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We study the effect of a small density nv of quenched nonmagnetic impurities, i.e., vacancy disorder, in
gapped short-range resonating valence bond (RVB) spin liquid states and valence bond solid (VBS) states
of quantum magnets. We argue that a large class of short-range RVB liquids are stable to vacancy disorder
at small nv on the kagome lattice, while the corresponding states on triangular, square, and honeycomb
lattices are unstable to vacancy disorder at any nonzero nv due to the presence of emergent vacancy-induced
local moments. In contrast, VBS states are argued to be generically unstable (independent of lattice
geometry) to vacancy disorder at any nonzero nv due to such a local-moment instability. Our arguments
rely in part on an analysis of the statistical mechanics of maximally packed dimer covers of the diluted
lattice, and are fully supported by our computational results on OðNÞ symmetric designer Hamiltonians.
These arguments also imply that short-range RVB spin liquid states are generically unstable to bond
dilution on all these lattices.
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The original proposal of Anderson [1,2] for a quantum
spin liquid state of insulating magnets used a nearest
neighbor resonating valence bond (RVB) picture of the
many-body ground state. In any term of the corresponding
wave function, each spin S ¼ 1=2 makes a singlet valence
bond with one of its neighbors, and the full quantum state is
then a superposition over all possible ways in which this
can be done. In more general gapped short-range RVB
states, the valence bonds can extend to further neighbors,
but are limited in range by a characteristic scale ξRVB [3].
Although the ground state for the particular case con-

sidered originally, namely that of the spin S ¼ 1=2
Heisenberg antiferromagnet on the triangular lattice, is
now known [4–10] to not be of this RVB liquid type, this
proposal sparked many of the developments [11–19] that
contributed to our modern understanding of such spin
liquid states and their characterization in terms of topo-
logical order [20–24]. This theoretical progress has also led
to experimental efforts aimed at identifying candidate
materials that realize such RVB spin liquid states [25–27].
Part of the difficulty in reaching a definite conclusion

about spin liquid behavior in any material is that the
simplest phenomenological characterization of a spin liquid
is a negative one: A spin liquid displays no magnetic order
of any kind, nor do the spins form a definite static pattern of
singlet valence bonds that breaks the symmetry of the
underlying crystal structure, as is the case in a valence-bond
solid (VBS) state. It is thus defined by what is not seen in
the corresponding experiments.
As a result, the experimental search for spin liquids is

challenging even if material imperfections and quenched

disorder effects are absent, and their presence only adds to
the challenge [26–31]. Short-range RVB spin liquids are
expected to be stable to weak bond disorder (exchange
disorder) while being destabilized by strong bond disorder,
while VBS states are predicted to be unstable even to weak
bond disorder [32]. Here, we focus on another important
source of disorder, namely non-magnetic substitutional
impurities [28–30], which can be modeled theoretically
as missing spins or static vacancies, and can serve as a
probe of the underlying many-body state [33–42]. We
argue that local moments form in the vicinity of each
vacancy in VBS states even when the vacancies are
isolated, i.e., well separated from each other, while such
local moments arise in gapped short-range RVB spin
liquids only if the maximum matchings (maximally packed
dimer covers) of the diluted lattice have a nonzero number
of monomers, which is typically not the case when the
vacancies are isolated [43–45].
On the randomly site-diluted kagome lattice, we find at

low dilution that the largest connected “bulk” component of
the lattice hosts at most one such vacancy-induced mono-
mer or local moment; the bulk density of such local
moments is thus zero in this regime. In contrast, on
randomly site-diluted triangular, square, and honeycomb
lattices, certain vacancy clusters that generically occur with
nonzero bulk density lead to a bulk density of such
monomers (and hence local moments) situated inside
well-demarcated “R-type regions” whose geometry has
been studied previously [46,47] in other contexts.
We argue that such a bulk density of vacancy-induced

