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During electrochemical signal transmission through synapses, triggered by an action potential (AP), a
stochastic number of synaptic vesicles (SVs), called the “quantal content,” release neurotransmitters in the
synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on
the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its
stochastic replenishment, hence the actual distribution of quantal content is unknown. We show that exact
distribution of quantal content can be derived for general stochastic AP inputs in the steady state. For fixed
interval AP train, we prove that the distribution is a binomial, and corroborate our predictions by
comparison with electrophysiological recordings from MNTB-LSO synapses of juvenile mice. For a
Poisson train, we show that the distribution is nonbinomial. Moreover, we find exact moments of the
quantal content in the Poisson and other general cases, which may be used to obtain the model parameters
from experiments.
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The human brain is arguably the most complex natural
object in the known universe. Its complexity, as well as its
capabilities, are a product of its roughly 86 × 109 [1]
neurons that make approximately 1015 connections [2]
with each other. The majority of these connections are
chemical synapses, a schematic diagram of which is shown
in Fig. 1(a), with the vesicle-rich presynaptic terminal on
the left and the postsynaptic terminal with neurotransmitter
receptors on the right. In the presynaptic terminal, ready-
release synaptic vesicles (SVs) packed with neurotrans-
mitters attach to docking sites. The arrival of an action
potential (AP) controls the calcium dynamics, which
triggers the stochastic fusion of a few SVs (the “quantal
content”) with the presynaptic membrane, thereby releasing
their neurotransmitter cargo in the synaptic cleft as shown.
A stochastic train of APs is shown in Fig. 1(b) (top) and the
corresponding time dependent quantal content is shown
schematically (below). Experimentally the quantal content
is obtained as the ratio of the measured peak amplitude of
evoked (excitatory or inhibitory) postsynaptic currents [3]
to average quantal size. Thus, SV release from presynaptic
terminals is a fundamental feature of all information
processing in the nervous system.
Addressing how neurons communicated with one

another, Castillo and Katz [4] first proposed what they
described as a quantal theory of release of certain binomially
distributed “units.” Over the years microstructural and
electrophysiological studies revealed the relevant biological
details, and a picture emerged of spatially distributed pools

of neurotransmitters containing SVs in the presynaptic
neuron. These are the resting, recycling, and ready-release
pools (RRPs). SVs from the RRPs may release their
neurotransmitter cargo on stimulation by an AP through
membrane fusion at the presynaptic terminal [5–8].
Sustained APs require RRP replenishment, and early theo-
retical analysis assumed deterministic replenishment, and
quantal release [9–11]. Later works developed probabilistic
descriptions and stochastic models [12–18]. Empirical
observations had shown that the binomial distribution

FIG. 1. (a) Schematic picture of a chemical synapse. The SVs
(circular balls) filled with neurotransmitters (black dots) get
docked to sites (in green) and remain ready to release at the
presynaptic terminal. Each AP triggers release of some SVs to the
synaptic cleft, which reach the receptors in postsynaptic terminal
to produce evoked postsynaptic current. (b) A schematic input AP
train with random intervals ts (top), and (bottom) the output
quantal content varying with time, shown to reach a steady state
at long times.
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was a good fit to the statistics of quantal release, and
this has been the basis of the majority of fluctuation
analysis [12,16,18–27]. The basic model thus assumes that
at the instant ofAP stimulation, if there aren− docked SVs in
RRPs and prt is the instantaneous release probability, then
quantal content b (fused and released SVs) is distributed as
Bðn−; prt ; bÞ ¼ ðn−b Þpb

rtð1 − prtÞn−−b [16–18,24,28–30].
As n− is itself stochastic, it is generally expected that the

actual distribution of quantal content is not a binomial, as
would result from summing over the likelihood of random
values of n−. This fact has largely been overlooked in the
literature and some works even used binomial with
n− approximated by its mean value [16–18,28,29,31,32].
Systematic formalism treating the docked vesicle number
stochastically appeared in a set of works [33–36], although
the focus of the authors was the estimation of the model
parameters. While exact relationships between probability
of postsynaptic currents after two successive APs were
formally written down, the problem could not be solved
analytically further because of the presence of multiple
nested summations due to the explicit history of the AP
train [34].
In this Letter, we show that in the steady state limit after

