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Quantum speed limits provide upper bounds on the rate with which a quantum system can move away
from its initial state. Here, we provide a different kind of speed limit, describing the divergence of a
perturbed open system from its unperturbed trajectory. In the case of weak coupling, we show that the
divergence speed is bounded by the quantum Fisher information under a perturbing Hamiltonian, up to an
error which can be estimated from system and bath timescales. We give three applications of our speed
limit. First, it enables experimental estimation of quantum Fisher information in the presence of
decoherence that is not fully characterized. Second, it implies that large quantum work fluctuations
are necessary for a thermal system to be driven quickly out of equilibrium under a quench. Moreover, it can
be used to bound the response to perturbations of expectation values of observables in open systems.
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The quantum time-energy uncertainty relation was first
put on a rigorous footing by Mandelstam and Tamm [1],
who showed that the time for a quantum state to evolve to
an orthogonal one is limited according to its energy
uncertainty. Since then, many generalizations and varia-
tions have been derived, including the Margolus-Levitin
bound [2] involving mean energy. Such inequalities are
referred to as quantum speed limits. We now have exten-
sions to mixed states and driven and open systems [3–7],
and an understanding of the connection to the geometry of
quantum state spaces [8–10].
Quantum speed limits imply bounds on information

processing rates [11–13] and maximum physically allowable
rates of communication [14]. There are also applications
within quantum thermodynamics, including bounding
entropy production rates [15], heat engine efficiency and
power [16,17], and battery charging rates [18–21]. There is
an intimate relation between speed limits and metrology, in
which the best precision in estimating parameter encoded
into a state depends on how quickly the state evolves [22,23].
A central quantity in metrology, the quantum Fisher

information (QFI) [9,24], is interpretable as a (squared) speed
in state space, and can be used to quantify many important
properties of quantum states. Sufficiently large QFI demon-
strates many-body entanglement [25–30] and steering [31];
similarly, QFI can be used as a measure of coherence in a
given basis [32–34], ofmacroscopic quantumness [35] and of
optical nonclassicality [36,37], and can witness general
quantum resources [38]. Therefore, it is desirable to exper-
imentally measure lower bounds to QFI. One common
method, among others [39,40], is to adopt speed limits to
estimate theQFI fromameasure of distance between an initial
state and one evolved for a short time [41,42].
In addition, it can be useful to bound the speed at

which two quantum states separate when they undergo
different dynamics. Examples of applications include the

discrimination of unitary operations [43], the performance
of adiabatic quantum computation [44], fidelity of quantum
control [45], dynamics of entanglement [46], and multi-
parameter metrology [47].
In this work, we devise a novel type of speed limit that

describes the response of aMarkovian open quantum system
to a perturbation to its dynamics. The inequality upper
bounds the distance between the perturbed and unperturbed
trajectories in state space in terms of the QFI of the system
with respect to the perturbation. Importantly, this holds
under minimal assumptions without detailed knowledge of
the dynamics. For a system weakly coupled to its environ-
ment, the speed limit is given in terms of the QFI under a
perturbing Hamiltonian, up to an error bounded in terms of
relevant physical timescales.We show how this may be used
for an experimental lower bound on the QFI. We then
provide an application to the thermodynamics of systems
perturbed out of equilibrium, showing that quantum fluc-
tuations in the work performed during a sudden quench are
required for fast departure from the initial state. Finally, we
give an application to linear response by bounding changes
in expectation values under perturbations.
Preliminaries.—TheMandelstam-Tamm bound [1] relates

the energy variance Varðψ ; HÞ ¼ hψ jH2jψi − hψ jHjψi2 of
a pure state jψi to the time τ it needs to evolve to an
orthogonal one under Hamiltonian H:

τ ≥
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðψ ; HÞp : ð1Þ

(We work in units where ℏ ¼ 1 throughout.) Therefore a
large energy variance is necessary to evolve quickly to an
orthogonal state. This result has since been strengthened to
account for mixed states and nonorthogonality. TheUhlmann
bound [8] involves the fidelity Fðρ0; ρtÞ ≔ tr
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between the initial and final states, ρ0 and ρt ¼ e−itHρ0eitH,
recast into the Bures angle θBðρ; σÞ ≔ arccosFðρ; σÞ.
Instead of energy variance, we require the QFI of the

system. Most generally, QFI measures the sensitivity of a
continuously parameterized family of states to small changes
in a parameter [24]. Here, we consider the time parameter,
so the QFI is a function of the state ρt and its derivative
dρt=dt. Throughout this Letter, we consider evolutions
generated by Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) superoperators [48,49] dρt=dt ¼ LtðρtÞ, for which
the QFI F ðρt;LtÞ is a function of ρt and Lt.
One definition is expressed in terms of the spectral
decomposition ρt ¼

