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Fractional charges of anyons can be extracted from shot noise in two ways. One can use either the
autocorrelation noise of the current in one drain or the cross-correlation noise between two drains on the
two sides of the device. The former approach typically overestimates the charge. This may happen due to
upstream edge modes. We propose a mechanism for the excess autocorrelation noise without upstream
modes. It applies to systems with multiple copropagating edge modes and assumes that the noise is
measured at a low but nonzero frequency.
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Fractional charge has been recognized as a key feature of
the fractional quantum Hall effect (FQHE) since the early
days of the field [1,2]. The most successful experimental
technique to probe fractional charges uses shot noise [2–8].
It helped observe anyons of charges e=3, e=4, e=5, and
e=7. In addition, noise is a sensitive measure of anyon
statistics [9–13] and can be used to distinguish between
different ν ¼ 5=2 candidate states [14]. The technique is
implemented by creating a point contact between two
FQHE edges (Fig. 1) and measuring the low-frequency
current noise at an angular frequency ω ∼ 107 Hz. At a low
current, the noise is expected to be proportional to the
charge of the tunneling quasiparticle.
This agrees with experiments at higher temperatures

T ∼ 100 mK. At low temperatures, T ∼ 10 mK, the
observed charge is often higher than the anyon charge
predicted by theory [2,13,15,16]. This typically happens in
states with topologically protected upstream edge modes,
such as the ν ¼ 2=3 [16,17] and ν ¼ 3=5 states [18]. The
discrepancy between theory and experiment may be
explained by the effect of upstream modes excited at the
tunneling contact in tunneling events [16,17]. They carry
energy back to the current source and generate additional
noise by heating the source. This explanation was tested by
comparing the autocorrelation noise in one drain (Fig. 1)
with the cross-correlation noise between two drains [16] at
ν ¼ 2=3. In agreement with the above physical picture,
excess noise was only seen in autocorrelations of the
current, and a correct quasiparticle charge was extracted
from the cross-correlation noise.
Explaining the observed excess shot noise [15] at the

filling factor 2=5 is harder since no topologically protected
upstream modes exist at that filling factor. Nevertheless, the
same phenomenology [16] was observed at that filling
factor as at ν ¼ 2=3. Nontopological modes may emerge
from edge reconstruction at any filling factor [19].

However, they decay rapidly with the distance and were
observed on shorter scales [20,21] than the propagation
distance ∼50 μm on the 2=5 edge [16]. Besides, similar
edge-reconstruction physics is expected at the nearby
filling factor 1=3, where excess noise was not observed
in either cross- or autocorrelation experiment [13,16]. It is
thus of interest to find a mechanism of excess-noise
generation in the absence of upstream modes. We propose
such a mechanism in this Letter.
Three ingredients are essential for the mechanism. First,

we need two or more downstream modes of different
velocities. Second, the mechanism requires tunneling
between downstream channels but assumes that, with a
possible exception of the region near the tunneling contact,
the equilibration length between the channels is longer
than the thermal length. Finally, it is crucial that the
experiment is performed at a low but nonzero frequency
ω. These conditions are consistent with the filling factor
ν ¼ 2=5 but do not apply at ν ¼ 1=3, where only one
downstream mode exists. They also do not apply at ν ¼ 2,
where spin conservation suppresses tunneling between the
two edge channels with the up and down spin orientations,
and where no experimental evidence of excess noise has
been reported.
With the above ingredients present, the tunneling current

through the point contact generates Joule heat. This results
in excess thermal noise in the downstream channels. The
effect is only present with more than one channel since
otherwise, charge conservation blocks noise generation.
With more than one channel, charge conservation ensures
that the sum of the heat-induced fluctuating charge currents
in all channels remains zero. At zero frequency, this would
be the end of the story. At a low but nonzero frequency, we
still expect that the heat-induced charge current densities
sum to zero over all channels near the point contact at any
moment in time. Yet, the sum is nonzero near the drain due
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to different propagation times along the channels. This
explains excess autocorrelation noise. Since heat-induced
currents are uncorrelated on the two sides of the point
contact, no excess cross-correlation noise is generated.
Below, we start with a discussion of the normal edge

modes at ν ¼ 2=5. We then estimate the magnitude of the
heating effect and introduce a model for the calculation of
noise. We finish with numerical estimates and a discussion
of possible implications and experimental tests of the
mechanism.
The 2=5 state [22] is a daughter state of the Laughlin

