
Antiferromagnetic Bosonic t – J Models
and Their Quantum Simulation in Tweezer Arrays

Lukas Homeier ,1,2,3,4,* Timothy J. Harris ,1,2 Tizian Blatz ,1,2 Sebastian Geier ,5,4 Simon Hollerith ,4

Ulrich Schollwöck,1,2 Fabian Grusdt ,1,2 and Annabelle Bohrdt6,2,3,4,†
1Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC),

Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München D-80799, Germany

3ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
4Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

5Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
6Institute of Theoretical Physics, University of Regensburg, Regensburg D-93053, Germany

(Received 10 May 2023; revised 3 August 2023; accepted 9 May 2024; published 4 June 2024)

The combination of optical tweezer arrays with strong interactions—via dipole exchange of molecules
and Van der Waals interactions of Rydberg atoms—has opened the door for the exploration of a wide
variety of quantum spin models. A next significant step will be the combination of such settings with
mobile dopants. This will enable one to simulate the physics believed to underlie many strongly correlated
quantum materials. Here, we propose an experimental scheme to realize bosonic t–J models via encoding
the local Hilbert space in a set of three internal atomic or molecular states. By engineering
antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic
order similar to that in high-Tc cuprates can be realized. Since the ground states of the 2D bosonic AFM t–J
model we propose to realize have not been studied extensively before, we start by analyzing the case of two
dopants—the simplest instance in which their bosonic statistics plays a role—and compare our results to
the fermionic case. We perform large-scale density matrix renormalization group calculations on six-legged
cylinders, and find a strong tendency for bosonic holes to form stripes. This demonstrates that bosonic,
AFM t–J models may contain similar physics as the collective phases in strongly correlated electrons.
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Introduction.—Trapping, manipulating, and controlling
individual qubits in optical tweezer arrays [1–6] has enabled
the observation of intriguing many-body physics. Rydberg
tweezer platforms stand out with their large Ising or dipolar
interaction strengths [7,8], while cold molecules remain
coherent for seconds [9] and offer an entire ladder of
rotational states [10]. So far, experiments have demon-
strated a variety of equilibrium [11,12] and dynamical
phenomena [13–16] of quantum magnetism. For example,
the toolkit of strong interactions, geometric frustration, and
novel readout of nonlocal correlators have revealed topo-
logical spin liquid order in Rydberg tweezer arrays [11,17].
One goal of analog quantum simulators is to develop our

understanding of the microscopic mechanisms underlying
strong correlated quantum matter. Combining spin models
with physical tunneling t of particles [18] yields doped
quantum magnets, where mobile dopants frustrate mag-
netic order [19] and the statistics of the particles plays a
crucial role. Because of its intimate connection to strongly
correlated electrons, much effort has been invested in the
exploration and quantum gas microscopy of the Fermi-
Hubbard model [20,21] with on-site interaction U, using
ultracold atoms in optical lattices [22–26]. The underlying

superexchange mechanism naturally leads to AFM inter-
actions J ¼ 4t2=U in fermionic systems, while bosonic
models have effective ferromagnetic interactions [19,27].
The behavior of bosonic holes doped into an AFM

background raises several interesting questions, but has so
far remained elusive due to the ferromagnetic interactions
in spin-1=2 Bose-Hubbard models. For example, the
microscopic mechanism of hole pairing might not be
specific to the Fermi-Hubbard model but instead a universal
feature of a broad class of related systems with strong spin-
charge correlations, such as the model discussed below.
In this Letter, (i) we study a model combining AFM spin

models with mobile (hardcore) bosonic hole dopants in one
or two spatial dimensions and (ii) we propose experimental
schemes realizing this scenario, suitable for implementa-
tion in systems of ultracold polar molecules or Rydberg
atoms, where the hole dopants are encoded in the internal
degrees of freedom.
In particular, we map a bosonic t–J model [28–34] onto