P
i λiðtÞjψ iðtÞihψ iðtÞj: F ðρt;LtÞ ¼

2
P

i;j∶λiðtÞþλjðtÞ>0 jhψ iðtÞjLtðρtÞjψ jðtÞij2=½λiðtÞ þ λjðtÞ�.
The Uhlmann bound is

θBðρ0; ρtÞ ≤
1

2

Z
t

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρs;HsÞ

p ∀ t ≥ 0; ð2Þ

where Htð·Þ ¼ −i½Ht; ·� generates time evolution under the
time-dependent Hamiltonian Ht. This bound derives ulti-
mately from the infinitesimal expansionof theBures angle as
ametric on state space, θBðρt; ρtþdtÞ2 ¼ 1

4
F ðρt;LtÞdt2, with

the finite Bures angle being the length of a geodesic between
two points [9]. Equation (1) can be derived fromEq. (2) [15];
one sees that the square-root QFI may be interpreted as a
“statistical speed” [22,24].
Perturbation speed limit.—Here, we prove the main result

for a system undergoing arbitrary Markovian dynamics with
a perturbation. We take the common definition equating
Markovianity with divisibility, namely, that the mapping
N t1;t0 of states between any times t0 < t1 is completely
positive and trace preserving, and satisfies N t2;t0 ¼
N t2;t1N t1;t0 for all t0 ≤ t1 ≤ t2. This is equivalent to the
dynamics being dictated by a GKSL generator Lt [50].
Result 1.—Consider a system starting in state ρ0 which

may evolve along one of two trajectories: (i) Markovian
free evolution, dρt=dt ¼ LtðρtÞ; or (ii) perturbed evolution,
dσt=dt ¼ L0

tðσtÞ ¼ LtðσtÞ þ PtðσtÞ (satisfying the initial
condition σ0 ¼ ρ0). The Bures angle between the trajecto-
ries satisfies

θBðρt; σtÞ ≤
1

2

Z
t

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðσs;PsÞ

p ∀ t ≥ 0: ð3Þ

Proof.—Here we summarize the proof detailed in Sec. I
of [51]. We use three facts about the Bures angle: (i) the
triangle inequality, (ii) contractivity under quantum chan-
nels [59], and (iii) its infinitesimal expansion, stated above.
At time t, consider ρt, σt and their corresponding time-
evolved states ρtþδt; σtþδt a short time δt later. In addition,
consider instead evolving σt under the unperturbed dynam-
ics for time δt, giving σ0tþδt (see Fig. 1). To lowest order,
ρtþδt ¼ ρt þ δtLtðρtÞ þOðδt2Þ, σtþδt ¼ σt þ δtLtðσtÞ þ
δtPtðσtÞ þOðδt2Þ, and σ0tþδt ¼ σt þ δtLtðσtÞ þOðδt2Þ.
The triangle inequality gives

θBðρtþδt; σtþδtÞ ≤ θBðρtþδt; σ0tþδtÞ þ θBðσ0tþδt; σtþδtÞ: ð4Þ

For the first term on the right-hand side of Eq. (4), we
use that ρtþδt and σ0tþδt have been evolved for time δt
under the same dynamics comprising the channel N tþδt;t.
Contractivity of θB therefore implies θBðρtþδt; σ0tþδtÞ ¼
θB½N tþδt;tðρtÞ;N tþδt;tðσtÞ� ≤ θBðρt; σtÞ. For the second
term, we use the infinitesimal form of θB, and that
σtþδt−σ0tþδt¼δtPtðσtÞþOðδt2Þ, towrite θBðσ0tþδt; σtþδtÞ ¼
ðδt=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ðσtþδt;PtÞ
p þOðδt2Þ. Putting these into Eq. (4),