state at ν ¼ 1=3. It has two interacting copropagating edge
modes. The outer edge channel separates filling factors 0
and 1=3 and carries the linear charge density ρ1=3 ¼
e∂xϕ1=3=2π, where ϕ1=3 is a Bose field. The inner channel
separates ν ¼ 1=3 from ν ¼ 2=5 and carries the linear
charge density ρ1=15 ¼ e∂xϕ1=15=2π. Quasiparticles of
charge e=5 tunnel between the inner channels of the
upper and lower edge at the point contact, Fig. 1. There
are two equally relevant quasiparticle operators: Ψ1=5 ¼
expð3iϕ1=15Þ and Ψ ¼ Ψ1=5Ψ1=3 ¼ expðiϕ1=3 − 2iϕ1=15Þ.
The former operator creates a quasiparticle on the inner
edge, while the latter creates a quasiparticle of charge e=5
on the inner edge via the action of Ψ1=5 and moves charge
e=3 between the outer and inner edge channels via the
action of Ψ1=3 ¼ expðiϕ1=3 − 5iϕ1=15Þ.
It is convenient to switch to the charge mode ϕc ¼

ϕ1=3 þ ϕ1=15 and the neutral mode ϕn ¼ ϕ1=3 − 5ϕ1=15.
The charge current jðx; tÞ ¼ e∂tϕc=2π. The Lagrangian

density on the left-moving lower edge is

L ¼ 1

4π

�
5

2
∂tϕc∂xϕc þ

1

2
∂tϕn∂xϕn −

5

2
vcð∂xϕcÞ2

−
1

2
vnð∂xϕnÞ2 − 2Δ∂xϕc∂xϕn

�
; ð1Þ

where vc and vn are the mode velocities and Δ is the
intermode interaction. We expect that [23] vc > vn ∼ Δ.
Next, we introduce the normal modes ϕ1;2 defined as

ϕi ¼
� ffiffiffi

5
p

ξ1i ðγÞϕc þ ξ2i ðγÞϕn

�
=

ffiffiffi
2

p
; ði ¼ 1; 2Þ; ð2Þ

where ξ11ðγÞ ¼ −ξ22ðγÞ≡ cosðγÞ, ξ12ðγÞ ¼ ξ21ðγÞ≡ sinðγÞ,
and

tan 2γ ¼ 4Δffiffiffi
5

p ðvc − vnÞ
: ð3Þ

The normal modes diagonalize the Hamiltonian and com-
mute with each other so that the Lagrangian density
becomes

L¼ 1

4π
½∂tϕ1∂xϕ1þ∂tϕ2∂xϕ2−v1ð∂xϕ1Þ2−v2ð∂xϕ2Þ2�; ð4Þ

where v1 ¼ ðvccos2γ − vnsin2γÞ= cosð2γÞ and v2 ¼
ðvn cos2 γ − vc sin2 γÞ= cosð2γÞ. Both normal modes carry
charge since ϕc¼ ffiffiffiffiffi

ν1
p

ϕ1þ ffiffiffiffiffi
ν2

p
ϕ2, where ν1¼ð2cos2 γÞ=5,

ν2 ¼ ð2 sin2 γÞ=5. Hence, the total charge current Iðx; tÞ
reduces to the sum of the currents in the normal modes,

I ¼ I1 þ I2 ¼
ffiffiffiffiffi
ν1

p
e∂tϕ1

2π
þ

ffiffiffiffiffi
ν2

p
e∂tϕ2

2π
: ð5Þ

The response of the normal modes to a voltage bias V can
be computed by observing that in thermal equilibrium, V is
the chemical potential conjugated to the electric charge.
Hence, the chemical potential, conjugated to a normal
mode ϕi, is

ffiffiffiffi
νi

p
eV=2π. We then find Ii ¼ νie2V=h. We see

that fνig play the role of the filling factors associated with
the normal modes. In particular, ν1 þ ν2 ¼ 2=5.
Note a significant difference from the ν ¼ 2=3 state and

other holelike quantum Hall states, where the normal
modes are just the charge and neutral modes [22]. Such
states are daughter states of a liquid with a higher filling
factor, and electrostatics force contrapropagating modes to
run close to each other [24]. Hence, intermode tunneling
dominates short-range physics. As a result, the charge
equilibration length [25] is very short ≲1 μm. At ν ¼ 2=5,
the distance between the inner and outer modes is greater
than at ν ¼ 2=3, and intermode tunneling has little effect on
the normal modes.