sustained AP stimulation, for uncorrelated stochastic inter-
spike intervals (ISI), the full distribution of quantal content
b as well as its moments becomes analytically tractable.
The commonly used fixed ISI stimulation follows as a
special case of our general result. Although the transient
plastic regime [Fig. 1(b)] is often studied in synapses, the
steady state is also of interest [7,16,24,37] and is attained in
experimentally reasonable times [38,39]. Poisson AP
stimulation has been experimentally studied [40], and such
ISI distributions have been observed in visual cortical
neurons [41,42]. Thus, stochastic stimulations are an
important in vivo scenario. These facts provide motivation
for our focus here on steady state quantal content under
stochastic stimulations.
In Fig. 2, the time dependent number nðtÞ of docked SVs

in the presynaptic neuron is shown schematically. Starting
with n ¼ nþ;m−1 after the (m − 1)th AP, the number grows
stochastically to n ¼ n−;m up to a time tsm , at which the
appearance of the mth AP leads to the fusion and release of
bm vesicles, resulting in a sudden decrease of SVs from
n−;m ¼ nþ;m þ bm to nþ;m.
We assume that docked vesicles may be released proba-

bilistically after an AP but do not otherwise detach.
Following the empirical literature [16,17,24,28,30], as men-
tioned above, the distribution of bm is Bðn−;m; prt ; bmÞ ¼�n−;m
bm

�
pbm
rt ð1 − prtÞn−;m−bm , where the release probability prt

is time dependent but saturates at long time. However,
n−;m itself is stochastic and is replenished as follows. We
assume M is the maximum number of available docking
sites, and that docking sites are refilled from the vesicle pool
at a rate proportional to the number of empty sites,

i.e., ktðM − nÞ [16,18], where kt is the time dependent
docking rate per empty site. The stochastic replenishment of
docked SVs from an initial nþ;m−1 to some n in time t is
described by the conditional distribution pðn; tjnþ;m−1Þ.
Exact recursive relations may be written between the

probabilities Pmþðnþ;m; tsmÞ and Pm−1þ ðnþ;m−1; tsm−1
Þ for the

SV numbers nþ;m and nþ;m−1 after mth and (m − 1)th AP
respectively, similar to ideas in [33,34]:

Pmþðnþ;m; tsmÞ ¼
X

nþ;m−1;bm

Bðnþ;m þ bm; prt ; bmÞ

× pðnþ;m þ bm; tsm jnþ;m−1Þ
× Pm−1þ ðnþ;m−1; tsm−1

Þ: ð1Þ

Similarly, the probability of SV number n−;m just prior to
the mth AP, namely Pm

−ðn−;m; tsmÞ, is given by

Pm
−ðn−;m; tsmÞ ¼

X
nþ;m−1

pðn−;m; tsm jnþ;m−1Þ

× Pm−1þ ðnþ;m−1; tsm−1
Þ: ð2Þ

The nested nature of the Eqs. (1) and (2) depending on the
full history of successive ISIs make problems of these type
analytically very challenging and various computational
methods have been developed in this context [33,34,36]. In
this Letter we focus on the long time limit after sustained
AP stimulation, when interestingly we find that the
problem becomes analytically tractable.
Whether the input stimulation is a deterministic AP

train [39] or a stochastic one [40], on sustained stimulation
(i.e., the index m of AP and time is large), a steady
state [7,16,24,38,39] is expected to be reached. In this
limit, the mean quantal content hbi becomes a constant,
and its distribution QssðbÞ becomes time independent.
Analytically obtaining QssðbÞ is the main aim of this
work. Note that in this t → ∞ limit, the time-varying
calcium concentration-dependent replenishment rate kt and
release probability prt saturates to constant values k ¼ k∞
and pr ¼ pr∞—see representative curves in Sec. 1 of the

FIG. 2. The time variation of docked SV number nðtÞ is shown
as a function of time over two successive ISIs between the m − 2
and m − 1 and mth APs. The respective numbers before an
AP (n−) after an AP (nþ) and quantal content (b) are shown.
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Supplemental Material (SM) [43] following a model of
Ref. [11], and the corresponding time varying hbi reaching
a steady state. As we solely focus on the steady state, the
only two neuronal model parameters we assume in our
calculations are k and pr. We will show that these can be
estimated by comparing experimental data with exact
moments of quantal content that we derive.
We study stochastic AP stimulations but assume that

the ISIs are uncorrelated, i.e., the joint distribution of
two intervals tsm and tsn , namely g2ðtsm ; tsnÞ ¼ gðtsmÞgðtsnÞ.
Under this assumption, for any general stochastic ISI
distribution gðtsÞ, in steady state, it may be shown (see
Appendix A) that the Eqs. (1) and (2) become