θBðρtþδt; σtþδtÞ ≤ θBðρt; σtÞ þ ðδt=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðσtþδt; PtÞ

p þ
Oðδt2Þ. Subtracting the first term on the right, dividing by δt
and taking δt → 0 gives dθBðρt; σtÞ=dt ≤ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðσt;PtÞ

p
;

integrating gives the result.
In the case Lt ¼ 0, ρt ¼ ρ0 is stationary and the bound

reduces to a previously known one [60]. The closed-system
case is obtained with Hamiltonian dynamics Lt ¼ Ht and
Ptð·Þ ¼ vVtð·Þ ≔ −iv½Vt; ·�. Note that the bound in this
case is equivalent to Uhlmann’s (2), as can be seen by
moving to the interaction picture. Thus Eq. (3) generalizes
previous speed limits. The relevant statistical speed mea-
sures sensitivity of the system to the perturbation.
Uhlmann’s bound, relying on the triangle inequality, is

saturated by geodesics [8]. Equation (3) additionally uses
contractivity of θB under quantum channels, thus can only
be saturated if Lt causes no contraction between the
trajectories. This will not generally hold; however, our
later example in Fig. 2 shows that the bound may be
practically quite tight.
Using a similar method, we prove a related observable

speed limit. This bounds the difference in expectation value
of any observable A between the trajectories, extending
previous speed limits for observables [20,61] to the
perturbation setting.
Result 2.—Using the same assumptions as Result 1, for

any observable A,
���� ddt tr½Aðρt − σtÞ�

���� ≤ 2kL†
t ðAÞkDtrðρt; σtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðσt; AÞF ðσt;PtÞ

p
; ð5Þ

where L†
t is the adjoint map of Lt, k · k denotes the largest

singular value, andDtrðρ;σÞ¼1
2
kρ−σk1 is the trace distance.

FIG. 1. Illustration of the trajectories used in the proof of the
main speed limit Eq. (3).
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(See proof in Sec. II of [51].) A notable difference with
Eq. (3) is the additional “drift” term depending on Lt.
The power of result 1 comes from requiring no

detailed information about the unperturbed dynamics
(in contrast to result 2); such details only appear
implicitly via the evolution of the perturbed trajectory.
For the remainder of this Letter, we assume (typical in
quantum control) that the perturbation comes from a
controlled change to the system’s Hamiltonian, Ht →
Ht þ vVt (including the constant v to quantify the size of
the perturbation). For many applications (see later sec-
tions), one is interested in QFI with respect to Vt;
however, the resulting perturbation to the master equation
Pt could contain additional terms. The identification of
Pt with vVt may be justified in the singular coupling
limit [62] and in collision models of open system
dynamics [63]. However, in weak coupling, a change
to the system’s Hamiltonian generally adds an additional
perturbation to the master equation. We therefore now
study the error incurred by the approximation Pt ≈ vVt,
and, correspondingly, the use of QFI with respect to Vt
in the right-hand side of Eq. (3). We consider time-
independent dynamics for simplicity.
Weak coupling.—To address this, we now consider a

system weakly coupled to a Markovian environment and
derive the error incurred by approximating the true per-
turbed trajectory with one where the dissipative part of the
dynamics is unchanged. Such situations are ubiquitious in
experiments encompassing discrete-[64] and continuous-
variable [65] systems. We assume a standard weak-
coupling master equation with secular approximation [66],
ðdρt=dtÞ ¼ LðρtÞ ¼ −i½H þHLS; ρt� þDðρtÞ, where the
Lamb shift Hamiltonian HLS and dissipator D are

given by HLS¼ λ2
P

ω;α;βSαβðωÞA†
αðωÞAβðωÞ and DðρÞ ¼

λ2
P

ω;α;β γαβðωÞ½AβðωÞρA†
αðωÞ − 1

2
fA†

αðωÞAβðωÞ; ρg�,
involving real and imaginary parts γαβ; Sαβ of the bath
correlation function and jump operators AαðωÞ assocated
with Bohr frequencies ω (see Sec. III of [51] for details).
We factor out the coupling strength λ such that Aα ¼ Oð1Þ
(independent of λ).
We denote the size of the free system Hamiltonian H by

h (measuring the size of the smallest energy gap and not
to be confused with the Planck constant) and of the
perturbing Hamiltonian by v (taking V ¼ Oð1Þ). The
important timescales are those of the intrinsic system
dynamics τS ∼ h−1, the perturbation τV ∼ v−1, the system
relaxation τR ∼ λ−2γ−1, and the bath correlation decay τB.
We make the following assumptions: (i) Born-Markov
approximation, τB ≪ τR, (ii) rotating wave approximation,
τS ≪ τR [62,66], (iii) small perturbation relative to the bath,
τB ≪ τV , and (iv) small perturbation relative to the
system, τS ≪ τV .

