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This work examines self-mixing in active nematics, a class of fluids in which mobile topological defects
drive chaotic flows in a system comprised of biological filaments and molecular motors. We present
experiments that demonstrate how geometrical confinement can influence the braiding dynamics of the
defects. Notably, we show that confinement in cardioid-shaped wells leads to realization of the golden
braid, a maximally efficient mixing state of exactly three defects with no defect creation or annihilation. We
characterize the golden braid state using different measures of topological entropy and the Lyapunov
exponent. In particular, topological entropy measured from the stretching rate of material lines agrees well
with an analytical computation from braid theory. Increasing the size of the confining cardioid produces a
transition from the golden braid, to the fully chaotic active turbulent state.
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Active matter represents a class of materials in which
individual subunits consume locally available energy to
create coherent motion at larger scales. They are important
materials for elucidating nonequilibrium behavior and for
exhibiting features representing, or reminiscent of, biologi-
cal function. Examples of active matter exist across length
scales, from swarms of animals, e.g., fish [1], birds [2],
or ants [3], to aggregates of eukaryotic cells [4–6], bacteria
[7–9] or synthetic particles [10–12].
In addition to its importance in the biological sciences,

active matter has emerged in recent years as a new
paradigm for materials design, with the creation of novel
phases with nematic order using biological molecules
[13–19]. Despite a high degree of interest from the physical
science perspective, the understanding of fluid dynamics in
these active phases is still very limited. This Letter focuses
on a well-known active fluid, first pioneered by the Dogic
group [14]. The active material is formed from an aqueous
mixture of microtubules and clusters of kinesin molecular
motors, then confined to a two-dimensional (2D) layer.
Short, rodlike microtubules at high density in the 2D layer
give rise to nematic ordering. Powered by adenosine
triphosphate (ATP) hydrolysis, neighboring bundles of
microtubules slide parallel to each other through the action
of the kinesin motors. At certain points in the active fluid,
the nematic order may break down, producing voids as
centers for topological defects. These defects have the same
symmetry as those observed in traditional liquid crystals,
with topological charges of plus and minus one half. They
are created and annihilated in pairs of opposite charge, so
that total charge is conserved. The defects move around one
another in a typically complicated pattern termed active
turbulence. In a recent paper [20], we introduced the

framework that the positive defects act as virtual stirring
rods, generating a self-mixing fluid with chaotic advection.
The topological braiding of these rods about one another in
space-time determines the degree of stretching in the fluid.
Controlling the dynamics of active materials is a central

goal for the field, and various mechanisms have been
proposed for steering defects, such as spatially varying
the activity [21], the oil substrate thickness [22,23] and oil
type [24]. Since the material can be considered a self-
mixing fluid, stirred by autonomously moving defects,
controlling their braiding (stirring) pattern is a key goal. In
this Letter, we demonstrate how geometrical confinement
can influence the braiding dynamics of the defects. The key
result is that confinement in cardioid-shaped wells can
produce the “golden braid,” which is the braid of three
strands commonly used for braiding hair. It is a maximally
efficient mixing state of three defects, with no creation and
annihilation events, that maximizes topological entropy per
time step [25]. Topological entropy, a key measure of chaos
adopted from the nonlinear dynamics literature, is simply
the asymptotic exponential growth rate in the length of a
material curve, when passively advected in a 2D flow.
Reference [20] first applied topological entropy to the study
of active nematics and showed that topological entropy
resulted from “stirring” the system only by the positive
defects and that the entropy could be computed from the
braid type of the defect motion.
When confining an active nematic, the boundary geom-

etry is critical because it determines the relative number of
positive ðnþÞ and negative ðn−Þ defects in the system. The
boundary geometry is characterized by its topological
index, defined as the number of clockwise revolutions
made by the tangent vector as the boundary is traversed in
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the clockwise direction. For example, a circle, indeed any
smooth closed curve, has a topological index of þ1. Other
topological indices are possible if there are cusps in the
boundary, where there is a discontinuity in the curvature
(although the tangent vector remains continuous). Each
cusp pointing toward the interior (or exterior) adds þ1=2
(or −1=2) to the topological index of the boundary. The
cardioid (heart shape) in Fig. 1(a), for example, has
topological index þ3=2. The well-known Poincaré-Hopf
index theorem implies that the sum of the internal topo-
logical charges equals the topological index of the boun-
dary (assuming tangential alignment at the boundary).
Thus, inside a circular boundary, there must always be
two more þ1=2 charges than −1=2 charges, with the
minimal number of þ1=2 charges being 2.
Experimental results using circular confinement of