PssþðnþÞ ¼
X
n0þ;b

Z
∞

0

dtsgðtsÞBðnþ þ b; pr; bÞ

× pðnþ þ b; tsjn0þÞPssþðn0þÞ ð3Þ

Pss
− ðn−Þ¼

X
n0þ

Z
∞

0

pðn−; tsjn0þÞPssþðn0þÞgðtsÞdts: ð4Þ

At long times, m is large. Therefore, we have used
nþ;m−1 ¼ n0þ, nþ;m ¼ nþ, n−;m ¼ n−, and bm ¼ b as they
become history independent random variables. For the
case of common experimental interest of fixed ISIs we need
to set gðtsÞ ¼ δðts − TÞ. The conditional distribution
pðn; tjn0þÞ for n0þ to become n in time t ¼ ts, used in
Eqs. (3) and (4), satisfy the master equation [44]

∂pðn; tjn0þÞ
∂t

¼ k½M − ðn − 1Þ�pðn − 1; tjn0þÞ
− k½M − n�pðn; tjn0þÞ: ð5Þ

This equation can be solved using the generating function
Fðq;tjn0þÞ¼

P
n q

npðn;tjn0þÞ (see Appendix B for details),
and the solution is

pðn; tjn0þÞ ¼
�
M − n0þ
n− n0þ

�
ð1− e−ktÞn−n0þe−½kðM−nÞ�t: ð6Þ

The true steady state distribution of quantal content
QssðbÞ is obtained by summing its binomial distribution at
every release step over all possible docked random SV
numbers n−,

QssðbÞ ¼
XM
n−¼0

Bðn−; pr; bÞPss
− ðn−Þ: ð7Þ

Thus, to calculate QssðbÞ, we need the steady state
distribution Pss

− ðn−Þ, and in turn PssþðnþÞ because of the
relationships in Eqs. (3) and (4). The Eq. (3) has PssþðnþÞ on
both sides. Through a lengthy calculation (see details in
Sec. 2 of SM [43]), we show that the corresponding

generating function, namely FþðqÞ ¼
P∞

nþ¼0 q
nþPssþðnþÞ

can be obtained using the knowledge of Fðq; tjn0þÞ, the
generating function for pðn; tjn0þÞ obtained in Eq. (B2).
This generating function leads us to two other relevant
generating functions, F−ðqÞ ¼ P∞

n−¼0 q
n−Pss

− ðn−Þ and
FbðqÞ ¼

P∞
b¼0 q

bQssðbÞ, corresponding to the distribu-
tions Pss

− ðn−Þ and QssðbÞ. Since the three stochastic
variables, n−; nþ, and b, are related to each other through
the relationship nþ ¼ n− − b, the different generating
functions are also related (see details in Sec. 3 of SM [43]):

F−ðqÞ¼Fþ

�
q−pr

1−pr

�
and FbðqÞ¼Fþ

�
prðq−1Þ
1−pr

þ1

�
:

ð8Þ

Once we know FbðqÞ, we may obtain the desired distri-
bution QssðbÞ (see Sec. 3 of SM [43]) using the standard
relationship QssðbÞ ¼ ð1=b!Þ½∂bFbðqÞ=∂qb�jq¼0 [44]:

QssðbÞ¼
X∞
n¼0

�
n

b

�
ð−1Þn−b

�
M

n

�
pn
r

1− ð1−prÞnLn

�
ϕn;0

þ
X

fSðn−1Þg

ð1−prÞ
P

i
miϕn;mz

ϕmz;mz−1
� � �ϕm1;0Q

i

�
1− ð1−prÞmiLmi

�
�
; ð9Þ

where ϕn;m ¼ðnmÞ
R
∞
0 dtsgðtsÞe−nktsðekts −1Þn−m and Ln ¼R∞

0 dtsgðtsÞe−nkts .
In Eq. (9), fSðn−1Þg denotes the set of all the subsets

Sðn−1Þ ¼fmig¼ðmz;mz−1;…;m1Þwithmi∈ð1;2;…;n−1Þ
such that mz > mz−1 > � � � > m1. Although the upper limit
of the sum is shown up to ∞, due to the combinatorial
factor ðMn Þ, n never exceeds M. Note that for an arbitrary
gðtsÞ there is no reason to expect that QssðbÞ in Eq. (9)
would reduce to a binomial distribution.
The closed form expressions of the mean and CV2 ¼