emergent local moments represents an instability of the
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system since the real ground state is then determined by the
many-body wave function of this system of emergent local
moments. Thus, we conclude that gapped short-range RVB
liquids are stable at small nv on the kagome lattice, while
such states on the triangular, square, and honeycomb
lattices have a local moment instability at small nv. In
contrast, VBS states are always unstable at small nv
independent of lattice geometry.
We first explore the contrasting consequences of site

dilution on gapped short-range RVB and VBS states by
working within the quantum dimer model (QDM) frame-
work of Rokhsar and Kivelson, where each dimer repre-
sents a nearest-neighbor singlet [12,13]. Although this
framework does not make any explicit reference to further
neighbor valence bonds, the effects of matrix elements to
such states are encoded via additional terms in the quantum
dimer model Hamiltonian [12].
Within this framework, it is clear that the effect of

vacancies depends crucially on whether the diluted lattice
has perfect matchings (perfect dimer covers). If it does, then
it typically has exponentially (in the lattice size) many such
perfect matchings due to the possibility of local rearrange-
ments of dimers. If it does not have perfect matchings, then
a minimum number of sites have to be left unmatched in
any maximum matching of the lattice, and the unmatched
sites host “monomers” of the maximally packed dimer
cover. In such cases, there are typically exponentially many
such maximum matchings. Since such an unmatched site is
associated with a free spin, these monomers necessarily
correspond to emergent vacancy-induced local moments,
independent of whether the ground state is an RVB liquid
or a VBS state.
Our key point is this: In a gapped short-range RVB liquid

state, there is no energetic preference for any particular
arrangement of the singlet valence bonds. Therefore, as
long as the diluted lattice has exponentially many perfect
dimer covers to form a resonating valence bond state, the
system is expected to remain in such an RVB state even at
nonzero nv. Thus, vacancies induce the formation of
emergent local moments in such RVB states only if there
are monomers in the maximum matchings of the diluted
lattice. In contrast, when the state has VBS order, there is a
preferred ordered arrangement of valence bonds. This
cannot be maintained on a diluted lattice even if it has
perfect matchings: Consider for instance a triangular or
square lattice with just two isolated vacancies far apart.
Although perfect matchings are possible in this case [43–
45], any such singlet state corresponding to a fully-packed
arrangement of dimers necessarily leads to a domain wall
(in the VBS order parameter) connecting the two vacancy
locations [48,49]. The resulting domain wall energy cost
(which scales with its length) makes it energetically
favourable to eliminate such domain walls by keeping
the VBS order intact except in the immediate vicinity of
each vacancy. This is achieved by the formation of local

moments that are spread out on sites adjacent to each
vacancy. Thus, in a VBS ordered system, individual
vacancies seed local moments in their vicinity even when
they are well separated from each other and perfect dimer
covers exist. Clearly, these conclusions apply equally well
to RVB and VBS states of bipartite as well as nonbipartite
quantum magnets.
Although this argument seems to rely very crucially on

the nearest-neighbor nature of singlet valence bonds in the
ground state wave function, we nevertheless expect the
conclusions to be valid more generally for gapped short-
range RVB or VBS states. Indeed, the same conclusions
also follow (without relying on any nearest-neighbor
singlet wave functions) within a 1=N expansion approach
[16,50–52] to SUðNÞ and SOðNÞ symmetric generaliza-
tions [50–59] that have been useful in previous studies of
the competition between Neel, VBS, and RVB states of
quantum magnets [51–68]. These have a Hamiltonian
comprised of nearest-neighbor singlet projectors:

H ¼ −
Jm
N

X
hr1r2i

X
α;β

jαir1 jαir2hβjr1hβjr2 þ � � � ; ð1Þ

where hr1r2i denotes nearest-neighbor links connecting
adjacent sites, the “color” indices α and β denoteN possible
states of the “spins,” and the ellipses denote possible
additional multispin interactions acting on all the spins
of a single plaquette or groups of adjacent plaquettes of the
lattice. On a nonbipartite lattice, H has global OðNÞ
symmetry, with the colors α and β transforming in the
fundamental representation of OðNÞ [51,52]. On a bipartite
lattice, r1 and r2 always belong to opposite sublattices, and
H has enhanced global SUðNÞ symmetry [16,50], with the
colors on A (B) sublattice sites transforming in the
fundamental (complex conjugate of the fundamental)
representation of SUðNÞ. (In both cases, the additional
terms represented by ellipses respect the corresponding
symmetry.) Put another way, H always commutes with all
the Hermitean antisymmetric generators Atot

αβ ¼
P

rAαβðrÞ
(α < β) of global OðNÞ transformations of the colors.
Additionally, on bipartite lattices, it also commutes with
the symmetric generators Stot

αβ ¼
P

rð−1ÞrSαβðrÞ (α < β)
and the diagonal generators Qtot

αα ¼
P

rð−1ÞrQααðrÞ
(α ¼ 1; 2…N − 1, and no sum over the repeated index
implied) that enlarge the global symmetry group to SUðNÞ.
Here, ð−1Þr ¼ þ1 [ð−1Þr ¼ −1] for r belonging to the
AðBÞ sublattice, and

AαβðrÞ ¼ −iðjαirhβjr − jβirhαjrÞ ∀ pairs α < β;

SαβðrÞ ¼ ðjαirhβjr þ jβirhαjrÞ ∀ pairs α < β;

QααðrÞ ¼ ðjαirhαjr − 1=NÞ ∀ α ¼ 1…N − 1: ð2Þ

In the large-N limit without disorder, each perfect dimer
cover of the lattice gives a degenerate ground state in both
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cases, with the dimers representing SUðNÞ or OðNÞ
singlets. At leading order in 1=N, the low-energy physics
is then controlled by an effective quantum dimer model
Hamiltonian [16,50–52]. Generalizing to the diluted case,
we see that the ground state degeneracy at N ¼ ∞ now
corresponds either to fully-packed dimer covers of the
lattice, or to the maximally-packed dimer covers if no
perfect matchings exist. In the latter case, the monomers of
a maximum matching correspond to free SUðNÞ or OðNÞ
spins. At leading order in 1=N, one obtains an effective
Hamiltonian that acts within this low-energy subspace.
This has the form of a quantum monomer-dimer model in
the general case, with ring exchange and monomer hopping
terms acting within the ensemble of maximum matchings.
At higher orders, additional terms are generated, which act
on groups of contiguous bonds and plaquettes. From this
structure of the low-energy theory, we see that our previous
conclusions regarding vacancy-induced local moments in
VBS and RVB states apply to these SUðNÞ and OðNÞ
generalizations at a finite N so long as the corresponding
ground state is accessible perturbatively in 1=N.
In addition, we see that the perturbatively generated

interactions Jeff between these emergent local moments
only act within each connected component of a diluted
lattice. Because of the gapped nature of the parent state,
these effective interaction Jeff are also expected to be
parametrically smaller than the microscopic exchange
coupling Jm both in the gapped VBS case, and in the
gapped short-range RVB case. Although the form of these
interactions is expected to depend sensitively on the
microscopic Hamiltonian, the mere fact of their existence
implies that a nonzero bulk density of such moments
generically signals an instability of the parent state inde-
pendent of these details [32]. This is because the long-
distance structure of the ground state is now controlled by
the many-body wave function of this system of emergent
local moments. Clearly, such a bulk density of emergent
local moments must also give rise to a vacancy-induced
contribution χimp ∝ 1=T to the thermodynamic susceptibil-
ity at low but not too low temperatures in the range
Jeff ≪ T ≪ Jm. This serves as a diagnostic for the corre-
sponding local moment instability.
Putting all these arguments together, we are thus led to

