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Large-amplitude squeezed cat states and high-quality Gottesman-Kitaev-Preskill (GKP) states are
essential for effective quantum error correction, yet their optical preparation has been hindered by
challenges such as low success probabilities, small amplitudes, and insufficient squeezing. Addressing
these limitations, our research introduces scalable optical schemes for the deterministic preparation of
large-amplitude squeezed cat states from photon-number states. Fock states have the benefit of producing
consistent cat states across all measurement outcomes and intrinsically provides a degree of squeezing.
Notably, these squeezed cat states facilitate the deterministic generation of high-quality approximate GKP
states via “breeding,” showing that GKP error correction in optics is technically feasible in near-term
experiments. Our schemes allow fault-tolerant quantum computation through the use of GKP error
correction.
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Introduction.—To harness the potential benefits of
quantum technologies for real-world applications [1,2], it
is crucial to address the challenge of noise [3]. Among the
diverse strategies for redundantly encoding quantum infor-
mation, continuous variable [4–8] systems stand out for
their ability to utilize the infinite-dimensional Hilbert space
of quantum oscillators.
Achieving large-amplitude cat [9–14] and high-quality

Gottesman-Kitaev-Preskill (GKP) states [15] in optical
systems presents a significant challenge [16,17]. His-
torically, the generation of cat states primarily utilized
Gaussian squeezed-vacuum states combined with condi-
tional photon-number measurements executed on a beam
splitter [18]. This method, despite marking considerable
experimental advances [19,20], tends to yield states char-
acterized by low amplitude, insufficient squeezing, or a
high degree of nondeterminism [21–28].
In this Letter, we address the challenges associated with

preparing large-amplitude squeezed cat states and demon-
strate two methods to achieve this with a high probability of
success.
Our two schemes deterministically produce approximate

squeezed cat states with a random but known phase angle ϕ
and approximately constant amplitude, attributable to the
use of an n-photon Fock state with a fixed amplitude as the
input. To achieve a fully deterministic state preparation, a
passive phase rotation can be applied to the generated cat
states (or this rotation may be tracked in software).
Our first scheme offers a deterministic approach for

transforming large Fock states into large-amplitude squeezed
cat states. Acknowledging the challenges in generating large
Fock states [29–35], our second scheme provides an alter-
native strategy for preparing cat states. Our second scheme

efficiently converts squeezed Fock states (or any state with
even or odd photon-number parity) into cat states, which are
simpler to produce experimentally. While using smaller n
values introduces some nondeterminism—resulting in not all
states achieving high fidelity—this can be advantageous.
It enables selective generation of large-amplitude cat
states from smaller Fock states, enhancing the versatility
of scheme II for producing high-quality cat states in experi-
mental settings.
Among the promising avenues explored for the realiza-

tion of optical GKP states, nondeterministic preparation
methods have been proposed, notably utilizing “Gaussian
boson sampling”-like devices [36–40]. However, the most
straightforward strategy for deterministically preparing
GKP states involves the “breeding” of large-amplitude
squeezed cat states [41–43]. By enabling reliable and
deterministic generation of large-amplitude squeezed cat
states, our work paves the way for universal fault-tolerant
quantum computation [44] using GKP error correction.
The recent work by Ref. [45] employs a nondeterministic

approach to generate propagating GKP states. This devel-
opment aligns with the lower-order implementation of our
proposed schemes, thereby reinforcing the technical viabil-
ity and near-term feasibility of our approach.
We validate our analytical results through numerical

simulations in the Fock basis, limiting the dimensionality
of the Fock space to a manageable size while ensuring
accuracy and validity of our simulations. We provide our
code [46,47] in [48,49].
Preliminaries.—Our aim is to deterministically prepare

squeezed cats of the form

jC�α;ri≡N ðjα; ri � j−α; riÞ; ð1Þ
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where jα; ri≡ D̂ðαÞŜðrÞj0i is a displaced squeezed vacuum
state in the position-quadrature direction, α is real, andN is
the normalization constant. The þ and − superpositions
consist of only even or odd photon numbers, respectively.
The displacement and squeezing operators are defined as
D̂ðαÞ≡ eαâ

†−α�â and Ŝðr; θÞ≡ eðr=2Þðâ2e−2iθ−â†2e2iθÞ, respec-
tively. For squeezing (r > 0) and antisqueezing (r < 0) we
write ŜðrÞ≡ Ŝðr; θ ¼ 0Þ.
Gaussian operations such as squeezing and rotations can

transform squeezed cats into the form of Eq. (1). The
phase rotation operator is R̂ðθÞ ¼ eiθâ