microtubule-based active nematics have been reported by
other groups [26,27]. However, the minimum number of
two defects was never observed. Reference [26] came
close, with two þ1=2 defects winding around one another
for long stretches of time. However, this two-defect steady
state was unstable, and a third defect would always be
created at the boundary and enter the system. This can be
understood as a consequence of the need to produce
topological entropy. Any braiding pattern of two stirring
rods generates zero topological entropy, which is incon-
sistent with the extensile nature of the microtubule system.
Thus, a third defect must ultimately be produced to create
topological entropy. This motivated us to work with the
cardioid, whose single interior cusp produces at least three
þ1=2 defects. Our passive control approach, based on
engineering the shape of the boundary, thus suffices to
ensure the minimum number of defects necessary to create
topological entropy. This enables the possibility of a planar
state with no defect creation and annihilation. A similar
topological argument applies to the well-known state of
four defects on a sphere. A sphere has topological index
þ2, and hence four defects is the minimum required by
topology and is also sufficient to generate topological
entropy [28]. Thus, this state need not exhibit creation
and annihilation events, as realized in Ref. [29].

Periodic defect motion was first predicted in simulation
[30] in a 1D channel with periodic boundary conditions.
This motion was approximately observed experimentally
with some defect creation and annihilation events [31].
We designed and constructed cardioid wells of varying

sizes to confine the active fluid into a 2D plane with
controlled boundary conditions [Figs. 1(b) and 1(c)]. (See
Supplemental Material for detailed cardioid shape [32].)
We first designed and printed a master mold [33], then used
the mold to produce cured polydimethylsiloxane (PDMS)
substrates. The PDMS substrates are plasma cleaned then
coated with an acrylamide polymer brush to promote
hydrophilicity and prevent nonspecific protein adhesion.
Active MIX (an aqueous solution containing motor
proteins [33]) is pipetted into the cardioid-shaped well,
and a layer of oil, approximately 2 mm thick, added on top.
For these experiments, guanosine-5’-[(α, β)-methyleno]
triphosphate (GMPCPP) microtubules are used. GMPCPP
is an analog of guanosine-5’-triphosphate and produces
short, more rigid microtubules suitable for forming
the nematic state. Figure 1(c) shows a schematic of the
experimental design in which a nematic layer of condensed
microtubules is formed. For detailed methods seeMemarian
et al. [33]. To visualize microtubule flows, 10 mol %
fluorescent Alexa 488 labeled tubulin is incorporated in
the polymerization step. All imaging was performed with a
Leica epifluorescencemicroscope and an ORCA—Flash4.0
LTþ Digital CMOS camera (Hamamatsu, Inc.).
Figures 2(a)–2(e) show five snapshots of the active

nematic fluid confined in a cardioid. These images, and
Supplemental Material Video 1 [32], demonstrate the
persistence of three þ1=2 defects (colored dots), with
no additional creation or annihilation events. The tails on
each dot show the defects’ recent trail. Between frames (a)
and (c), the green and red defects have swapped positions,
and between frames (c) and (e), the blue and green
defects have swapped positions. We note that, for small
wells, the flow velocity decreased exponentially in time,
due to the depletion of ATP [Fig. S2(a) [32] ]. To correct
for this, we exponentially rescaled physical time t into an
effective time τ. That is, we measured τ with a clock that
slowed down at the same rate as the flow (see
Supplemental Material for details [32]). Figure 2(f) shows
the three full trajectories, forming a figure-eight pattern.
These trajectories are created by a double gyre [Fig. 2(g)],
with defects jumping back and forth between the
vortices. Figure 2(h) shows the space-time braiding of
the defects about one another. Importantly, this braid is
topologically identical to the golden braid [Fig. 2(i)].
Thus, when sufficiently confined to a cardioid, the system
naturally realizes the periodic state of maximal topo-
logical entropy per swap, among all possible dynamics of
three defects.
The golden braid dynamics suggests a nontrivial quan-

titative relationship. For a system stirred in the golden braid

FIG. 1. (a) The cardioid has a boundary topological charge of
3=2, as illustrated by the arrows. (b) SEM image of a PDMS
cardioid well before filling, bar = 200 μm. (c) Illustration of the
construction of the cardioid wells.
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pattern, the minimum topological entropy per swap is
provably hbraid ¼ logðϕÞ ¼ 0.481, where ϕ ¼ ð1þ ffiffiffi

