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Integrable systems offer rare examples of solvable many-body problems in the quantum world. Because
of the fine-tuned structure, their realization in nature and experiment is never completely accurate, and
therefore effects of integrability are observed only transiently. One way to overcome this limitation is to
weakly couple nearly integrable systems to baths and driving: this will stabilize integrable effects up to
arbitrary time and encode them in the stationary state approximated by a generalized Gibbs ensemble.
However, the description of such driven dissipative nearly integrable models is challenging and no exact
analytical methods have been proposed so far. Here, we develop an iterative scheme in which integrability
breaking perturbations (baths) determine the conserved quantities that play the leading role in a highly
efficient truncated generalized Gibbs ensemble description. Our scheme paves the way for easier
calculations in thermodynamically large systems and can be used to construct unknown conserved
quantities.
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Integrable models have played a paramount role in our
understanding of nonequilibrium dynamics because, in
some cases, their dynamics can be followed exactly. A
modern milestone description of integrable models has
been the observation that the steady states reached after a
sudden excitation are locally describable with a generalized
Gibbs ensemble (GGE) [1–5]. This observation was a
natural generalization of the equilibration of thermalizing
generic models, where the steady state is locally described
with a thermal Gibbs ensemble [6,7]. The applicability of
generalized Gibbs ensembles on a finite timescale was first
established experimentally with cold atoms [8]. Recently,
spatially inhomogeneous dynamics of integrable systems
was also formulated using a local GGE description and
generalized hydrodynamics [9–11], receiving experimental
confirmations as well [12–16].
Because of their fine-tuned interactions, integrable mod-

els cannot be exactly realized in nature. On short to
intermediate timescales, integrable models are realizable
with quantum simulators [17–19] and can approximately
describe some materials [20–22]. On longer timescales,
additional Hamiltonian terms such as longer range inter-
action in trapped ions experiment, coupling to phonons in
solid state experiment, trapping potential, transverse cou-
plings, and loss of atoms in cold atomic setups prevent
integrable effects from persisting up to arbitrary times
[12,13,23,24]. The only way to sustain integrable effects in
nearly integrable systems up to arbitrary times is to drive
them out of equilibrium [25–29]. To prevent heating due to
driving, such systems must also be weakly open. Numerical
evidence shows that then the time evolution [25] as well as
the steady state [26–29] is again approximately described

by a GGE. The equations of motion and the steady-state
values for the Lagrange parameters associated with the
conserved quantities entering the GGE are given determin-
istically by the integrability breaking perturbations, i.e., by
the drive and coupling to the baths. This opens the
possibility for GGE engineering [28] and stabilizing
potentially technologically useful phenomena. For exam-
ple, in spin chain materials, approximately described by the
Heisenberg model, efficient spin and energy pumping
could be realized [26]. So far, time-dependent GGE
descriptions have also been used to describe the effect
of particle loss in cold atoms [30,31] and noninteracting
systems coupled to baths [28,29,32–35].
While the expanded role of GGE as a description of

weakly open, nearly integrable systems is fundamentally
important, in this case, concrete calculations of dynamics
and steady states are much more demanding than in isolated
systems. Weak integrability breaking, which causes non-
elastic scatterings and a slow reshuffling of quasiparticle
content, makes the usual quasiparticle treatment of inte-
grable models much harder; for interacting systems ana-
lytically (probably) impossible [30,31]. One possible
simplification is to approximate the GGE with macroscop-
ically many Lagrange parameters with its truncated version.
Such an approximation has been used in the context of
isolated integrable systems [4,36–38], as well as in driven
dissipative, nearly integrable systems [25,26,28].
We propose a new iterative scheme that adds the leading

conserved quantities to the truncated GGE iteratively, as
suggested by the driving and dissipation itself. Here,
leading means having the main contribution to the GGE.
We examine the convergence to the exact result and show
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that a good approximation is typically achieved within a
few steps. Therefore, we have to find a solution of a few
coupled equations for a few leading conserved quantities
instead of extensively considering many coupled equations
for all conserved quantities. The only input for the method
is the basis from which iterative conserved quantities are
constructed.
Setup.—We consider driven dissipative, nearly integrable

setups with the dominant unitary dynamics given by an
integrable Hamiltonian H0. Weak driving and dissipation
could be due to a Floquet unitary drive and coupling to a
(thermal) bath; however, for simplicity, we will consider
weak coupling to nonthermal Markovian baths, whose
action is described by Lindblad operators Li. As pointed
out previously [25–29], nonstatic integrability breaking
perturbations should stabilize a GGE generically, and the
formalism described below can treat them all. The Liouville
equation gives the dynamics of the density matrix operator