ðhb2i=hbi2Þ − 1 of the distribution in Eq. (9) (see Sec. 3 in
SM [43]) are

hbi ¼ Mprϕ1;0

1 − ð1 − prÞL1

; and

CV2 ¼ ϕ1;0 þ prL1

Mϕ1;0

� ðM − 1Þ
1 − ð1 − prÞ2L2

�
ϕ2;0

�
1þ prL1

ϕ1;0

�

þ ð1 − prÞϕ2;1

�
þ 1

pr

	
− 1: ð10Þ

As fixed frequency trains are commonly used in experi-
ments, and Poisson-like statistics have been observed in the
ISI distribution from neurons in the visual cortex [41,42],
explicit expressions ofQssðbÞ in these two special cases are
desirable. For constant ISI ts ¼ T, also called a fixed
frequency f ¼ 1=T AP train, we have gðtsÞ ¼ δðts − TÞ.
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In Sec. 4(a) in SM [43], we shown that QssðbÞ in this case
reduces to a binomial distribution,

QssðbÞ ¼ BðM;prb; bÞ; ð11Þ

where prb ¼
ð1 − e−kTÞpr

1 − ð1 − prÞe−kT
: ð12Þ

The exact binomial distribution has the parametersM and a
modified release probability prb given by Eq. (12), which
depends on the interval T and growth rate k apart from pr.
We do kinetic Monte Carlo (KMC) simulations (Sec. 5 in
SM [43]) to verify our analytical predictions. In Fig. 3(a),
we see that the exact distributionQssðbÞ [Eq. (11)] matches
perfectly the data from KMC simulations of this process
(see the red symbols). Note that Eq. (11) is not equivalent
to an approximate binomial often used in the litera-
ture Bðhn−i; pr; bÞ. In fact we calculate exactly hn−i ¼
Mprb=pr [see Sec. 4(a) in SM [43] ], and use this to plot
Bðhn−i; pr; bÞ (dashed line) in Fig. 3(a), which deviates
significantly. In the large T limit, from Eq. (12), prb → pr
(the release probability in the steady state), as one would
expect. The mean and CV2 of b from Eq. (11) are

hbi ¼ Mprb and CV2 ¼ ð1 − prbÞ
Mprb

; ð13Þ

For Poisson AP train, the ISIs are exponentially distrib-
uted with gðtsÞ ¼ f0e−f0ts . Obtaining ϕn;m and Ln in this
case, Eq. (9) simplifies [see details in Sec. 4(b) in SM [43] ]
to yield the following quantal content distribution:

QssðbÞ¼
X∞
n¼0

ð−1Þn−b
nCb

MCnn!ðkprÞnQ
n
i¼1ðf0þki− ð1−prÞif0Þ

: ð14Þ

The corresponding mean and CV2 for the Poisson case [see
Sec. 4(b) in SM [43] ] are

hbi ¼ Mkpr

kþ f0pr
and

CV2 ¼ 1

M

�
2ðM − 1Þðkþ f0prÞ
2kþ f0prð2 − prÞ

þ f0
k
−M þ 1

pr

�
: ð15Þ

Note that this distribution is no longer a binomial. In Fig. 3(b)
we see that the exact formula (solid line) forQssðbÞ [Eq. (14)]
matches very well with the data obtained from KMC
simulation (in symbols). Just to demonstrate that a binomial
approximation would be completely inadequate in this
Poisson case, we plot Eq. (11) with T ¼ 1=f0 where f0 is
the Poisson rate—the deviation is stark. In real biological
synapses, ISIs may have correlations, i.e., tsm may depend on
previous tsj (with j < m). In Sec. 6 of SM [43], we study two
models with correlated ISI using KMC, and show that for
small correlations, theQssðbÞ do not deviate drastically from
Eq. (14), implying its practical usefulness.
Experimental verification and estimation of model