5
p Þ=2

is the golden ratio [25]. Since there are no other obvious
sources of mixing beyond the three “rods” (i.e., defects),
this minimum might, in fact, be the full topological entropy
of the flow. Furthermore, stretching appears relatively
homogeneous throughout the fluid; there are, for example,
no coherent Lagrangian vortices that capture fluid for long
periods of time and inhibit mixing. We thus suspect that the
stretching rate of a typical material line over a finite
timescale (on the order of the defect swap time) will
average to logðϕÞ. To test this hypothesis, we measured
the exponential growth of the material line formed by the
microtubules lining the boundary of the cardioid together
with the material extruded into the cardioid interior at the
cusp [the bright curve folding back and forth in Figs. 2(a)–
2(e)]. We manually measured (in Fiji) the length of the
nematic contour from the cusp to a point of maximal
curvature near one of the three defects [Figs. 3(a)–3(c)].
We assumed that this point was passively advected
by the material. This length was then augmented by half
the perimeter of the cardioid. (The factor of one half is
because material is extruded from both sides of the cusp.)
Figure 3(g) plots the log of length versus time, with slope
1.91 × 10−3 s−1. Averaging over three such measurements,
we obtained the direct curve stretching estimate of topo-
logical entropy h̃ds ¼ ð1.76� 0.09Þ × 10−3 s−1 [Figs. S3
(a)–S3(d) [32] ]. The time per swap is measured to
be Tswap ¼ 260� 18 s, which yields a dimensionless

hds ¼ h̃dsTswap ¼ 0.457� 0.040. The key quantitative
result of this Letter is that hds is equal (within error) to
the analytical braid result hbraid ¼ 0.481.
As an alternate approach to computing topological

entropy, we measured the compression of nematic con-
tours against the cardioid boundary. We recorded the
distance of a bright nematic contour from the boundary as
a function of time [Figs. S4(a) and S4(b) [32] ]. This
distance decays exponentially with a rate that should equal
the exponential stretching rate of a material curve, due
to the incompressibility, on average, of the material.
For three such measurements, we obtain the (dimension-
less) mean hc ¼ 0.445� 0.044, in good agreement with
hds ¼ 0.457� 0.040.
We compute two more measures of chaos, both

derived from the particle image velocimetry (PIV) velocity
field [34]. The first of these uses the velocity field to
passively advect an arbitrary initial line over a given time
interval. Figures 3(d)–3(f) show the corresponding
snapshots. The measured (dimensionless) stretching rate
[Fig. 3(h)] is hPIV ¼ 0.286� 0.024, which is notably
smaller than hbraid. This is because the PIV velocity does
not fully capture the physical velocity, but tends to
underestimate it, an effect well known for active nematics
[35,36]. The numerically advected curve is thus not as
well stretched as the physical curve. By the third frame
[Fig. 3(f)], the advected curve (yellow) follows the nematic
contours fairly well in the upper half of the cardioid, but not
in the lower half [compare to Fig. 3(c)].

FIG. 2. Active fluid confined to a cardioid. (a)–(e) Fluorescence microscope images showing the dynamics of the active fluid confined
to a cardioid. Five different time points from a video are shown (see Supplemental Material Video S1 [32]) in which the microtubules are
fluorescently labeled. Three defects are present in all frames and their motion is tracked as shown by the red, green, and blue markers.
(f) Defect trajectories from the same video are overlaid onto a single frame. Scale bar is 100 μm. (g) Time-averaged vorticity map for the
complete video showing the double gyre flow structure, with positive (red) and negative (blue) vorticities mapped. Max vorticity set to 1.
(h) Braid diagram for the defect trajectories and (i) illustration of braid diagram for the golden braid.
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The final measure of chaos is the Lyapunov exponent,
computed as λ̃ ¼ −hn⊥ · ð∇uÞn⊥i, where n⊥ is a unit
vector perpendicular to the unit director field n (extracted
from the images), u is the (PIV) velocity field, and the
brackets denote the average over space and time (see
supplement to Ref. [20] for the derivation and underlying
assumptions). We obtain λ ¼ 0.296� 0.017 in dimension-
less units. [As a check, we compute λ ¼ hn · ð∇uÞni ¼
0.304� 0.017, which should be—and is—the same due to
net incompressibility.] The four measures of chaos are
graphically represented in Fig. 4(a) in blue and compared to
hbraid (black horizontal line). Details of the statistical
analysis can be found in Supplemental Material [32].
Note that both PIV-derived quantities are equal to one
another (within error). A mathematical theorem in dynami-
cal systems theory states that the topological entropy is
always greater than or equal to the Lyapunov exponent (for
2D flows). The fact that both are nearly equal here
demonstrates the homogeneous nature of mixing through-
out the fluid. Thus, despite the PIV technique under-
estimating the fluid velocity, the relative magnitudes of
the PIV-derived topological entropy and Lyapunov expo-
nent are correct.
We recorded a second, larger cardioid in the same frame