a pure spin model comprised of three Schwinger bosons,
which can be implemented hardware-efficiently using the
Floquet technique in tweezer systems with dipolar or Van
der Waals interactions. Here, the system time evolves under
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its natural, e.g., XY interactions followed by a specific
sequence of rotations within the three internal states. The
effective dynamics of the bosonic excitations is then
governed by a t–J Hamiltonian. The tunability enables
us to engineer regimes that have not been accessible before,
e.g., AFM XXZ interactions, J > t, explicit hole-hole (anti)
binding potentials or randomized interactions [35].
With the deterministic loading and preparation of prod-

uct states, time evolution under a tunable Hamiltonian in
arbitrary geometry, and ultimately readout by snapshots in
the Fock basis, we present a realistic experimental protocol
to probe doped bosonic quantummagnets. We highlight the
relevance of 2D bosonic AFM t–J models by calculating
the ground state of a six-legged cylinder doped with two
holes using density matrix renormalization group (DMRG).
We then compare these results with those obtained from the
traditional fermionic t–J model.
Bosonic t–J model as a spin system.—The main ingre-

dient to realize doped spin models, such as the t–J model
shown in Fig. 1(a), is a mapping from the original model
onto a newmodel described by Schwinger bosons. The new
spin model is then suitable for implementations in estab-
lished experimental platforms and the desired interactions
can be engineered using the Floquet driving technique.
The t–J model describes (hardcore) mobile spin-1=2

particles on a d-dimensional lattice with magnetic inter-
actions; hence, the local Hilbert space is spanned by the
hole and one particle states fjhi, j↓i, j↑ig. Here, we
investigate bosonic particles jσi ¼ â†j;σjvaci, where we

express spins in the Schwinger representation Ŝj ¼
1
2

P
σ;σ0 â

†
j;στσ;σ0 âj;σ0 with Pauli matrices τ ¼ ðτx; τy; τzÞ

and σ ¼ ↓;↑. Further, we introduce the (hardcore) bosonic
hole operator jhi ¼ â†j;hjvaci.
To obtain the correct Hilbert space, the Schwinger

bosons have to fulfill the local constraint

n̂hj þ n̂↓j þ n̂↑j ¼ 1; ð1Þ

where n̂σj ¼ â†j;σâj;σ and n̂
h
j ¼ â†j;hâj;h are the local spin and

hole densities, respectively; see Fig. 1(c).
The bosonic t − J Hamiltonian is given by

Ĥt−J ¼ −
X
i<j

tij
X
σ

ðâ†i;σâi;hâ†j;hâj;σ þ H:c:Þ

þ
X
i<j

X
α

JαijŜ
α
i Ŝ

α
j þ

X
i<j

Vijn̂hi n̂
h
j ; ð2Þ

with α ¼ x, y, z and the couplings can have arbitrary
connectivity and range. The first term ∝ t describes
tunneling of particles, the second term ∝ Jα describes
magnetic XXZ interactions with Jx ¼ Jy ¼ J⊥, and the
last term ∝ V is a hole-hole interaction.

The model (2) gains its importance because it captures
the low-energy effective theory of the repulsive Fermi-
or Bose-Hubbard models in the strong coupling regime
U ≫ t [19]. However, the perturbative derivation exactly
determines the couplings, which for nearest-neighbor (NN)
hopping are given by Jα ¼�4t2=U and V¼−Jð�2−1Þ=4
for the fermionic (þ) or bosonic (−) models, respectively.
Our proposed scheme for realizing the model (2)

in experiment enables broad tunability [36,37] of the
Hamiltonian parameters. In particular, the ability to tune
the ratio between the hole-hole interaction V and magnetic
interactions J in our model facilitates exploration of
potentially interesting pairing regimes, which we study
numerically in the second part of this Letter.
First, we perform an exact mapping of Hamiltonian (2)

onto a new XXZ spin model composed of the three spin-
1=2 Schwinger spins Ŝj, Îj;↓, and Îj;↑ with

(a)

(b)

(d)

(c)