conclude that short-range VBS states always have a local
moment instability at small nv, while short-range RVB
states are unstable only if the dilution leads to a bulk
density of monomers in the maximum matchings of the
diluted lattice. With this in mind, we turn our attention to
the monomers in maximum matchings of randomly site-
diluted lattices of interest to us. The results of Ref. [46] and
Ref. [47] make it clear that maximum matchings of site-
diluted square, honeycomb, and triangular lattices have a
nonzero bulk density of monomers. For the kagome case,
we supplement this with a computational study using the
implementation of Edmonds’s maximum matching

algorithm given in Ref. [69]. We find that the situation
is dramatically different: Each connected component (of
the diluted kagome lattice) with an odd number of sites
hosts exactly one monomer, while connected components
with an even number of sites have a perfect dimer cover,
i.e., they host no monomers.
As a result, as the data in Fig. 1 shows, the bulk density

of monomers vanishes for small nv (i.e., below the geo-
metric percolation threshold of the diluted kagome lattice),
since the number of sites in the largest connected compo-
nent of an L × L diluted kagome lattice scales as L2 in the
thermodynamic limit, while the mean number of monomers
in this component is 0.5. Indeed, we find that essentially all
the monomers of any maximum matching of the diluted
graph are associated with small disconnected fragments of
the diluted lattice at small nv, with the fraction of mono-
mers corresponding to isolated single-site clusters
approaching unity as nv → 0.
In the kagome spin liquid case, we thus expect vacancy

disorder to only lead to at most a single local moment on
each individual connected component of the disordered
lattice, including on the largest “bulk” component. Being in
different fragments of the lattice, these isolated local
moments are not expected to interact with each other via
the effective couplings Jeff . Instead, they represent an
essentially decoupled population of free spins that coexist
with the bulk spin liquid state.
Therefore, we conclude that gapped short-range RVB spin

liquid states are stable at small nv on the kagome lattice, but
have a vacancy-induced local moment instability at any
nonzero nv on square, honeycomb and triangular lattices.
For a reliable computational test of our arguments and this

FIG. 1. Left panel: The measured fraction fbulk of sites in the
largest connected bulk component of the site-diluted kagome
lattice is fit well by fbulkðnvÞ ¼ 1 − nv in the small-nv limit.
Right panel: In this limit, the number density nc of connected
components of the site-diluted kagome lattice is dominated by the
number density niso of single-site clusters, which scales as ∼n4v.
We have checked that each such connected component of even
size (number of sites) is perfectly matched by any maximum
matching, while each such odd-sized connected component hosts
exactly one monomer, implying that the bulk density of mono-
mers is zero.
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conclusion, we need examples of model Hamiltonians that
exhibit such ground states while being amenable to large-
scale sign-free quantumMonte Carlo (QMC) studies. When
such model systems can be identified, the most direct and
straightforward test applicable to both SUðNÞ and OðNÞ
generalizations would involve studying the effect of vacan-
cies on the susceptibility χA to a uniform field that couples to
Atot

αβ (for any pair α < β). This would be the analog of the
susceptibility to a uniform external field that couples toStoty in
SU(2) symmetric bipartite systems. However, this suscep-
tibility is not readily measurable in QMC simulations that
work in the color (Sz) basis, which are, however, capable of
measuring susceptibilities to fields that couple to diagonal
operators in the color basis. For SUðNÞ symmetric designer
Hamiltonians on bipartite lattices, this is not a constraint,
since one can equivalently measure the susceptibility χQ to a
field that couples toQtot

αα (for any α), since this is equivalent
by SUðNÞ symmetry to χA.
Clearly, this is not an option for the OðNÞ generalizations

on nonbipartite lattices. However, this difficulty is not a
serious obstacle for the following reason: Such emergent
local moments are expected to be essentially free in a broad
temperature range Jeff ≪ T ≪ Jm. In the bipartite SUðNÞ
symmetric case, it is therefore clear that they will lead to a
Curie tail not just in χQ, but also in the susceptibility χ to a
field that couples to ntotαα (for any α), where ntotαα differs from
Qαα by the absence of the alternating sign ð−1Þr in its
definition: ntotαα ¼