as the original [see inset of Fig. 4(a) and Supplemental

Material Video 2]. Its flow is faster and closely mimics the
golden braid of the smaller cardioid. However, it is not as
faithful, with a few defect pairs being created and
destroyed. This highlights the need to sufficiently confine
the material to achieve the exact golden braid pattern.
We repeat the stretching [Figs. S3(e)–S3(h) [32] ], com-
pression [Figs. S4(c) and S4(d) [32] ], and Lyapunov
exponent analyses, and, when scaled by the swap time
Tswap ¼ 102� 4.9 s, the results agree (within error) with
the smaller cardioid [red data in Fig. 4(a)]. However, update
hds ¼ 0.438� 0.021 is slightly lower than the golden braid
result. This may be due to imperfections in the state, in
particular, the occasional creation of defects at the boun-
dary that should be taken into account to compute the full
stretching rate of the boundary curve.

FIG. 3. Representative fluorescence images of active fluid
confined to a cardioid at different time points (see Supplemental
Material Video S1 [32]), overlaid with (a)–(c) a manually tracked
stretching curve and (d)–(f) a computationally stretched and
advected band. Bar = 100 μm. (g) Semilog plot showing the
length of the manually tracked fluid stretching curve in (a)–(c) as
a function of time. (h) Semilog plot of the length of the stretched
and advected band in (d)–(f) as a function of time.

(a)

(b)

No. 9

No. 1
No. 2

No. 5 No. 2

No. 3
No. 1

No. 1

No. 2

FIG. 4. (a) Four nondimensionalized measures of chaos for two
cardioids (labeled 1 and 2) compared to the braid-theoretic
prediction (horizontal line). Inset: snapshot of the cardioids
imaged on the same substrate (see Supplemental Material Video
S2 [32]). Scale bar is 200 μm. (b) Ratio of hhωitirmsr to hhωirmsrit
plotted for several cardioids of increasing confinement ratio. The
vertical line separates those cardioids with a double gyre structure
(right) from those without (left). Inset: we show time-averaged
images of vorticity for several data points, see also Supplemental
Material Videos S3 and S4 [32].
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We obtained data from a series of progressively larger
cardioids. The number of defects quickly increased and
defect creation and annihilation events proliferated.
However, the double gyre structure was quite persistent,
even when many defects were present. Figure 4(b) shows
insets of the integrated vorticity for several examples (see
Supplemental Material videos for the labeled inset images
1–3 and 9 [32]). The images are arranged from left to right
with increasing confinement, as measured by the ratio of
active length to cardioid width. (Here, the active length is
measured as the correlation length of the director field. See
Supplemental Material for details [32].) The original exam-
ple (Figs. 2 and 3) is furthest to the right, but all four of the
rightmost images show a clear double gyre structure
with prominent positive (blue) and negative (red) vorti-
city domains in the center. However, the leftmost, least
confined cardioid shows no coherent pattern to the vorticity.
Figure 4(b) also plots the ratio of hhωitirmsr to hhωirmsrit,
where the former is the rms spatial average of the direct time-
averaged vorticity and the latter is the direct time average of
the rms-averaged vorticity. The direct time average of
vorticity measures the persistence of vortices in the same
location. It goes to zero when vortices meander about. A
clear jump in the vorticity ratio occurs at the blue vertical
line, demarcating the transition to the persistent double gyre
flow. These results suggest three domains of behavior:
strong confinement, when the dynamics closely follows
the golden braid; medium confinement, when the golden
braid breaks down, but the double gyre is still present; and
weak confinement, when the double gyre breaks down and
the fully active turbulent state emerges.
In summary, we have demonstrated that by engineering a

confining boundary to include a cusp, it is possible to
realize the spontaneous self-driven golden braid state in an
active nematic flow. The golden braid is a maximally
efficient mixing state of exactly three defects with no
creation or annihilation events. Exploring different mea-
sures of chaotic advection, we demonstrate that the
stretching rate of material lines in the active fluid agrees
well with the expected analytical computation from braid
theory. We further demonstrate via the vorticity that
increasing the size of the confining cardioids produces a
clear transition from the double gyre—necessary for the
golden braid state—to the fully chaotic active turbulent
state. These results are significant because they demon-
strate the robust connection between fluid mixing theory
and active nematics, reinforcing the concept that defects act
as virtual stirring rods and that those defects can be
represented as a braid. Demonstration of the golden braid,
a unique periodic mixing state, opens up new possibilities
for more exquisite passive control of motile defects using
boundary topology and microfluidics.
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