FIG. 1. Schwinger boson mapping. (a) The t–J model describes
hopping of spin-1=2 particles on a lattice with tunneling
amplitude t together with magnetic interactions J. For AFM
interactions, the motion of holes (jhi) or particles ðj↓i; j↑iÞ
frustrates the spin order yielding rich physics for both fermionic
and bosonic particles. (b) The latter can be implemented in the
internal states of ultracold molecules or Rydberg atoms spatially
localized in optical lattices or on an arbitrary graph of tweezer
arrays. (c) The local Hilbert space fjhi; j↓i; j↑ig can be encoded
in the internal rotational states of molecules and we define the
three Schwinger spins Ŝ; Î↑, and Î↓, which allows us to exactly
represent the t–J Hamiltonian as a spin model. (d) In the isolated
three-level subspace of rotational states jNi with N ¼ 0, 1, 2, the
molecular Hamiltonian we consider has XY interactions between
N ¼ 0, 1. By performing periodic rotations on the Ŝ- and Îσ-
Bloch spheres, the effective Floquet Hamiltonian in spin repre-
sentation can be engineered. The duration τn of individual
Floquet evolution steps determines the effective coupling
strengths of the target Hamiltonian (4) (here with V ¼ 0).
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Ŝzj ¼
1

2

�
n̂↑j − n̂↓j

�
Ŝþj ¼ â†j;↑âj;↓

Îzj;σ ¼
1

2
ðn̂σj − n̂hj Þ Îþj;σ ¼ â†j;σâj;h; ð3Þ

from which we obtain (up to a constant energy shift)

Ĥt−J ¼−
X
i<j

X
α;σ

tαijÎ
α
i;σ Î

α
j;σ þ

X
i<j

X
α

gαijŜ
α
i Ŝ

α
j : ð4Þ

We neglect a chemical potential term for the holes since we
assume the total number of particles is conserved. The form
of Eq. (4) is very useful for our proposed implementation
below, but we emphasize that the Schwinger spins are not
mutually independent, i.e., ½Ŝzj; Î�j;σ� ≠ 0.
The hole-hole interaction renormalizes the XXZ models

and we find the following couplings related to Eq. (2)
and (4):

txij ¼ tyij ¼
1

2
tij tzij ¼ −

8

9
Vij

gxij ¼ gyij ¼ J⊥ij gzij ¼ Jzij −
4

9
Vij: ð5Þ

So far, we have performed exact transformations and
rewritten the t–J model in terms of Schwinger bosons.
The Schwinger spins have to fulfill the number constraint (1),
which induces highly nontrivial spin-charge correlations and
thus is beyond a simple spin-1=2 chain. Likewise, the
construction can be formulated in terms ofmutually hardcore
bosonic statistics, i.e., â†j;Σâ

†
j;Σ0 ¼ 0 for Σ ¼ ↓;↑; h.

The constraint can be elegantly implemented in a spin-1
manifold in, e.g., ultracold molecule or Rydberg tweezer
arrays. To this end, we propose two schemes, which either
utilize dipolar spin exchange interactions to engineer the
desired dynamics by Floquet driving, or directly enable the
realization of Hamiltonian (4) in three isolated Rydberg
states.
Experimental proposal: Ultracoldmolecules.—Ultracold

polar molecules have recently demonstrated the realization
of an anisotropic XXZ model in a qubit subspace of
rotational states [16], which can be achieved by Floquet
engineering. There, the system consecutively time evolves
under the resonant dipole-dipole interactions followed by
fast qubit rotations, i.e., driving microwave transitions
between rotational states.
Here, we extend the scheme by using three states in the

rotational manifold jNi with N ¼ 0, 1, 2 and we identify
the molecular states fj0i; j1i; j2ig with the local Hilbert
space fjhi; j↓i; j↑ig of the t–J model. The molecular
Hamiltonian expressed in terms of the Schwinger spins (3)
is given by

Ĥmol ¼
X
i<j

χij
�
Îþi;↓Î

−
j;↓ þ H:c:

�
; ð6Þ

with χij ¼ χð1 − 3 cos2 θijÞ=jrijj3. Here, rij is the vector
connecting lattice sites i and j, and θij is the angle between
the quantization axis and rij. In the following, we choose
θij ¼ π=2 and set the NN distance to rij ≡ 1. The XY
coupling strength χ, is determined by the resonant dipole
moments of the molecule [10,38], and here we only
consider interactions between N ¼ 0, 1 [39], while the
state N ¼ 2 is noninteracting. This can be achieved by
using the selection rules ΔmN ¼ 0;�1 of the dipole
interactions, e.g., we propose to use jN ¼ 0; mN ¼ 0i,
jN ¼ 1; mN ¼ 0i, and jN ¼ 2; mN ¼ −2i.
Next, we describe a scheme to realize a t–J model with

tunable XXZ magnetic interactions. To this end, we
consider the molecular Hamiltonian (6) with flip-flop
interactions χij. By comparing this model to the t–J
Hamiltonian (4), we find that the microscopic model
corresponds to a t–J model with tunneling of j↓i particles
only. Hence, we propose to perform consecutive, fast
rotations between all pairs of states, i.e., on the Îσ- and
Ŝ-Bloch spheres, to obtain a time-averaged Hamiltonian
with equal strength j↑i- and j↓i-particle tunneling. The
sequence of Floquet rotations is shown in Fig. 1(d): tuning
the times τn of Floquet steps allows for the implementation
of models with tunable ratios −t=Jz > 0 and J⊥=Jz > 0
(Jz > 0) and V ¼ 0. This result holds in first-order Floquet
theory and is derived in the Supplemental Material [40]; a
comparison between the target t–J model and Floquet time
evolution using exact diagonalization shows excellent
agreement and demonstrates the robustness of our proposed
scheme.
We emphasize that the long-range interactions directly

transfer to the effective model and hence a t–J model with
r−3 tails is realized in cold molecules. Enriching the Floquet
protocol by spatial rearrangements [41], pure NN inter-
actions or even models with arbitrary connectivity can be
implemented in principle. Depending on the stability of dc
electric fields, the fidelity of microwave transitions and
coherence times across multiple rotational levels [42,43],
effective Floquet Hamiltonians [44] of differing complexity
can be realized; in particular in the Supplemental Material
we present a Floquet sequence that gives rise to t–J–V
models with 0 < V=Jz < 9=4 and J⊥=Jz > 1=2.
Experimental proposal: Rydberg tweezer arrays.—

Rydberg atoms in optical lattices [45] and tweezer arrays
have become an established platform in the quantum
simulation of magnetism [7,8,11,12,14,15]. In particular,
tunable spin-1=2XXZmodels have previously been realized
via Rydberg dressing [46], Floquet engineering [47,48], and
precise selection of Rydberg states [49].
The proposed model (4) requires control over inter-

actions within a three-level system. We propose a direct
implementation within three Rydberg states by identifying

jnSi¼ j↓i jn0Pi¼ jhi jn00Si¼ j↑i: ð7Þ
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The resonant dipolar exchange between states of different
parity implements long-ranged tunnelings, e.g., the exchange
interaction between the pair of atoms jnSi; n0Pji ↔
jn0Pi; nSji at site i and j corresponds to tunneling of ↓

particles with amplitude t↓ij ∝ r−3ij . Models with either
approximate SUð2Þ invariant tunnelings or spin-dependent
tunnelings can be implemented.
Further, the spin interactions can be induced by choosing

suitable pair states jnS; n00Si, such that the resulting Van der
Waals interactions ∝ r−6 give rise to flip-flop J⊥ and Ising
terms Jz [50], as demonstrated in Ref. [49]. Notably, the
different scaling behaviors of the tunneling and spin
interactions allow us to tune the ratio of t=J over a
wide range.
In the (exact) mapping from the Rydberg Hamiltonian

onto the spin model, additional terms appear from the
anisotropy in the diagonal Van der Waals interaction
between pair states. These terms give rise to a t–J–V–W
model [see Eq. (2)] with spin-hole interactions ∝ Wijn̂hi Ŝ

z
j.

