
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The zeroth-order coefficient is acquired by applying a
low-pass filter, ϕ½J�, to the input field F ðxÞ. It thus
represents the local average of the field, which, for the
Lyman-α spectra, corresponds to the local intensity of the
transmitted flux. We expect this to be highly degenerate
with the mean flux and continuum fitting and so to be
conservative we focus on the first- and second-order
coefficients.
We use the publicly available KYMATIO package for

generating 1D scattering coefficients [43]. Conventionally,
following the convolution, scattering coefficients are down-
sampled by 2j. After a low-pass filter, they are further
downsampled by 2ðJ−jÞ before inverse Fourier transforming
back to real space, ensuring all coefficients are down-
sampled by 2J and thus share the same coarsest resolution.
Second-order coefficients are computed by applying a
second convolution and modulus operation to the first-
order field (before low-pass filtering). A similar down-
sampling process to the first-order coefficients is done,
downsampling the new field by 2ðj1−j2Þ during convolution
with the first-order field and further downsampling by
2ðJ−j2Þ using the low-pass filter.
The WST coefficients are Lipschitz continuous to

deformation, meaning that similar fields differing by small
deformations are also similar in terms of their scattering
coefficient representation [26]. This makes the scattering
characterization stable even when there are slight variations
or noise in the data.
Fisher matrix formalism.—We use the Fisher informa-

tion approach to forecast the parameter constraints that we
could achieve with a WST analysis. The Fisher matrix is
defined as the second derivative of the log-likelihood
function, lnLðpjd;MÞ around the maximum likelihood
location, where p is the parameter value of a model, and d
is the data. Under this definition, we define the Fisher
matrix as

Fij ¼
�
∂
2 lnL
∂p2

i

�
¼ ∂S

∂pi
· Σ−1 ·

∂S
∂pj

: ð7Þ

Following Refs. [44,46], we model the covariance Σ by
adding Gaussian noise to the sightlines from our fiducial
simulation. The continuum-to-noise ratio (CNR) for each
simulated spectrum is sampled from a log-normal distri-
bution, whose parameters are chosen to fit to the noise in
the DR16Q observed spectral sample [47],

logðCNRÞ ∼N ðμ ¼ 0.53; σ ¼ 0.36Þ: ð8Þ

Each spectrum i has a CNR value, CNRi, drawn from the
distribution in Eq. (8). Gaussian noise, ϵi, realizing CNRi is
then added to each pixel,

F ðxÞ0j ¼ F ðxÞj þ ϵi; ð9Þ

ϵi ∼N ðμ ¼ 0; σ2 ¼ CNRiÞ: ð10Þ

In this work, we do not consider the errors from incomplete
quasistellar object continuum fitting as they are subdomi-
nant to the CNR [44]. However, higher order scattering
coefficients might be sensitive to continuum subtraction. A
comprehensive treatment of continuum errors is deferred to
future work.
We generate the covariance matrix Σ by taking the

variance of the scattering coefficients (or power spectrum),
defined as

Σjk ¼
1

N − 1

XN
i¼1

�
Xij − X̄j

��
Xik − X̄k

�
: ð11Þ

Here, X is the summary statistic, either the WST coef-
ficients or the 1D flux power spectrum. We use 2000
random noise realizations.

FIG. 1. Dependence of the scattering coefficients described in Eq. (4) on changes in the mean flux at z ¼ 2. The top panels show the
first- and second-order scattering coefficients and the bottom panels show the fractional change in mean flux with respect to the observed
model. We see about a 2.5% change in scattering coefficients as the value of the mean flux changes by 10%.
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Results.—In this section, we describe the sensitivity of
the WSTand the 1D flux power spectrum to the parameters
AP, nP, HS, and HA, as well as the mean flux τeff . The
scattering transform with J ¼ 5 generates a total of 19
scattering coefficients (1 zeroth order, 6 first-order, and
12 second-order coefficients). We do not include the zeroth
order coefficient in our analysis.
Figure 1 shows the sensitivity of WST to changes in the

mean flux. We computed the first- and second-order
scattering transforms with a mean flux changed by 10%
in postprocessing. The top panel shows the scattering
coefficients and the bottom panel shows fractional change
in the WST coefficients. A 10% change in τeff changes the
first- and second-order WST coefficients by ∼2.5%. For
comparison, the 1D flux power spectrum is more sensitive
to the mean flux, changing by about 7%.
Figure 2 shows how the WST coefficients are affected as

we change cosmological parameters. As in Fig. 1, the top
panel shows the scattering coefficients and the bottom
panel shows the fractional change in the WST coefficients
with respect to the fiducial model. We see that changes
in cosmological parameters indeed affect the scattering

coefficients, signifying the presence of cosmological infor-
mation. Next, to compare the performance of WSTwith the
power spectrum, we calculated the Fisher matrix. Figure 3
shows the Fisher information in the WST coefficients and
the power spectrum, for our four parameters nP, AP, HA,
HS. The second-order fields contribute about 50% extra
information to the Fisher matrix over the first-order fields.
However, even the first-order coefficients outperform the
flux power spectrum.
We can invert the Fisher matrix to estimate posterior

uncertainties. For a parameter X, σX ¼ 1=
ffiffiffiffiffiffi
Fij

p
. Table I

shows σX for the power spectrum and combined WST
coefficients. The WST improves σX by a factor of 30–60.
These constraints are generated using a Fisher matrix

rather than a full likelihood calculation. Reference [48]
analyzed the eBOSS Lyman-α forest 1D flux power
spectrum and found ΔnP ≈ 0.013, ΔAP=10−9 ¼ 0.12, indi-
cating generally tighter constraints than our Fisher matrix
prediction. However, that analysis includes larger scales
absent in our small test boxes, which are particularly useful
for constraining the power spectrum slope. On the other
hand, our Fisher matrix estimates neglect parameter