P
rQααðrÞ (for N ¼ 2, this is the ẑ

component of the Néel order parameter). Indeed, the
difference between χ and χQ will become visible only at
T ∼ Jeff ≪ Jm. This suggests vacancy-induced local
moments will lead to a Curie tail in χ in the nonbipartite
case too, and this can serve as an alternate diagnostic test.
[ForN > 2, ntotαα corresponds to the nematic order parameter
in such OðNÞ models].
Examples of designer Hamiltonians with a gapped short-

range RVB liquid ground state are in short supply com-
pared to the variety of different models that display VBS
ground states [51–68]. Fortunately for our purposes, recent
QMC results have established the presence of a gapped
short-range RVB liquid ground state for the nearest-
neighbor OðNÞ projector Hamiltonian H [Eq. (1)] with
N > 9 on the kagome lattice. Therefore, we focus on this
OðNÞ kagome RVB liquid and use large-scale stochastic
series expansion (SSE) QMC [70–76] to compute
χimpðTÞ ¼ χdisordered − χpure, the vacancy-induced change
in the static susceptance:

χ ¼ 1

N − 1

XN−1

α¼1

X
r;r0

Z
β

0

hQααðr; τÞQααðr0; 0Þidτ; ð3Þ

with β ¼ 1=T being the inverse temperature. We contrast it
with vacancy effects on the same quantity in the triangular
lattice OðNÞ model with nearest-neighbor couplings Jm

[Eq. (1)] and additional four-spin interactions of strength
Q2 on four-site plaquettes of the triangular lattice, since this
is known to have a VBS ordered ground state forN > 5 and
large enough values of Q2=Jm. On both lattices, we
consider two disorder configurations, one consisting of
two isolated vacancies at distance L=2 in an L × L sample,
and the other consisting of two R-type regions at the same
distance, each of which traps one monomer of a maximum
matching.
In Fig. 2, we show our results for χimp corresponding to

two isolated vacancies separated by L=2 in L × L triangu-
lar and kagome lattice OðNÞ models for values of N in the
VBS and short-range RVB phases, respectively. These
results demonstrate that isolated vacancies give rise to a

FIG. 2. Left panel: In the triangular lattice OðNÞ model for
values of N in the VBS phase, two isolated vacancies separated
by the maximal distance of L=2 on an L × L lattice with L2 unit
cells and periodic boundary conditions give rise to a Curie tail,
χimp ∝ 1=T ≡ β, in the impurity susceptibility χimp defined in the
main text. The straight line is a guide to the eye. Right panel: In
the kagome case, there is no such Curie tail for values of N in the
short-range RVB phase.

FIG. 3. Left panel: A smallR-type region connected to the bulk
of the lattice is constructed by deleting a set of bonds in the
vicinity of a single vacancy. Any maximum matching of the
kagome lattice has a single monomer trapped inside it. Right
panel: Impurity susceptibility χimp (defined in the text) of the
kagome lattice OðNÞ model due to two such R-type regions
separated by L=2 in an otherwise pure L × L kagome lattice with
L2 unit cells and periodic boundary conditions shows clear
evidence of a Curie tail χimp ∝ 1=T ≡ β for N in the RVB liquid
phase. The straight line is a guide to the eye.
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Curie tail in χimp in the VBS case but not in the RVB case,
confirming one key part of our argument. In Fig. 3, we
display a pattern of bond dilution on the kagome lattice that
gives rise to an R-type region that traps a single monomer.
In addition, we display our data for χimp for an L × L
kagome lattice OðNÞ model with two such R-type regions
separated by L=2 for a value of N in the RVB liquid phase.
Clearly, such monomer-carrying regions give rise to such a
Curie tail even in the RVB case, in contrast to isolated
vacancies, which do not. This confirms the other key part of
our argument. In addition, our results (not shown) confirm
that such R-type regions do give rise (exactly as expected)
to a Curie tail in χimp in the triangular lattice VBS state too.
Finally, we note that bond dilution (modeling missing
exchange pathways) is expected to lead to a nonzero
monomer density even on the kagome lattice (as is clear
from the example in Fig. 3). Therefore, we conclude that
short-range RVB spin liquid states are generically unstable
to bond dilution independent of lattice geometry, although
they are expected to be stable [32] to weak exchange
disorder.
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bond-solid transition on the honeycomb lattice: Evidence
for deconfined criticality, Phys. Rev. Lett. 111, 087203
(2013).