L̂ρ¼−i½H0;ρ�þ D̂ρ; D̂ρ¼ ϵ
X
i

LiρL
†
i −

1

2
fL†

i Li;ρg;

ð1Þ
where ϵ ≪ 1 is the strength of the coupling to baths.Wewill
consider homogeneous coupling to baths, where Lindblad
operators Li of the same form act on every site i.
Perturbatively, the zeroth order approximation to the

steady state is of a diagonal form in terms of eigenstates of
H0, H0jmi ¼ Emjmi,

lim
ϵ→0

lim
t→∞

ρ ¼
X
m

amjmihmj≡ ρD: ð2Þ

Weights am are obtained from the kernel of the dissipator
projected on the diagonal subspace [27,39],

P
n Dmnan ¼ 0,

Dmn ¼ hmjðD̂jnihnjÞjmi. If the dissipator preserves a sym-
metry of the Hamiltonian, eigenstates can be taken within
the symmetry sector with a unique steady state.
As suggested in our previous works [25–28], for

integrable H0, the zeroth order diagonal ensemble ρD
should be thermodynamically equivalent to a generalized
Gibbs ensemble,

lim
ϵ→0

lim
t→∞

lim
L→∞

ρ ¼ e−
P

m
λmCm

Tr½e−
P

m
λmCm �

≡ ρλ; ð3Þ

where Cm are the (quasi-)local conserved quantities of
the underlying integrable model, ½Cm;H0� ¼ 0, and λm the
associated Lagrange multipliers. In the steady state, the
latter are determined by the stationarity conditions for all
conserved quantities:

hĊm0 i ¼ Tr

"
Cm0D̂

e−
P

m
λmCm

Tr½e−
P

m
λmCm �

#
¼! 0 ∀m0: ð4Þ

That is, one must find the set of λm for which the flow of all

conserved quantities is zero (¼! 0). This equation is very
instructive: (i) it tells us that the form of integrability
breaking dissipators (Lindblad operators) will determine
the λm values, and (ii) in order to find λm, one must solve a
set of coupled nonlinear equations. To reduce the complex-
ity of step (ii), an approximate description in terms of a
truncated GGE (tGGE) with a finite number of included
conserved quantities has been used [25,26,28]. In that case,
the expectation values of included conserved charges and of
local operators constituting them were well captured.
However, other local observables showed stronger devia-
tions, particularly those overlapping with quasilocal con-
served operators. To partially mend for that, the diagonal
part of latter observables was included in the tGGE.
Also the dynamics toward the steady state can be

approximated with a time-dependent GGE [25]. The
equation of motion for λmðtÞ is derived by the use of
superprojector P̂ onto slow modes, which are for the GGE
ansatz naturally given by the operators ð∂ρλ=∂λmÞ tangen-
tial to the GGE manifold,

P̂X ¼ −
X
m;n

∂ρλ
∂λm

ðχ−1Þm;nTr½CnX�: ð5Þ

Here, χm;n¼−Tr½Cmð∂ρλ=∂λnÞ�¼hCmCniρλ−hCmiρλhCniρλ
is the fm; ng entry of matrix χ and hOiρλ ¼ Tr½ρλO�.
Applying the superprojector to the slow dynamics on the
GGE manifold,

P̂ρ̇λ ¼ −
X
m;n

∂ρλ
∂λm

ðχ−1Þm;nTr½CnD̂ρλ� ¼
X
m

∂ρλ
∂λm

λ̇m; ð6Þ

gives the rate of change for the Lagrange multiplier
associated with Cm,

λ̇m ¼ −
X
n

ðχ−1Þm;nTr½CnD̂ρλ�: ð7Þ

In the superprojector language it is given by the flow along
the corresponding tangential direction. Here, the initial
conditions λmð0Þ are given by the initial state, as in the
prethermal state [40,41].
Iteratively constructed truncated GGE.—We use the

above superprojector technique to iteratively add the
leading conserved quantities to a truncated description of
the steady state for a given dissipator D̂. Given that the
steady-state Lagrange parameters are selected by the
dissipator, Eq. (4), we will, in the first place, use D̂ to
select the conserved quantities that we include in a
truncated GGE ansatz. If such an iterative truncated
description converges to the exact one quickly, the pro-
cedure reduces the number of conditions (4) that need to be
solved.
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In the procedure, we iteratively construct conserved
quantities C̃k from the user-defined operator basis Qm.
The latter should ideally be the set of all known (quasi)local
conserved quantities Qm ¼ Cm of the integrable model H0,
but one can also restrict it to contain only some of them. If
all conserved quantities are not known or are hard to work
with, one can use the basis with projectors Qm ¼ jmihmj
onto all eigenstates ofH0 within the symmetry sector with a
unique steady state. However, this introduces certain finite
size effects that we discuss in the next section.
The iterative procedure has the following steps.