FIG. 2. Change in the wavelet scattering coefficients defined in Eq. (4) as we change our two cosmological parameters: nP, AP at
z ¼ 2. We show the fractional change in the cosmological parameters with respect to our fiducial model, similar to Fig. 1. Our fiducial
cosmology is defined as nP ¼ 0.897, AP ¼ 1.9 × 10−9, HS ¼ −0.3, HA ¼ 0.9.

FIG. 3. Left: Fisher information from the power spectrum and wavelet scattering transform at z ¼ 2 for our four parameters. For the
WST coefficients, we divide them into the contribution from first- and second-order coefficients, with second-order coefficients
generally being more constraining. Right: Fisher information for the combined WST coefficients and flux power spectrum for different
redshift bins at z ¼ 2, 3, 4.
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degeneracies. The pivot scale kP is chosen to minimize
correlation between AP and nP, but there is some corre-
lation between the cosmological and thermal parameters,
visible in Fig. 8 of Ref. [48].
Figure 3 also shows the redshift dependence of both

summary statistics. The constraining power of both the
WST coefficients and the flux power spectrum varies
similarly with redshift. We find that redshift 3 contains
the most information in both WST and the flux power
spectrum for all parameters except HA, which controls the
mean IGM temperature and is most constrained by z ¼ 2.
Conclusion.—We have examined the power of the wave-

let scattering transform (WST) to constrain cosmological
parameters using the Lyman-α forest. Using small pilot
simulations and a Fisher analysis, we show that the WST
improves parameter constraints substantially. Our forecasts
suggest an improvement by a factor of 106 in the posterior
volume of the 4D parameter space, an average of 42 times
greater constraints in each parameter.
These improved constraints come from two effects. First,

the first-order WST is less sensitive to the mean flux, and
more local in real space than the Fourier basis of the flux
power spectrum. Second, constraints are improved by
non-Gaussian information from the second-order WST.
These improved constraints would translate into tighter
constraints on the scientific goals of the survey. Constraints
on inflationary running, and thus also axion dark matter
[49] or early dark energy models [50], which are propor-
tional to the uncertainty on nP, would tighten. Tightening
the current eBOSS constraints (Δαs ¼ 0.0022 [49]) by a
factor of 30 would constrain Δαs ∼ 7 × 10−5. Importantly
this would be sufficient to test the large number of currently
successful inflationary models, associated with spontane-
ous symmetry breaking, that predict α2 ¼ −6 × 10−4 [51].
The neutrino mass constraints forecast from DESI are
ΔMν ¼ 0.039 eV [52] and an order of magnitude tighter
constraints would imply a five sigma detection of the neu-
trino mass, although realizing these bounds would depend
on a successful extension of this work to the transverse
correlations.
Our Fisher matrix formalism does not account for

degeneracies between the cosmological parameters.
Reference [48] discusses the parameter degeneracies for
the 1D flux power spectrum in a model closely related to

ours. The largest correlation was between the mean optical
depth τeff and the primordial power spectrum amplitude AP.
The WST is less sensitive to τeff and so it is likely this
correlation will be reduced. Most other correlations were
relatively small, with a correlation coefficient < 0.4. Our
purpose here is to compare the WST as a summary statistic
to the flux power spectrum; it is likely that the parameter
correlations will be similar between the two statistics,
and so our main conclusion that the 1D WST provides
information not captured by the 1D flux power spectrum
should be robust. Our small simulations also do not include
the largest scales accessible to the survey. This particularly
impacts our forecasts for nP, which were substantially too
pessimistic for the flux power spectrum, and are likely also
too pessimistic for the WST.
Our analysis included uncertainty from noise. However,

we did not model continuum fitting error. The reduced
sensitivity to τeff in WST suggests this may be less important
than in the flux power spectrum, but it may still be
significant. In addition, systematic error from uncertainty
in the spectrograph resolution is important in eBOSS [8],
although less so for DESI [53]. There is no a priori reason to
suppose that these and other systematics should affect the
WST more than the flux power spectrum, but a robust
analysis of systematic errors will be needed when using the
WST to obtain parameter constraints from DESI. There are
many avenues for future work. A maximum likelihood
estimator for the WST coefficients from noisy and sparse
data will need to be constructed. Our Fisher matrix forecast
is simplistic and we will need to build a full likelihood
function using some form of emulator of simulation based
inference. However, despite these limitations, our work
opens up the possibility to improve parameter constraints
from the Lyman-α forest by multiple orders of magnitude.
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