FIG. 1. Current-noise measurement setup for quasiparticle
tunneling across a quantum point contact (QPC). The edge
structure of a ν ¼ 2=5 FQH state comprises two downstream
modes separated by a ν ¼ 1=3 incompressible state. Current
flows into the sample through the Ohmic contact S to impinge on
the QPC. Because of charge partitioning, shot noise is generated
at the QPC. The noise is evaluated by measuring the current at
drains D1 and D2.
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Since the region near the point contact differs from the
rest of the edge, one can imagine two scenarios for charge
tunneling between the inner and outer modes. Tunneling
strength may be moderate and comparable at all points
along the edge. Alternatively, intermode transport may be
dominated by strong tunneling in the region near the point
contact. We expect similar physics in both cases and will
focus on the latter scenario, which allows simpler calcu-
lations. In this scenario, the above results for normal modes
do not apply to a region near the contact. We will call it the
black box (Fig. 2). The black box is the place where Joule
heat is dissipated.
While we focus on the black box model due to its

simplicity, the experimental results [13] at ν ¼ 2=5 point at
the scenario with moderate tunneling along the edge.
Indeed, Fig. 11 of Ref. [13] shows that about 5% of
the current is exchanged between edge channels on the
scale of 1 μm. This suggests significant charge and energy
exchange between the two modes on the scale of the total
edge length. Note that thermalization in each of the two
channels may happen on a shorter scale due to disorder-
induced tunneling between different segments of the edge,
compressible puddles, and channels present on short scales
due to edge reconstruction [26]. One might also need to
consider electron-phonon interaction [27]. Excess noise of
the same order of magnitude is expected in this picture and
in a simpler black-box model.
Quantitative analysis of nonequilibrium physics in the

black box is challenging. Thus, we will only roughly
estimate the excess noise. We will do so by assuming that
the black box is at equilibrium at the temperature

determined by Joule heating. We estimate the dissipated
heat on each side of the point contact as ItunV=2, where V
is the voltage bias, Itun ¼ rGV is the tunneling current,
the Hall conductance G ¼ νe2=h, ν ¼ 2=5, and r ≪ 1 is
the transmission of the contact. Next, we make use of the
quantized heat conductance [28] of a two-channel edge
κðTÞ ¼ 2κ0ðTÞ ¼ 2π2T=3h, and write the heat balance
equation

κðT 0ÞT 0

2
¼ ItunV

2
þ κðTÞT

2
; ð6Þ

where T 0 is the temperature of the black box, and T is the
temperature of the sources. Hence,

T 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3e2V2

5π2
þ T2

s
: ð7Þ

The heating effect generates excess current noise. We
focus on the lower edge. We will first ignore charge
conservation in addressing the noise. Equation (4) has
the same structure as the Lagrangian density on the edge of
the ν ¼ 2 state. At a low frequency, the equilibrium
fluctuations of the currents Ĩouti ¼ ∂tϕi=2π of the fields
∂xϕi=2π on the left of the black box are given by the
Nyquist formula hfĨouti ðωÞ; Ĩoutj ð−ωÞgi¼ δijð2T 0=hÞ, where
the curly brackets denote an anticommutator. The associ-
ated fluctuating charge currents Iouti ¼ e

ffiffiffiffi
νi

p
Ĩouti obey the

relation

hfIouti ðωÞ; Ioutj ð−ωÞgi ¼ δij
2νie2T 0

h
: ð8Þ

The total charge current, resulting from such Nyquist
fluctuations, differs from the sum of the tunneling current
Itun and the current Iin arriving into the black box along the
edge. Neglecting the capacitance of the small black box, we
arrive at a contradiction with charge conservation. To
resolve it, we have to remember that the voltage Vb of
the box fluctuates to ensure its charge neutrality:

Iout1 þ Iout2 þ GVbðtÞ ¼ Iin þ Itun; ð9Þ

where we use instantaneous values of the charge currents
near the location of the box and Iin satisfies the Nyquist
relation hfIinðωÞ; Iinð−ωÞgi ¼ 2GT. From Eq. (9) we find
VbðtÞ and then the fluctuating charge currents in the normal
modes Iiðx ¼ 0Þ ¼ Iouti þ ðνie2=hÞVb near the location of
the black box,