Step 0: Start with a thermal state ρð0Þλ̃ ¼ e−λ̃
ð0Þ
0
H0=Z and

find λ̃ð0Þ0 from condition (4), Tr½H0D̂e−λ̃
ð0Þ
0
H0 �¼! 0.

Step 1: Add the first iterative conserved quantity of the
form

C̃1 ¼ N −1
1

X
m

wð1Þ
m Qm;

wð1Þ
m ¼ −

X
n

ðχ−1ð0ÞÞmnTr½QnD̂ρð0Þλ̃ �; ð8Þ

where, according to Eq. (7), weights wð1Þ
m are given by the

flows along additional directions ð∂ρλ=∂λmÞjρð0Þ
λ̃

when we

allow for a GGE manifold that is not one dimensional
(thermal) as in Step 0, but is spanned by additional basis
Qm conserved quantities. A new direction ð∂ρλ=∂λmÞjρð0Þ

λ̃

that causes a stronger correction to the existing solution is
more important and should be weighted by a stronger bias

wð1Þ
m . In the end, we find fλ̃ð1Þ0 ; λ̃ð1Þ1 g for ρð1Þλ̃ ∝ e−λ̃

ð1Þ
0
H0−λ̃

ð1Þ
1
C̃1

from the condition (4) for H0 and C̃1.
Step k: Add kth iterative conserved quantity

C̃k ¼ N −1
k

X
m

wðkÞ
m Qm;

wðkÞ
m ¼ −

X
n

�
χ−1ðk−1Þ

�
mn
Tr½QnD̂ρðk−1Þλ̃ � ð9Þ

and find fλ̃ðkÞk0 g for ρðkÞλ̃ ∝ e−
P

k
k0¼0

λ̃ðkÞ
k0 C̃k0 from the set of kþ 1

conditions (4) for fC̃k0 gkk0¼0
, where we denote the C̃0 ¼ H0.

Normalization N k can be absorbed into the corresponding
Lagrange parameter. However, it can also be chosen such
that C̃k scales as an extensive operator. The susceptibility
matrix, ðχðkÞÞm;n ¼ hQmQniρðkÞ

λ̃
− hQmiρðkÞ

λ̃
hQniρðkÞ

λ̃
, must be

evaluated in each iterative step. Matrix χðkÞ is not invertible
for the nonlocal basis withQm ¼ jmihmj; however, one can
regularize it as explained in the SupplementalMaterial (SM)
[42]. In case of (additional) unitary (Floquet) perturbations,
the iterative procedure can be generalized to cover those as
well [42].
Results.—First, to quantify the (finite-size) error of

different (truncated) GGE descriptions on length-scale l,
we use the distance between density matrices [37]

dðρ1; ρ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðρ1 − ρ2Þ2�
Tr½ρ21� þ Tr½ρ22�

s
ð10Þ

and compare reduced density matrices on l consecutive
sites for different (truncated) GGE descriptions ρλ;l and the
diagonal solution ρD;l, Eq. (2). As noted in Ref. [37], the
distance between two reduced space GGEs scales as
dðρλ;l; ρλ0;lÞ ∼ l

P
i jλi − λ0ij for large enough l. Also for

ρD close to a GGE, we expect dðρλ;l; ρD;lÞ to scale with l
for large enough l.
In Fig. 1, we show the scaled distances dðρλ;l; ρD;lÞ=l

for our first example, the transverse field Ising model

H0 ¼
X
i

Jσziσ
z
iþ1 þ hxσxi ; ð11Þ

which is a paradigmatic noninteracting integrable model. It
preserves a series of local extensive operators Cm [43]; see
[42]. We choose the following Lindblad operators of a
rather general form, with a ¼ 0.2,