Upon perturbingH → H0 ¼ H þ vV, we replaceHLS →

H0
LS ¼ HLS þ vHð1Þ

LS and D → D0 ¼ Dþ vDð1Þ to first
order in v. This alters the Bohr frequencies ω and
components AαðωÞ. Expressions for these are derived in

Sec. III of [51], the perturbations Hð1Þ
LS ;D

ð1Þ being of size

ϵ ≔ maxψkHð1Þ
LS ðψÞ þDð1ÞðψÞk ¼ OðτS=τRÞ þOðτB=τRÞ.

It follows from assumptions (i)–(iv) that these terms are
small compared with others in the master equation.
Applying bound (3) to this setting, we identify the true

perturbed trajectory dηt=dt ¼ L0ðηtÞ and the approximate
perturbed trajectory dσt=dt ¼ LðσtÞ þ vVðσtÞ. In the latter,
we only perturb the Hamiltonian term and ignore additional
terms of size ϵ. All trajectories have the same initial
state ρ0.
Result 3.—For an open system in the weak coupling

regime perturbed by the Hamiltonian vV,

θBðρt; ηtÞ ≤
1

2

Z
t

0

ds v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðηs;VÞ

p
þ ΔðtÞ; ð6Þ

where the error term is bounded by the estimate

jΔðtÞj≲ ΔestðtÞ ≔
4

ffiffiffi
2

p

3
kVkϵ12ðvtÞ32 þ ϵvt: ð7Þ

See Sec. IVof [51] for the proof. For short times, the QFI
term in Eq. (6) is roughly vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ0;VÞ

p
—hence, the error

is negligible when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ0;VÞ

p
≫ maxf ffiffiffiffiffiffiffi

ϵvt
p

; ϵg.
In specific cases, one can determine the error parameter ϵ

more precisely. We demonstrate this for a spin-boson model
of two qubits interacting with a bath of many harmonic
oscillators [62]. We take H ¼ ðh=2Þðσz ⊗ 1þ 1 ⊗ σzÞ,
V ¼ 1

2
ðσx ⊗ 1þ 1 ⊗ σxÞ, and an independent coupling of

each qubit to a bath of the form λσz ⊗
P

k gkðbk þ b†kÞ, gk

FIG. 2. Two-qubit example with local dephasing noise, showing
how the time-averaged value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðηs;VÞ

p
from s ¼ 0 to t can be

lower-bounded using the speed limit Eq. (6). The initial state
½ðj00i þ j11iÞ= ffiffiffi

2
p � is maximally entangled. In units of h ¼ 1, we

take λ ¼ γ ¼ v ¼ 0.1 and ϵ ≤ 4λ2γ=h ¼ 0.004. The measured
statistical speed is the left-hand side of Eq. (8), taking a Bell-basis
measurement f½ðj00i � j11iÞ= ffiffiffi

2
p �; ½ðj01i � j10iÞ= ffiffiffi

2
p �g. The es-

timated error 2ΔestðtÞ=vt (shaded area) is subtracted to give the
lower bound.
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being dimensionless coefficients. Here, σi are Pauli matri-
ces and bk is the annihilation operator for the bosonic
mode k. This gives local dephasing dynamics DðρÞ ¼
λ2γ½ðσz ⊗ 1Þρðσz ⊗ 1Þ þ ð1⊗ σzÞρð1⊗ σzÞ− 2ρ�, writing
γ ¼ γð0Þ. Then we find ϵ ≤ 4λ2γ=h (see Sec. Vof [51]). In
this case, the component of order τB=τR vanishes. A
numerical demonstration of the tightness of the speed limit
for this example is shown in Fig. 2.
Witnessing large QFI.—Quantum correlations and other

resources may be witnessed experimentally by showing that
theQFI under someHamiltonianH exceeds a given threshold
F �. For closed systems, a standard method [42] obtains a
lower bound to θBðρ0; ρtÞ with evolution under V, by
measuring the system at either time 0 or t. Each measurement
has probability distribution pið0Þ; piðtÞ; their similarity is
quantified by the Bhattacharyya coefficient [67] B½pð0Þ;
pðtÞ� ≔ P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið0ÞpiðtÞ

p
, which satisfies arccosB½pð0Þ;

pðtÞ� ≤ θBðρ0; ρtÞ. This bound holds for any measurement
and can be saturated. Thanks to Eq. (2), the resource is thus
witnessed when ð2=tvÞ arccosB½pð0Þ;pðtÞ� > ffiffiffiffiffiffi