Using the states from Ref. [49], we find the latter to be
negligible.
Spin-charge order in the bosonic t–J model.—

Understanding the nature of mobile dopants in strongly
correlated phases of matter has a long history, motivated
by high-Tc superconductors and more recently by layered
2D materials [51]. The fate of the AFM Mott insulator
under doping is still debated; however, experiments in
cuprates have revealed that even a few percent of
fermionic dopants can lead to a robust d-wave super-
conducting ground state [20,52]. Hence, strong pairing of
charge carriers—the hole dopants—mediated by magnetic
interactions [53] likely plays a key role.
Here, we perform a first numerical study of hole dopants

in the ground state of the 2D bosonic AFM t–J model,
comparing our results to an equivalent calculation using the
standard fermionic t–J model. Let us emphasize that
previous studies of the bosonic t–J model have considered
either lower dimensions, high temperature expansions or
partial AFM couplings (Jz > 0; J⊥ ≤ 0) [28–34]. In con-
trast, our model takes a further step toward strongly
correlated materials by studying fully antiferromagnetic
interactions in the spin sector (Jz; J⊥ > 0) with the cost of
introducing a sign problem at low temperatures; there our
model is intractable for large-scale quantum Monte Carlo
simulations.
To this end, the ground state with two holes in the zero-

magnetization sector, Ŝz ¼ 0, of the SU(2)-invariant version
of Eq. (2), Jα ≡ J, was obtained from DMRG calculations
on a long cylinder [54–57]; the interactions are restricted to
NN and have strength t=J ¼ 2 and V=J ¼ −1=4 (see
Supplemental Material). To analyze the structure of the
obtained pair wave functions, we extract (i) the reduced
hole-hole correlation hn̂hi n̂hj i=hn̂hi ihn̂hj i and (ii) the spin-spin
correlation hŜzi Ŝzji functions shown in Fig. 2.

The well-known case of fermionic holes [52,58,59]
indicates the formation of a tightly bound pair state, which
can be seen from the C4-symmetric hole-hole correlations
[Fig. 2(b), top] and the absence of a spin domain wall
across the hole-rich region [Fig. 2(b), bottom]. While the
intuitive picture for bosons suggests the holes to condense
and similarly bunch together, we find a surprising situation:
the bosons have a tendency toward stripe formation. At
finite density of holes, such stripes form in, e.g., cuprate
materials, describing periodic charge modulations bound to
π-phase shifts of the spin-spin correlations (domain walls)
across the hole-rich regions.
In our small system simulation, the two bosonic holes

show strong tendency to pair along the short, periodic
direction of the cylinder, as evident from the hole-hole
correlations [Fig. 2(a), top]. In contrast to the fermionic
case, we observe a spin domain wall across the hole-rich
region [Fig. 2(a), bottom], a hallmark of stripe formation.
Additionally, the charge correlations show short-range
repulsion along the short direction, distinctly different
from the structure of the C4-invariant pair of the fermionic
holes but resembling the situation in a stripe. Both
scenarios, tightly bound pairs and stripe correlations, are
marking phases observed in strongly correlated electrons
[52,60].
This minimal instance—comparing two-hole fermionic

and bosonic states—already shows rich phenomenology

(a) (b)

FIG. 2. Bosonic vs fermionic two-hole states. We show ground-
state correlation functions for a t–J model with two (a) bosonic
and (b) fermionic holes obtained from DMRG calculations on
20 × 6 cylinders. We find distinctly different behavior for bosons
and fermions by evaluating the hole-hole (top) and spin-spin
correlation functions (bottom). (a) The hole-hole correlator,
centered around its reference site, i0 ¼ ðx0 ¼ 10; y0 ¼ 3Þ, shows
a charge-density wave pattern around the short direction of the
cylinder. Additionally, we find a domain wall in the spin-spin
correlation function with reference site i0 ¼ ðx0 ¼ 1; y0 ¼ 3Þ, on
the boundary (white dot); hence the bosons form a stripe. (b) The
fermions are tightly bound into an isotropic pair embedded in a
homogeneous AFM background. For both statistics, we plot the
hole density averaged around the short direction of the cylinder,
which also serves as a marker for convergence of our results (see
Supplemental Material).
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and demonstrates an intriguing first experimental applica-
tion of our proposal. Future experimental and numerical
studies of the bosonic AFM t–J model can be expected to
provide a fresh perspective from which to advance our
current understanding of the physics of doped Mott
insulators.
Experimental probes.—In the following, we discuss