Li ¼ Sþi S
−
iþ1 þ iS−iþ1S

þ
iþ2 þ aσxi σ

z
iþ1; ð12Þ

(a)

(b)

(c)

FIG. 1. Scaled distances dðρλ;l; ρD;lÞ=l, Eq. (10), between the
reduced density matrices of support l for the diagonal steady-
state ensemble, Eq. (2), and different (truncated) generalized
Gibbs ensembles. Solid lines correspond to the best GGEs with
all Nall

C ¼ 2L − 2 local conserved quantities on a given system
size. From top to bottom, we consider tGGEs with (a) NC local
conserved quantities Cm;m ¼ 0;…; NC − 1, (b) iterative scheme
after the kth step for the basis Qm ¼ Cm, m ¼ 1;…; Nall

C − 1,
(c) iterative scheme after the kth step for basis Qm ¼ jmihmj.
Parameters: Ising model with hx ¼ 0.6, J ¼ 1, system sizes
L ¼ 10, 12, 14.
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which stabilize a nontrivial steady state. Such structured
dissipators could be realized with trapped ions simulators
[28,44] or superconducting circuits [45]. Moreover, we
stress that our algorithm is generic and applicable to any
non-Hermitian Lindblad operators leading to (within the
symmetry sector) a unique, nontrivial steady state.
Solid lines on all Fig. 1 panels denote the saturated

distances ds;l for the best GGE solution on a given system
size L, including all Nall

C ¼ 2L − 2 local conserved quan-
tities on that system size. The solution is obtained by
solving extensively many Nall

C ∼ 2L coupled Eq. (4). As L
is increased, saturated ds;l are decreased because in the
thermodynamic limit, the complete GGE and the diagonal
solution are equivalent, limL→∞ ds;l → 0. Finite ds;l are
just a finite-size effect. (a) Traditional tGGE: in the first
row, we show the convergence to ds;l for a tGGE based
on NC ≤ Nall

C most local conserved quantities Cm;m ¼
0;…NC − 1, where C0 is the Hamiltonian. To find the
solution, NC coupled Eqs. (4) are solved. As NC is
increased, a better description with smaller distances d is
obtained, but convergence is rather slow. (b) Iterative tGGE
with local basis: in the middle row, we show the con-

vergence of dðρðkÞλ̃;l; ρD;lÞ=l with respect to the number of

iterative steps k for the iterative scheme using the basis of
all local conserved quantities Qm ¼ Cm, excluding the
Hamiltonian. The saturated distances ds;l (solid lines) are
approached after only k ¼ 1 iterative step. The advantage is
that we now solve for kþ 1 ¼ 2 instead of extensively
many Nall

C ∼ 2L conditions (4) in order to find the steady
state. (c) Iterative tGGE with nonlocal basis: In the last row,
we present the convergence of the iterative scheme in the
nonlocal basis Qm ¼ jmihmj of projectors onto the eigen-
states of H0. The saturated distances ds;l (solid lines) are
met after only k ¼ 1 iterative step. Further reduction of
d is largely due to nonlocal contributions in the nonlocal
basis Qm, which inherently share finite-size effects of the
diagonal solution ρD, Eq. (2). In that sense, ρD and the
iterative solution in the diagonal basis, contain thermody-
namically irrelevant information. We should note also that
the iterative procedure in the nonlocal basis cannot be more
efficient than finding ρD. However, its usefulness is in the
interpretability, which is achieved by analyzing the struc-
ture of the leading conserved quantities. Below, we discuss
the advantages of our iterative procedure in both bases.
When all (quasi)local conserved quantities are known,

the advantage of the iterative procedure performed in their
basis is in efficiently interpreting the steady state by
establishing the weights ΛðkÞ

m at different basis elements
Qm ¼ Cm, in Fig. 2 shown for k ¼ 1, 2, 3 iterative steps

[46]. Weights ΛðkÞ
m reveal that conserved quantities C2n,

which are even under the parity transformation, are more
important for our example and are well estimated after a
single k ¼ 1 iterative step. In the next iterative steps,
smaller weights at less important odd conserved quantities

C2n−1 are also captured. To further illustrate the fast
convergence, we compare the iterative results to the
asymptotic weights (absolute values of Lagrange para-
meters jλmj denoted by crosses), obtained by solving
extensively many conditions (4) for all local conserved
quantities.
If conserved quantities are unknown or hard to work

with, one should perform the iterative procedure in the
nonlocal diagonal basis Qm ¼ jmihmj. The usefulness is
again in the interpretability, obtained by analyzing the
structure of leading iterative conserved quantities. Here, we
perform it for the Heisenberg model,