†â where θ is the
rotation angle in radians. We use the following conventions
for the position q̂ ¼ ðâþ â†Þ=2 and the momentum
p̂ ¼ iðâ† − âÞ=2, in natural units of ℏ ¼ 1=2.
Our schemes produce states similar to those in Eq. (1),

but not exact squeezed cat states, with fidelity improving to
unity as n increases. We will later detail numerical
calculations of average fidelity to demonstrate their close-
ness to ideal states.
The ideal infinite-energy square GKP states [15] can be

written as superpositions of quadrature eigenstates.
Squeezed cat states serve as approximate GKP states except
with only the two most important central components, in
particular

j1ΔGKPi ∝
���� −

ffiffiffi
π

2

r
;− lnΔ

�
þ
����

ffiffiffi
π

2

r
;− lnΔ

�
; ð2Þ

where Δ∈ ð0; 1� gives −10 log10ðΔ2Þ dB of squeezing.
Example Wigner functions of single-mode optical states
relevant to this work are presented in [50].
Scheme I.—Reference [23] presents a nondeterministic

approach for generating squeezed cat states, as depicted in
Fig. 1(a). This method involves mixing a Fock state,
denoted as jni, with a vacuum state on a beam splitter
and subsequently measuring one of the quadratures, spe-
cifically the p quadrature, using homodyne detection. The
key to this technique lies in the selection of measurement
outcomes that are close to zero (mp ∼ 0), which results in
the production of an approximate squeezed two-component
cat state.
Utilizing Fock states ensures consistent amplitude and

positive squeezing in generated cat states, which is advanta-
geous for breeding GKP states. However, the homodyne
detection method is constrained by the need for postse-
lection with mp ≈ 0, underscoring the need for an alter-
native measurement technique. More details on the
nondeterministic preparation of large-amplitude cat states
using homodyne detection are provided in [50].
Our scheme I, as presented in Fig. 1(b), addresses the

limitations of previous methods by enabling the determin-
istic preparation of squeezed cat states from Fock states. In
this scheme, a Fock state is divided among kþ 1 paths
using a (kþ 1) splitter, distributing approximately equal
portions of the state to each of the k detectors, while the
remaining part becomes the output state in the final mode.
Prior to detection, each of the initial k modes undergoes

(c)

(d)

(a)

(b)

FIG. 1. Optical circuits of large-amplitude squeezed cat state preparation. (a) Illustrates the nondeterministic approach from Ref. [23]
where a Fock state jni is combined with a vacuum state on a beam splitter characterized by a transmissivity η ¼ 1=2, homodyne
detection of one output mode is performed and squeezed cat states are prepared in the other mode, dependent upon the measurement
outcome being near zero. (b) Depicts our deterministic preparation method. A Fock state undergoes division through a (kþ 1) splitter,
followed by squeezing operations in varying directions θj, and is subjected to photon-number-resolving detection (PNRDs). This
process guarantees the deterministic generation of a squeezed cat state in the remaining mode, given a sufficiently large initial n.
(c) Presents Wigner functions to illustrate the operational principle of the scheme for k ¼ 2. (d) Showcases two iterative schemes
designed for the preparation of squeezed cat states.
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squeezing in distinct directions, followed by photon-num-
ber-resolving detection (PNRD). With a sufficiently large
initial photon number n, this approach guarantees the
deterministic generation of two-component squeezed cat
states in the remaining mode with high fidelity. Detailed
explanations and proofs concerning scheme I are presented
in [50].
The generation of the squeezed cat state in our scheme is

dependent upon a set of chosen parameters: the photon
number n of the input Fock state, the number of modes k
involved in the detection, and the orientations of squeezing
θj. These parameters are selected by the experimenter. The
prepared cat state is also dependent upon the measurement
outcomes mj at the detectors, which are the experimentally
observed values. While n, k, and θj are predetermined,
influencing the characteristics of the resulting state, the
scheme deterministically produces approximate squeezed
cat states, regardless of themj values. The orientation of the
squeezed cat state is ultimately defined through a combi-
nation of these experimental choices and the outcomes of
the measurements. The orientation angle of the squeezed
cat state can be derived through analytical or numerical
calculations.
The amplitude of the prepared cat state is given by

jαj ≈ ffiffiffiffiffiffiffiffiffiffiffi
nηtotal

p
. Additionally, the squeezing parameter of the

cat state r can be approximated by r ≈ −0.5 lnð1 − ηtotalÞ.
The squeezing applied to each of the kþ 1 modes is

directed along different orientations θj. For values of k > 2,
the squeezing angles θj can be set to be equidistant around
a circle, specifically, θj ¼ jπ=kwhere j ¼ 1; 2;…; k. In the
case of k ¼ 2, θj ¼ jπ=4 can be used. For large k,
θj ∈ ½0; πÞ can be selected randomly.
When set to k ¼ 1, the kþ 1 splitter is simply a beam