parameters.—We performed electrophysiological experi-
ments in acute brainstem slices of juvenile mice (postnatal
day 11) at MNTB-LSO synapses (see Appendix C-I).
Neurons were stimulated with constant ISI at 100 Hz for
1 s. After 30 s rest period, this was repeated, and we
collected data from 20 repeats. The quantal content was
determined as the ratio of the peak amplitude of evoked
inhibitory postsynaptic currents to the current produced by
a single quantum (q) [pA/(pA/SV)]—details are in [45,46].
In Figs. 4(a) and 4(b), for two synapses (referred to as

synapse-1 and synapse-2, respectively), we plot the time-
varying fluctuating quantal contents for one history (in
blue), and average over 20 repeats (in red). In both neurons
themean quantal content reaches a steady state value beyond
0.8 s (see the yellow box). Thus between times 0.8 and 1 s
over 20 repeats, the sample size of quantal contents per
synapse was 400, which were used to plot the experimental
distributions (in green) in Figs. 4(c) and 4(d). We compare
this with the theory in the following way.
After the first AP (at 0 s), the quantal content b0 should

follow a binomial distribution BðM;pr0 ; b0Þ, since docking
sites should have maximal occupancy. From the 20
experimental histories, the mean and variance of b0 was
compared with that of BðM;pr0 ; b0Þ, to obtain M by
eliminating pr0 . Next we equate the experimental steady
state hbi [Figs. 4(c) and 4(d)] to the theoretical mean hbi ¼
Mprb [Eq. (13)], and determine the parameter prb. With
these M and prb, we plot the theoretical distributions
Eq. (11) for the two synapses against the experimental ones
in Figs. 4(c) and 4(d). To assess how well the distributions
match, the Kullback-Leibler divergence [47] was calculated
to be 0.034 and 0.041 and the mean squared error was
0.00023 and 0.00013 for synapse-1 and 2, respectively (see

FIG. 3. Steady state quantal content distributions for (a) fixed
AP arrival times (f ¼ 1=T ¼ 20 Hz), and (b) exponentially
distributed ISIs (rate f0 ¼ 20 Hz). The common parameters
are M ¼ 50, pr ¼ 0.5, k ¼ 2 s−1. The exact theoretical curves
(thick lines) match the KMC data (red symbols). In (a) an
approximate (see text) binomial distribution (dashed line) is
shown alongside the exact binomial. In (b) the binomial dis-
tribution of Eq. (11) with T → 1=f0 (dashed line) deviates from
the exact nonbinomial distribution.
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Appendix C-II). These low values show that the distribu-
tions match well, which is further corroborated by a
comparison of moments (Appendix C-II). Such a compar-
ative study of the full experimental and theoretical dis-
tributions is now also possible for stochastic inputs with
Poisson APs (using Eq. (14) or any other gðtsÞ (using
Eq. (9)) in future.
Note that the moments in the fixed ISI case depend on

the composite parameter prb [Eq. (13)] and not separately
on pr and k, so we cannot estimate them using moments of
the data. But if experimental data on frequency (f ¼ 1=T)
dependent hbi ¼ Mprb is available, and other parameters
are known, then k may be estimated. Published experi-
mental data in [39] gives hbi versus f, and kM and pr, for
three different neurons. By fitting Eq. (12) to the data in
these three cases, we estimate the respective k values (see
Appendix C-III).
For Poisson APs the model parameters pr and k may be

estimated by solving the theoretical moment formulas
[Eq. (15)] equated to the experimental values. This may
be done for any other ISI distributions gðtsÞ using Eq. (10).
To demonstrate the feasibility of the procedure, we generate
finite sized sample sets of quantal content through KMC
with Poisson APs. Comparing moments of such simulated
data with Eq. (15) we show (see Sec. 7 in SM [43]) that
estimates of pr and k converge reliably as the size of the
sample set goes beyond a few hundred.
Exact results are rare and desirable in biological con-

texts. Here, we analyze the basic model of synaptic trans-
mission between neurons applicable to all chemical

synapses. For any uncorrelated stochastic AP input, in
the steady state regime, we provide full exact general
distributions including moments, and show how experi-
mental data may be compared to theory and model
parameters may be estimated. The basic model does not
account for complexities revealed by recent research such
as feedback effects [48,49], vesicle priming [50], and
spatial heterogeneities [51,52]—incorporation of these in
future must rest upon a thorough analysis of the basic
model, which we have presented here.
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Appendix A: Self-consistent equation for the quantal
content distribution PssþðnþÞ in the steady state.—In
Eq. (1), the probability Pmþðnþ;m; tsmÞ after the mth AP is
related to Pm−1þ ðnþ;m−1; tsm−1