H0 ¼
X
i

σxi σ
x
iþ1 þ σyi σ

y
iþ1 þ σziσ

z
iþ1; ð13Þ

known to have additional exotic quasilocal conserved
quantities [2,47,48]. We again use Lindblad operators
Eq. (12), now with a ¼ 0 so that we can work in a single
(largest) Sz ¼ 0 magnetization sector. An analysis similar
to Fig. 1 is performed in the SM; here, we focus on the
interpretability. In order to assess the nature (i.e., locality)
of iterative conserved quantities, we extract the norm

limL→∞
1
L kC̃ðsÞ

k k2 of the part of iterative conserved quan-
tities that acts nontrivially on s consecutive sites, C̃k ¼P

s C̃
ðsÞ
k . Operator C̃ðsÞ

k is obtained by summing the over-
laps of C̃k with all Pauli strings acting nontrivially between

s sites. In Figs. 3(a) and 3(b), we plot the norms 1
L kC̃ðsÞ

k k2
for k ¼ 1, 2 and different supports s on given system sizes
L ¼ 12, 14, 16 [49]. For small L, norms even increase with
s. Only when we extrapolate the finite size result to the
thermodynamic limit via 1=L scaling, Figs. 3(a) and 3(b),
for large enough s, norms are decaying exponentially
with s, Fig. 3(c), as expected for quasilocal conserved

FIG. 2. Interpreting the iterative procedure using the basis with
all local conserved quantities Qm ¼ Cm;m ¼ 1;…; 2L − 3. The

weights ΛðkÞ
m ¼ jPk

k0¼1
λ̃ðkÞk0 w

ðk0Þ
m =N k0 j at each basis element Qm

after k ¼ 1, 2, 3 iterative steps show which basis elements are
more important. The exact weights are shown with crosses.
Parameters: transverse field Ising model with hx ¼ 0.6 and J ¼ 1
on L ¼ 14 sites.
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operators [47,48]. Thus, only once we remove the finite-
size nonlocal contributions, inherent to the nonlocal basis,
we can conclude that our iterative conserved quantities are
a quasilocal superposition of local [50] and quasilocal
conserved quantities of the Heisenberg model [47,48].
Conclusions and outlook.—In this Letter, we propose an

iterative construction of conserved quantities of leading
importance to describe nearly integrable, driven dissipative
systems. Our approach is motivated by the fact that in such
setups, the integrability breaking perturbations (couplings
to baths and drives) determine the Lagrange parameters of a
GGE approximation to the steady state. Here, we use the
dissipator to select the combination of conserved quantities
contributing significantly to the truncated GGE description.
Such a physically motivated construction of truncated
GGEs reduces the complexity of calculating steady-state
parameters, i.e., the Lagrange parameters. Namely, instead
of solving extensively many coupled conditions (4) for all
(quasi)local conserved quantities, we need to solve for just
a few. A precise number is model and precision-dependent
but is generally expected to be Oð1Þ and low.
A clear usefulness of our approach that we already

showcased here is in the interpretability: (i) if working in
the basis of all local conserved operators, their weights
reveal which of them are important for given Lindblads.
(ii) If all (quasi)local conserved quantities are not known or
hard to work with, the iterative procedure can be performed
in the nonlocal basis of projectors on eigenstates.
The (quasi)local structure of leading iterative conserved

quantities can be analyzed a posteriori, giving the infor-
mation about potentially unknown conserved quantities of
the unperturbed model [51].
When evaluating the actual reduction of complexity, one

should also consider the complexity of evaluating the rate
equations (4) and building the conserved quantities, Eq. (9).
Our current study used exact diagonalization, at a gain of
thorough benchmarking against the diagonal ensemble, but
at the loss of diagonalization itself representing the bottle-
neck of the procedure. At least for noninteracting many-
body integrable systems, one can evaluate Eq. (4) and
construct iterative conserved quantities (9) in the basis of
mode occupation operators with polynomial complexity in
system size, in which case our method reduces the
exponent and simplifies thermodynamically large calcula-
tions; see comment [52] for scaling arguments. For inter-
acting integrable models, Eqs. (4) and (9) could be
evaluated using partition function approach [54,55].
However, we leave exploring thermodynamic aspects for
noninteracting and interacting models to a future study.
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