splitter. The output state always manifests as either two- or
four-component cat states, dependent on the measurement
outcome in the other mode. This is clearly illustrated in the
first measurement stage of Fig. 1(c). For large squeezing, the
components of the prepared cat state are precisely positioned
at the intersections of a circle defined by nη ¼ jαj2 and
an ellipse described by b ¼ mη=ð1 − ηÞ ¼ e2rReðαÞ2þ
e−2rImðαÞ2. These components are situated at angles
fϕ1;−ϕ1;ϕ1 þ π;−ϕ1 þ πg where jϕ1j falls within the
range ½0; πÞ.
To prepare two-component cat states deterministically, the

circuit iterates with directionally rotated squeezing relative to
the initial state, as shown in the secondmeasurement stage of
Fig. 1(c). This technique isolates one pair of components
from the initially prepared four-component cat state. As the
initial photon number n increases, these cat components
become clearly distinguishable, ensuring the production of
high-fidelity two-component cat states for large n. Further
details are documented in [50].
It can be beneficial to iterate the protocol more than

twice (k > 2), applying squeezing in varying directions,

mirroring the evolution using the approach given in
Fig. 1(b). This is illustrated and summarized in Fig. 1(d)(I).
It is practical to maintain a constant transmissivity ηj ¼ η
for all beam splitters. In this case, the total transmissivity
experienced by the input state is ηtotal ¼ ηk.
Scheme II.—Scheme II is introduced to address the

limitations encountered in scheme I, specifically the
requirements for a large n, the necessity of inline squeez-
ing, and instances of nonunit fidelity for finite n.
First, we recognize that the phase probability distribution

of any given state undergoes a similar evolution for the
following specific circuits when considering a scenario of
high transmissivity η:

We address the absence of an experimentally feasible phase
measurement, as necessitated by the right circuit. Instead,
scheme II capitalizes on the availability of squeezed
vacuum states, a requirement of the left circuit, which is
experimentally implementable. By iteratively applying this
circuit with random θj ∈ ½0; πÞ, scheme II effectively
simulates a phase measurement, thereby enabling the
deterministic preparation of cat states. This is summarized
in Fig. 1(d)(II). As detailed in [50], we demonstrate that the
phase probability distribution of the system gradually
evolves to exhibit two distinct peaks at ϕ and ϕþ π,
where ϕ∈ ð0; π�.
Scheme II allows for any input pure state with at least

twofold rotational symmetry (even or odd Fock-number
parity), making squeezed Fock states particularly suitable.
While both schemes deterministically generate cat states in
theory, scheme I requires input states with a constant
amplitude n, which can be impractical in experiments due
to the challenges of generating large Fock states. Conversely,
scheme II can utilize more readily available squeezed Fock
states. However, this introduces some nondeterminismwhen
n is small, as not all states produced are high-fidelity large-
amplitude squeezed cat states. This nondeterminism, due to
the selective filtering of states, makes scheme II more
adaptable and potentiallymore feasible for experimental use.
Squeezing is a valuable tool to exponentially enhance the

achievable amplitude and mean photon number of the
prepared cat states. More analysis is presented in [50].
Numerical simulations of scheme II are illustrated for

two different input states in Fig. 2. The first simulation,
depicted in Fig. 2(a), uses a Fock state input j20i, and the
second, shown in Fig. 2(b), utilizes a squeezed Fock state
input ŜðrÞj3i with 6 dB of squeezing. In both scenarios, the
total transmissivity is set to ηk ¼ 1=2, the squeezed vacuum
inputs are prepared with 6 dB of squeezing, and the process
iterates over k ¼ 100 rounds. The Wigner functions for the
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initial state (left), the final state (center), and the evolution
of the phase probability distribution PðϕÞ (right) [56] are
plotted for both simulations.
Performance and imperfections.—To evaluate the per-

formance of our prepared squeezed cat states, we focus on
two critical metrics: fidelity and squeezing, considering
both ideal and nonideal detectors. Details on experimental
imperfections such as dephasing, loss, detector efficiencies,
optimal k, average fidelity relative to input Fock state n,
and the functionality of scheme II with nonideal inputs are
available in [50].
Fidelity serves as a comparative measure between the

prepared output state and an ideal target cat state. Given the
variability in the amplitudes, parity, and squeezing of the
output states from our schemes, we first align the prepared
cat state using Gaussian operations onto the GKP grid to be
∼j1ΔGKPi, as described by Eq. (2). This is an ideal con-
figuration suitable for GKP breeding. To obtain a squeezing
level for the ideal target cat state, we examine the variance
in the p quadrature of the prepared cat state.
The anticipated squeezing for the adjusted prepared

squeezed cat state [in the form of Eq. (2)] can be calculated
using the formula [50]