F �
p

.
This standard method neglects decoherence, so we

propose a protocol for open systems. The idea is to measure
the system, with or without perturbation, for a known time,
and use the distinguishability of the trajectories to lower
bound the average speed of response via results 1 and 3. In
two types of experimental runs, either the system evolves
under the free dynamics, or one adds the perturbation vV.
In each case, the same measurement is performed at a
known time t, giving statistics piðtÞ and qiðtÞ, respectively.
First assuming the perturbation is exactly P ¼ vV, the
right-hand side of Eq. (3) is ðtv=2Þ times the time-averaged
value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðσs;VÞ

p
, which quantifies the average speed of

response to the perturbation. It follows that the resource
must be present at some time s∈ ½0; t� along the perturbed
trajectory whenever

2 arccosB½pðtÞ;qðtÞ�
tv

>
ffiffiffiffiffiffi
F �

p
; ð8Þ

as the threshold F � is exceeded. In Sec. I of [51] we
generalize this to a time-varying coefficient vt. In weak
coupling, the error ΔestðtÞ from Eq. (6) increases the
threshold in Eq. (8) to

ffiffiffiffiffiffi
F �

p þ ½2ΔestðtÞ=vt�. The change
in this threshold is Oð ffiffiffiffiffiffiffi

ϵvt
p Þ þOðϵÞ.

A demonstration for witnessing entanglement is shown
in Fig. 2 for the two-qubit dephasing model described
above, taking a Bell-basis measurement for the
Bhattacharrya coefficient. For any two-qubit separable
state ρsep with the chosen local V, we have F ðρsep;VÞ ≤
F � ¼ 2 [26,27,29]. Here, this threshold is broken by the
exact QFI for t ⪅ 1.41, while entanglement is witnessed
taking into account the error estimate for t ⪅ 1.26.
Quantum work fluctuations.—Here, we show implica-

tions for driving a system out of equilibrium. Consider
a system with Hamiltonian H initially in thermal

equilibrium at inverse temperature β, in the Gibbs state
ρth ¼ e−βH=tre−βH. At time 0, H is quickly changed to H0,
involving fluctuating work w done on the system. The
mean and variance of work are computed from
ΔH ≔ H0 −H: hwi ¼ tr½ρthΔH�, Varw ¼ Varðρth;ΔHÞ.
If the system is left to thermalize to the new Gibbs state
ρ0th ¼ e−βH

0
=tre−βH

0
, then its Helmholtz free energy FH;β

decreases. This is defined by FH;β ¼ tr½ρthH� − β−1SðρthÞ,
where SðρthÞ ¼ −tr½ρth ln ρth� is the von Neumann entropy
[68]. The second law of thermodynamics implies that the
change ΔF ≔ FH0;β − FH;β ≤ hwi—this is equivalent to
saying that the dissipated work Wdiss ≔ hwi − ΔF ≥ 0
[68]. Wdiss is thus associated with nonequilibrium entropy
production.
In order to study small deviations from equilibrium, we

follow the paradigm of Refs. [69,70], whereΔH is assumed
small. One finds a fluctuation-dissipation relation [70]

β

2
Varw ¼ Wdiss þQw: ð9Þ

Here, Qw ≥ 0 is a quantum correction to the usual classical
relation [71,72], thus Eq. (9) represents a modification of a
classical statistical law near equilibrium that takes into
account quantum effects. It also limits coherent protocols
that aim to simultaneously minimize work fluctuations and
dissipation [70].
Equation (9) holds for various slow driving settings; in

our case with a single small quench, Qw is determined by a
quantity closely related to QFI:

Qw ¼ β

2
Īðρth;ΔHÞ; ð10Þ

where Īðρ; AÞ ≔ R
1
0 dk

1
2
trð½ρk; A�½A; ρ1−k�Þ. The details of

this result [70] are recalled in Sec. IVof [51]. Ī belongs to a
family of generalizedQFI quantities [73]whosemembers are
interpreted as measures of quantum coherence (also known
as asymmetry in this context): Īðρ; HÞ and F ðρ;HÞ, among
others, quantify the coherence of a state ρ with respect
to a Hamiltonian H [23,32,34,39,74]. Moreover, they can
be regarded as quantum contributions to the variance of
H [75–77]. Some key properties justifying this interpretation
are Īðρ; HÞ ≤ Varðρ; HÞ, with equality for pure states, and
Īðρ; HÞ ¼ 0 when ρ commutes with H. Therefore, as
required of a measure of quantum work fluctuations,
2Qw=β ¼ Īðρth;ΔHÞ vanishes exactly when ½H;ΔH� ¼ 0.
Result 4.—Quantum work fluctuations are necessary for

fast departure from equilibrium. For a system weakly
coupled to a thermal environment, at all times t > 0
following the quench H → H0, the distance between the
initial state ρth and the system’s state ρt obeys

θBðρth; ρtÞ ≤ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Īðρth;ΔHÞ

q
þ ΔðtÞ; ð11Þ

where ΔðtÞ is the weak coupling error from Eq. (7).
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The proof is given in Sec. VI of [51]. Fast departure from
ρth thus requires large quantum work fluctuations as
measured by Īðρth;ΔHÞ—equivalently, ρth must have a
high degree of quantum coherence with respect to ΔH.
The physical importance of the correction ΔðtÞ is seen in

the “classical” case where ½H;ΔH� ¼ 0 (i.e., the energy
levels change but not the eigenstates). Then Ī ¼ 0, but the
system must deviate from ρth in order to reach the new
steady state ρ0th. From our earlier discussion of the weak
coupling error, by identifying v with kΔHk, we therefore
see that the quantum driving regime—when the Ī terms
dominates on the right-hand side of Eq. (11)—corresponds
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Īðρth;ΔHÞ

p
=kΔHk ≫ maxf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵkΔHktp
; ϵg. The left-

hand side of this inequality measures quantum work
fluctuations relative to the size of ΔH. In the quantum
driving regime, coherent evolution resulting from the
changed Hamiltonian happens faster than thermalization.
Linear response.—Our results can also be applied to linear

response theory, bounding the size of a response to a
perturbation. Following, for example, Ref. [78], assume
the system begins at t ¼ 0 in a (possibly nonequilibrium)
stationary state π, satisfying LðπÞ ¼ 0. The Hamiltonian
is then perturbed by vtV, giving the trajectory ρt.
The change in mean of A, δAt ≔ tr½Aðρt − πÞ�, can be
bounded from Eq. (3) by jδAtj ≤ kAk R t

0 ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρs;PsÞ

p
(Sec. VII of [51]). In a weak coupling setting, approxi-
mating the QFI to lowest order in vs, we have
jδAtj ⪅ kAk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ðπ;VÞp ½R t
0 dsjvsj þ ΔðtÞ�. Note the term

ΔðtÞ from result 3 reflecting the change in the dissipator
[79].Alternatively, theobservable speed limitEq. (5) similarly
implies jδAtj ⪅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðπ; AÞF ðπ;VÞp ½R t

0 dsjvsj þ ΔðtÞ�. This
requires the additional approximation thatDtrðρt; πÞ is small
for short times, butmay give a tighter bound in replacing jjAjj
by the generally smaller

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðπ; AÞp

.
Outlook.—In summary, we have shown that the

Mandelstam-Tamm speed limit can be extended to describe
the response of an open system to a perturbation, with
applications to quantum resource witnessing and thermody-
namics. There are several possible future directions. First,
note that we can derive a similar speed limit replacing the
Bures angle by the quantity θ̃ðρ; σÞ ¼ arccos trð ffiffiffi

ρ
p ffiffiffi

σ
p Þ and

the QFI by (four times) theWigner-Yanase skew information
[80] IWYðρ;VÞ ¼ − 1

2
trð½ ffiffiffi

ρ
p

; V�2Þ—is this possible for gen-
eralized QFI quantities [73]? Second, for weak coupling, it
would be interesting to consider slowly varying perturba-
tions with adiabatic master equations [81], and implications
for thermodynamic uncertainty relations which relate current
fluctuations to entropy production [82]. Additionally, since
our speed limit holds under Markovian dynamics, a violation
might be used as a witness of non-Markovianity. This would
add to a library of existing witnesses, including those based
on monotonic decrease of QFI [50,69]. A range of other
interesting applications involves studying the rate at which a
perturbation can generate resources, generalizing past

approaches by allowing for background decoherence. This
covers charging quantum batteries [21,83], where one could
include thermalization during charging, and the production
of quantum resources such as coherence and entangle-
ment [84].
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