Þ after the (m − 1)th AP, by
summing over all paths that take nþ;m−1 to nþ;m. Each
path involves the initial probability Pm−1þ ðnþ;m−1; tsm−1

Þ,
the probability pðnþ;m þ b; tsm jnþ;m−1Þ for nþ;m−1 to rise
to nþ;m þ b in time tsm , and finally the probability for the
number nþ;m þ b of docked vesicles to reduce to nþ;m by
AP triggered vesicle release, with the associated quantal
content bm¼b distributed binomially as Bðnþ;mþb;pr;bÞ.
Wemay follow the same procedure forPm−1þ ðnþ;m−1;tsm−1

Þ
and so on, and build up a hierarchy of relations for any
interval between two APs. The problem remains hard to
solve as result for every interval depends on the history of the
previous interval.We are particularly interested in the steady
state attained after several APs appear, i.e., m ≫ 1 and the
output quantal contents statistically stabilize. We integrate
Eq. (1) over the joint probability distribution g2ðtsm ; tsm−1

Þ of
tsm and tsm−1

. We get

Z
∞

0

Z
∞

0

dtsmdtsm−1
g2ðtsm ; tsm−1

ÞPmþðnþ;m; tsmÞ

¼
Z

∞

0

Z
∞

0

dtsmdtsm−1
g2ðtsm ; tsm−1

Þ

×
X

nþ;m−1;b

pðnþ;m þ b; tsm jnþ;m−1Þ

× Bðnþ;m þ b; pr; bÞPm−1þ ðnþ;m−1; tsm−1
Þ: ðA1Þ

If the interspike intervals (ISIs) are not correlated, we
would have g2ðtsm; tsm−1

Þ ¼ gðtsmÞgðtsm−1
Þ, where gðtsmÞ and

gðtsm−1
Þ are the normalized distributions of tsm and tsm−1

,
respectively. Under this assumption,

FIG. 4. The experimental mean quantal content hbi is plotted
(in red) against time for (a) synapse-1 and (b) synapse-2. The blue
curves represent one of the 20 experimental realizations of the
quantal content. The yellow box shows the part of data we
considered to be in the steady state for plotting the experimental
histograms of quantal content in (c) and (d) (in green). In (c) and
(d), the parameter values used for the exact theoretical distribu-
tions (black curves) for synapse-1 are M ¼ 50 and prb ¼ 0.345
and for the synapse-2 are M ¼ 98 and prb ¼ 0.266.
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Z
∞

0

Z
∞

0

dtsmdtsm−1
gðtsmÞgðtsm−1

ÞPmþðnþ;m; tsmÞ

¼
Z

∞

0

Z
∞

0

dtsmdtsm−1
gðtsmÞgðtsm−1

Þ

×
X

nþ;m−1;b

pðnþ;m þ b; tsm jnþ;m−1Þ

× Bðnþ;m þ b; pr; bÞPm−1þ ðnþ;m−1; tsm−1
Þ: ðA2Þ

This further simplifies to

Z
∞

0

dtsmgðtsmÞPmþðnþ;m; tsmÞ

¼
X

nþ;m−1;b

Z
∞

0

dtsmgðtsmÞ

× pðnþ;m þ b; tsm jnþ;m−1ÞBðnþ;m þ b; pr; bÞ

×
Z

∞

0

dtsm−1
gðtsm−1

ÞPm−1þ ðnþ;m−1; tsm−1
Þ: ðA3Þ

In the long time limit, the steady state probability
distribution of the vesicle number PssþðnþÞ ¼R
∞
0 dtsmgðtsmÞPmþðnþ;m; tsmÞ, independent of the exact his-
tory of the spike train. Dropping the subscripts m (in the
steady state), and setting tsm ¼ ts and nþ;m−1 ¼ n0þ,
Eq. (A3) leads to Eq. (3).
Following similar line of reasoning, one may derive

Eq. (4) from Eq. (2).

Appendix B: Probability distribution of docked vesicle
number n between two consecutive action potentials.—In
the interval t to tþ dt, the number of docked vesicles
increases from n − 1 to n with the probability
kðM − ðn − 1ÞÞdt, and hence the master equation for
pðn; tjn0þÞ is given by Eq. (5). The generating function
Fðq; tjn0þÞ ¼ P

n q
npðn; tjn0þÞ, where n0þ ≤ n ≤ M.