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1 − ηkÞ=ð2nηkÞ

q
: ð3Þ

In Fig. 3, we present the performance of our prepared cat
states. (a) illustrates the average fidelity of the prepared cat
states relative to the target cat state. (b) displays the average
squeezing achieved by the cat states. The results are

evaluated as a function of total transmissivity ηk for an
input Fock state where n ¼ 10, showcasing the results for
scheme I (blue) and scheme II (red), averaged over 100
experimental runs. These scenarios utilize either ideal
detectors (circle markers), or nonideal detectors (cross
markers) with a detection efficiency of ϵ ¼ 0.98, which
is experimentally achievable [32]. Additionally, the
expected squeezing, as derived from Eq. (3), is plotted
(black) for comparison. For scheme I, parameters include a
total of k ¼ 10 rounds and 6 dB of inline squeezing. In
contrast, scheme II is executed over k ¼ 100 iterations
when employing ideal detectors and adjusted to k ¼ 10
iterations for nonideal detectors, a modification intended to
mitigate the impact of detection noise, and the squeezed
vacuum is subjected to 6 dB of squeezing.
The results reveal a trade-off between fidelity and

squeezing. Notably, these results can be enhanced through
the selective postprocessing of the outputs, focusing on the
highest quality cat states generated during the experimen-
tal runs.
We estimate a good practical value of k required to

achieve a good fidelity in experiment for both scheme I and
scheme II for n ¼ 10 assuming detector efficiency of 98%
is between 4 and 10. For plots showing how the average
fidelity behaves with k, see Ref. [50].
GKP error correction.—Before GKP states can be

deterministically prepared through breeding [41–43], the
prepared cat states must first be adjusted into the form given
by Eq. (2).
Equation (3) establishes a relationship between n and Δ

for a given total transmissivity ηk. By setting ηk ¼ 1=2, it is
observed that as n increases, the squeezing becomes large,
and the fidelity approaches unity, i.e., limn→∞Δ ¼ 0 and

s
s

s

s

(a) (b)

FIG. 3. Performance of deterministically prepared squeezed cat
states utilizing scheme I (blue) and scheme II (red), for an input
Fock state with n ¼ 10 displaying fidelity in (a), assuming ideal
detectors (circle markers) and inefficient detectors (cross mark-
ers) with an efficiency of ϵ ¼ 0.98, and squeezing in (b),
assuming ideal detectors (circle markers). The results are aver-
aged over 100 simulations. For scheme I, the configuration
includes k ¼ 10 rounds and 6 dB of inline squeezing. For scheme
II, k ¼ 100 rounds are applied when using ideal detectors,
whereas k ¼ 10 rounds for nonideal detectors, with both sit-
uations involving a squeezed vacuum subjected to 6 dB of
squeezing. Additionally in (b), the expected analytical squeezing
(black) is plotted as per Eq. (3).

input(a) output evolution

input(b)

round

output evolution round
100
80
60
40
20
0

100
80
60
40
20
0

FIG. 2. Simulation results for scheme II, utilizing a total
transmissivity of ηk ¼ 1=2, with k ¼ 100 rounds, and employing
squeezed vacuum states with 6 dB of squeezing. The results
highlight various input states, including (a) an input Fock state jni
where n ¼ 20, and (b) an input squeezed Fock state ŜðrÞjni with
n ¼ 3 and 6 dB of squeezing. For both scenarios, the Wigner
functions of the input state (left), the output state (middle), and
the evolution of the phase probability distribution PðϕÞ (right),
transitioning from blue to red, are presented.
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limn→∞F ¼ 1. High fidelity for large n is attributed to the
reduction of phase uncertainty in the effective phase
measurements performed. Consequently, approximate
GKP states can be prepared with exceptionally high quality,
characterized by both fidelity and squeezing. This enables
the possibility of fault-tolerant quantum computation uti-
lizing GKP error correction, using our schemes for state
preparation.
In [50], we explore how the quantum states prepared

via our schemes perform in the context of GKP error
correction.
Conclusions.—In this Letter, we have introducedmethods

for the deterministic preparation of squeezed cat states in
optics. These methods hinge on the availability of large Fock
states or states with even (or odd) parity, the use of PNRDs,
and the application of Gaussian measurements and opera-
tions. Together, these components can achieve universal
fault-tolerant quantum computation and long-distance quan-
tum communication through GKP error correction.
Incorporating feed-forward mechanisms can significantly

enhance our schemes by enabling dynamic adjustments. This
could include modifying beam splitter transmissivities or
adjusting squeezing angles and magnitudes to optimize state
preparation based on initial measurement outcomes.
We hope that our findings will allow experimental

advancements in quantum information processing and error
correction, particularly with the use of squeezed cat and
GKP states.
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