I1 ¼
ν1
ν
Iin þ ν2

ν
Iout1 −

ν1
ν
Iout2 þ ν1

ν
Itun; ð10Þ

I2 ¼
ν2
ν
Iin þ ν1

ν
Iout2 −

ν2
ν
Iout1 þ ν2

ν
Itun: ð11Þ

FIG. 2. Schematics of the black box. We define G0 ¼ e2=h.
The Joule heat, generated due to quasiparticle tunneling through
the QPC, dissipates in the black box and raises its temperature to
T 0. In order to maintain charge neutrality across the region, the
voltage Vb of the black box fluctuates, giving rise to fluctuating
normal-mode charge currents.
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The total charge current immediately to the left of the box is
Ið0; tÞ ¼ I1ð0; tÞ þ I2ð0; tÞ. One can see that Iouti drops out
from the above sum, which is thus insensitive to T 0 and
Joule heating.
Consider now the charge current near the drain at the

distance L from the point contact, where Ið−L; tÞ ¼
I1ð0; t − L=v1Þ þ I2ð0; t − L=v2Þ. We introduce the lag
time τ ¼ L=v2 − L=v1, and define the autocorrelation
noise as Sauto ¼ hfIð−L;ωÞ; Ið−L;−ωÞgi. We observe

Sauto ¼ hfI1ð0;ωÞ; I1ð0;−ωÞgi þ hfI2ð0;ωÞ; I2ð0;−ωÞgi
þ expð−iωτÞhfI1ð0;ωÞ; I2ð0;−ωÞgi
þ expðiωτÞhfI2ð0;ωÞ; I1ð0;−ωÞgi: ð12Þ

The experimentally observed noise also contains the con-
tribution 2GT due to the equilibrium Nyquist noise on the
left vertical edge in Fig. 1. We will ignore it since we focus
on excess nonequilibrium noise. We substitute Eqs. (10)
and (11) into the expression above for the autocorrela-
tion noise.
Because of chiral transport, the heating process occurs

downstream, that is, to the left of the tunneling contact.
Hence the autocorrelation function of Itun and its cross-
correlation function with Iin do not depend on T 0. They can
be found from detailed balance [18,29] and a fluctuation-
dissipation theorem [30,31]:

hfItunðωÞ; Itunð−ωÞgi ¼ 2e�hItuni coth
�
e�V
2T

�
; ð13Þ

hfItunð�ωÞ; Iinð∓ ωÞgi ¼ −2T
∂hItuni
∂V

; ð14Þ

where e� ¼ e=5 is the charge of the tunneling quasiparticle.
We combine the above expressions into

Sshot ¼ 2e�hItuni coth
�
e�V
2T

�
− 4T

∂hItuni
∂V

: ð15Þ

We expect no correlation between Iouti and the currents Itun
and Iin, and find the autocorrelation noise

Sauto ¼ SN þ Sshot þ Sex; ð16Þ

where SN ¼ 2GT is the Nyquist contribution, and the
excess noise

Sex ¼
4ν1ν2
ν2

sin2ðωτ=2Þ½2GðT 0 − TÞ − Sshot�: ð17Þ

The above equation explainswhy the excess noise is stronger
at lower temperatures. Indeed, at a high temperature,
T 0−T∼ reV2=T≪

ffiffiffi
r

p
eV, while at T→ 0, T 0 ∼

ffiffiffi
r

p
eV.

What about the cross-correlation noise? To compute it,
one needs to derive analogs of Eqs. (10) and (11) on the

upper edge. No correlation exists between the fields Iin and
Iout on the upper and lower edges. Nevertheless, the cross-
correlation noise has a correction due to the different
velocities of the normal modes. The reason consists in
the splitting of the tunneling current into the charge currents
in the normal modes. Assuming the same length L between
the point contact and the drains on the upper and lower
edges, there is an identical time lag τ on both edges
between the tunneling charges arriving at the drains in the
two modes. The cross-correlation noise is defined as

Scross ¼
1

2

h
hfILð−L;ωÞ; IRðL;−ωÞgi

þ hfILð−L;−ωÞ; IRðL;ωÞgi
i
; ð18Þ

where IL;R are the drain currents on the left-moving and
right-moving edges (see Fig. 2). We find