Otherwise, pðn; tjn0þÞ ¼ 0 if n0þ falls outside this range.
Multiplying Eq. (5) by

P
n q

n on both sides, we get an
equation for F:

∂F
∂t

þ kqðq − 1Þ ∂F
∂q

¼ kMðq − 1ÞF: ðB1Þ

Equation (B1) is solved by the method of Lagrange
characteristics to yield

Fðq; tjn0þÞ ¼ qM
�
1 −

ðq − 1Þ
q

e−kt
�
M−n0þ

: ðB2Þ

Doing a binomial expansion of Eq. (B2) and relabeling
nþ n0þ → n we get

F ¼
XM
n¼n0þ

�
M − n0þ
n − n0þ

�
qnð1 − e−ktÞn−n0þðe−ktÞM−n: ðB3Þ

Then we compare Eq. (B3) with the definition of F and
obtain pðn; tjn0þÞ as given by Eq. (6) in the text.

Appendix C: Details on our experiments, theory-
experiment comparison, and comparison with published
data.—I: The fast auditory MNTB-LSO synapses
consist of inhibitory glycinergic inputs from the medial
nucleus of the trapezoid body (MNTB) to neurons in the
lateral superior olive (LSO) and are known for
maintaining reliable interneuronal communication even
during prolonged high-frequency stimulation [46,53]. We
refer the reader to the Methods section of Ref. [46] for
details on the slice preparation and details of whole-
cell patch-clamp recordings. The stimulation protocol
consisted of repetitive tetanic AP bursts (100 Hz, 1 s) that
were given 20 times. A 30-s rest period was introduced
between repeats to allow for recovery from short-term
depression.
II: We now discuss how we compare the full exper-

imental distribution of quantal content with that of our
theory after matching their means. Denoting the exper-
imental quantal content distribution as QexðbÞ and given
that the theoretical is QssðbÞ, we use the Kullback-Leibler
divergence (KL) as a measure of closeness of the two
as KL ¼ P

b Q
ssðbÞ lnðQssðbÞ=QexðbÞÞ [47]. The second

measure of closeness is the mean square error:
ð1=NÞPN

b¼1½QexðbÞ −QssðbÞ�2, such that N spans over
whole range of b of the experimental data. We have used
these two quantities to study the data in Figs. 4(c) and 4(d)
in the main manuscript. Their values (as reported in the
main text) in these cases turned out to be quite low,
indicating that theory matches well with experiments.
Denoting nth moment as μn ¼ hbni, the respective

moments of the theoretical and experimental distributions
[in Figs. 4(c) and 4(d)] for the two synapses are compared
in the table below.

Synapse-1 Synapse-2

Theory Experiment Theory Experiment

μ2j 300 299 703 700
μ3j 5508 5407 19 434 19 128
μ4j 104 067 100 590 549 794 533 122

III: Here, we compare our theory with published
data [39] and demonstrate estimation of a model parameter
in the following way. For fixed ISI, the parameter prb
associated with the binomial distribution is given by
Eq. (12). Hence the mean quantal content hbi ¼ Mprb
follows a particular dependence on the frequency of
stimulation f ¼ 1=T. Experimental data for hbi as a
function of f is available from Ref. [39] for three different
synapse types: two hippocampal (CA3-CA1 and EC-DG)
and one auditory (MNTB-LSO). The evoked postsynaptic
currents were converted to hbi using appropriate quantal
sizes. For each of the three synapse types, the values of pr
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and the maximum vesicle docking rates kM are exper-
imentally known [39]. Since we do not know the values of
M and k separately, we do a one parameter fit with varying
k to get the least square difference between the theoretical
and experimental curves of hbi versus f. The best fit
values estimated in this way of the model parameter
k ¼ 0.0523 s−1, 2.058 s−1, and 3.816 s−1 respectively
for the three neurons (see caption of Fig. 5 for values of
M). The plots of the theoretical hbi with these estimated
values (solid lines) are shown against the experimental data
as a function of f. The extent of match validates Eqs. (11)
and (12) for the frequency dependence of the mean quantal
content in the steady state. At the same time, the procedure
demonstrates a way of estimating the parameter k inde-
pendently, which is hard using the formula for moments
directly (see main text), for the constant ISI case.
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