[66] S. Pujari, F. Alet, and K. Damle, Transitions to valence-bond
solid order in a honeycomb lattice antiferromagnet, Phys.
Rev. B 91, 104411 (2015).

[67] A. Iaizzi, K. Damle, and A.W. Sandvik, Field-driven
quantum phase transitions in S ¼ 1

2
spin chains, Phys.

Rev. B 95, 174436 (2017).
[68] A. Iaizzi, K. Damle, and A.W. Sandvik, Metamagnetism

and zero-scale-factor universality in the two-dimensional
J −Q model, Phys. Rev. B 98, 064405 (2018).

[69] J. D. Kececioglu and J. Pecqueur, Computing maximum-
cardinality matchings in sparse general graphs, in Proceed-
ings of WAE'98 2nd Workshop on Algorithm Engineering
(Max-Planck-Institut fur Informatik, Saarbrucken, 1998),
pp. 121–132.

[70] A.W. Sandvik, A generalization of Handscomb’s quantum
Monte Carlo scheme-application to the 1D Hubbard model,
J. Phys. A 25, 3667 (1992).

[71] A.W. Sandvik, Stochastic series expansion method with
operator-loop update, Phys. Rev. B 59, R14157 (1999).

[72] O. F. Syljuåsen and A.W. Sandvik, Quantum Monte Carlo
with directed loops, Phys. Rev. E 66, 046701 (2002).

[73] A.W. Sandvik, Computational studies of quantum spin
systems, AIP Conf. Proc. 1297, 135 (2010).

[74] A.W. Sandvik and H. G. Evertz, Loop updates for varia-
tional and projector quantumMonte Carlo simulations in the
valence-bond basis, Phys. Rev. B 82, 024407 (2010).

[75] A. Banerjee and K. Damle, Generalization of the singlet
sector valence-bond loop algorithm to antiferromagnetic
ground states with total spin Stot ¼ 1=2, J. Stat. Mech.
(2010) P08017.

[76] N. Desai and S. Pujari, Resummation-based quantum
Monte Carlo for quantum paramagnetic phases, Phys.
Rev. B 104, L060406 (2021).

PHYSICAL REVIEW LETTERS 132, 226504 (2024)

226504-7

https://doi.org/10.1103/PhysRevLett.104.177201
https://doi.org/10.1103/PhysRevB.82.174428
https://doi.org/10.1103/PhysRevB.82.174428
https://doi.org/10.1103/PhysRevB.83.134419
https://doi.org/10.1103/PhysRevB.83.134419
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevB.91.104411
https://doi.org/10.1103/PhysRevB.91.104411
https://doi.org/10.1103/PhysRevB.95.174436
https://doi.org/10.1103/PhysRevB.95.174436
https://doi.org/10.1103/PhysRevB.98.064405
https://doi.org/10.1088/0305-4470/25/13/017
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1063/1.3518900
https://doi.org/10.1103/PhysRevB.82.024407
https://doi.org/10.1088/1742-5468/2010/08/P08017
https://doi.org/10.1088/1742-5468/2010/08/P08017
https://doi.org/10.1103/PhysRevB.104.L060406
https://doi.org/10.1103/PhysRevB.104.L060406