Scross ¼ −Sshot
�
1 −

4ν1ν2
ν2

sin2ðωτ=2Þ
�
: ð19Þ

We will see that the frequency-dependent correction to the
noise (19) is an order of magnitude lower than in the
autocorrelation noise. This explains why the cross-corre-
lation noise gives a more accurate value of the fractional
charge.
We will now focus on the zero-temperature limit,

where the excess noise is most important. Equation (16)
simplifies to

Sauto ¼ Sshot þ
4ν1ν2
ν2

sin2ðωτ=2Þð2GT 0 − SshotÞ: ð20Þ

Shot noise experiments are performed at low transmission
r. Setting r ¼ 0.01, which corresponds to the 6% trans-
mission of the inner channel, one finds

Sauto ¼ Sshot þ 11.328 ×
4ν1ν2
ν2

sin2ðωτ=2ÞSshot; ð21Þ

where we used Eq. (7) to find T 0 ¼ const × V
ffiffiffi
r

p
.

At zero temperature, the Fano factor is defined as F ¼
Sauto=2eItun and reduces to e�=e without excess noise. It is
expected to be opposite to the combination Scross=2eItun at
zero temperature. Experimentally, Scross þ Sauto differs
significantly from 0. The correction to the Fano factor

ΔF¼SautoþScross
2eItun

¼e�

e
×12.328×

4ν1ν2
ν2

sin2ðωτ=2Þ: ð22Þ

We now proceed to numerical estimates. We chose
vc ∼ νe2=ðϵhÞ ∼ 5 × 106 cm=s, where ϵ is the dielectric
constant. Neutral mode velocity vn is expected to be lower
than the chargemodevelocityvc, andwe set vn ¼ 106 cm=s.
We assume L ¼ 100 μm and ω ¼ 107 Hz. The intermode
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interaction Δ is expected to be comparable to vn. Stability
of the theory Eq. (1) requires jΔj< ffiffiffiffiffiffiffiffiffiffiffiffi

5vcvn
p

=2¼
2.5×106 cm=s.
The effect is weak when jΔj < vn. At jΔj ¼ 2×

106 cm=s, one finds ΔF=F ≈ 0.12. At jΔj ¼ 2.25×
106 cm=s, one finds ΔF=F ≈ 0.54. Excess noise becomes
very large if Δ approaches the limit of stability, but there is
no obvious reason for it to do so, and the observedΔF < F.
It should be remembered that our model allows only a crude
estimate of the excess noise. It is likely that the magnitude
of the effect is sample sensitive.
In our model, we assume position-independent velocities

along the edge. The choice of Δ > 2vn corresponds to a
relatively weak interaction between the inner and outer
modes ϕ1=15 and ϕ1=3. Such interaction is indeed screened
on a gate-defined edge. Actual samples combine gate-
defined and etched sections. Hence, the edge velocities are
position dependent. The lag time is dominated by the
sections with the lowest velocity. Interaction between
contrapropagating edge segments is possible across narrow
gates and decreases edge velocities [32,33].
Our mechanism involves charge transport along both

inner and outer channels. Hence, the mechanism can be
tested by probing currents in both channels. In the
scenario with strong interchannel coupling near the point
contact, the effect becomes stronger with the increasing
edge length and exhibits a characteristic sin2ðωτ=2Þ
frequency dependence. For short edges, the dominant
source of excess noise is likely edge reconstruction. For
intermediate lengths, edge reconstruction may coexist with
our mechanism, which becomes dominant for long edges.
In a version of our mechanism, the time lag τ comes from
a time difference for the absorption of the inner and outer
modes by drains.
We have only considered charge currents above, but the

total current includes the displacement current [34]. This
does not change our results. Imagine that a sample is
screened electrostatically from the rest of the world. The
drain is connected to a capacitor with a high-conductance
wire. Assume that we measure the displacement current in
the capacitor. As long as the charge travels quickly along
the wire and on the capacitor’s plates, the low-frequency
displacement current in the capacitor is the same as the
charge current in the drain.
In conclusion, different edge-mode velocities in a

spin-polarized FQHE state may result in excess autocor-
relation noise. The effect is absent for cross-correlation
noise, giving a more reliable tool for probing fractional
charges.
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