observables that can be obtained from snapshots in our
proposed experimental scheme. From low to high doping,
we suggest a number of useful probes: single-hole angle-
resolved photoemission spectroscopy, binding energies,
gð2Þ correlation functions, and transport.
A single-hole dopant in an AFM background forms a

quasiparticle, the magnetic polaron, with rich internal struc-
ture [61]. Previous experiments focused onmeasurements of
hole-spin-spin correlation functions [25] or dynamical
probes [62]. However, a plethora of ro-vibrational excitation
modes are predicted from numerical calculations [63], which
could be revealed by single-hole angle-resolved photoemis-
sion spectroscopy [64]. In our proposed model, a momen-
tum-insensitive yet spin-selective measurement can be easily
performed by driving microwave transitions between the j↓i
(j↑i) and jhi states, in order to evaluate the transition
probabilities. We note that in the t − Jz model (J⊥ ¼ 0)
the energy is approximately momentum-independent; in our
proposed scheme this can be implemented as a limit of the
XXZmodelwith strong Ising terms.Moreover, the character-
istic excitation spectrum of the single hole is a staircase of
string-excited states [61,65–67] with energies scaling as
t1=3ðJzÞ2=3, which could be directly probed by momentum-
independent measurements.
In contrast to optical lattice experiments, platforms

utilizing tweezer arrays allow for direct access to energies
hĤi by taking snapshots in the different bases of Ŝα and Îασ
and evaluating the terms individually in Hamiltonian (4).
The experimental protocol first requires an adiabatic state
preparation protocol, e.g., by preparing a deterministic,
low-energy Néel state followed by tuning suitable param-
eters. Repeating the experiment for zero, one, and two holes
then allows one to measure, e.g., their binding energy
directly.
On the other hand, indirect signatures of pairing or stripe

formation can be obtained from gð2Þ correlation functions.
Moreover, the tunability of our model may give a new
perspective on the nature of the ground state. In particular,
tuning the magnetic or hole-hole interaction V can (un)
favor pairing, which manifests in the hole-hole distance.
Moreover, at finite doping we speculate that the phase
diagram—similar to its fermionic counterpart—hosts insta-
bilities toward incommensurate charge and spin ordered
phases of matter. Hence, the formation (or absence) of
stripes at finite doping with its correlation between density
and spin domain walls can be investigated from state-
dependent snapshots.

Lastly, we suggest to probe spin and charge transport by
time-evolving an initial product state, e.g., a charge-density
wave [68]. The control of atoms on the single-particle level
in tweezer arrays [8] naturally suggests to apply quench
protocols to an initial product state. Studying transport
properties in 2D t–J models with long-range interactions
and at finite doping could give important insights into
exotic phases of matter with potential connections to
strange metallicity.
Discussion and outlook.—We have studied a class of

models where AFM interactions are combined with
bosonic hole dopants in 2D. Our proposed model is of
particular interest due to the prospect of near-term realiza-
tions in analog quantum simulation experiments. While we
have predominantly discussed schemes for analog quantum
simulation, we also envisage future applications in hybrid
digital-analog platforms [69], where fast physical tunneling
of bosonic or fermionic (Rydberg) atoms can be realized.
Further, extensions in other three-manifolds of circular
Rydberg states may be possible [70].
We demonstrated the relevance for strongly correlated

materials and potential connections to high-Tc supercon-
ductivity using state-of-the-art numerical techniques; this
motivates future theoretical, numerical, and experimental
studies of bosonic AFM t–J models. Additionally, the
precise tunability of our proposed model opens exciting
new avenues to explore pairing mechanisms and collective
phases of doped Mott insulators [71]. For example, via
tuning the hole-hole interaction to realize a hole binding-
unbinding transition. Lastly, the experimental building
block could enable the realization of more elaborate
strongly correlated systems, e.g., non-Abelian lattice gauge
theories [72].

Note added.—During the publication process, we became
aware of a tunable, fermionic t–J model implemented in
cold molecules using physical tunneling of molecules in a
lattice [73].
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