
Can Orbital-Selective Néel Transitions Survive Strong Nonlocal Electronic Correlations?

Evgeny A. Stepanov 1,2,* and Silke Biermann1,2,3
1CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

2Collège de France, Université PSL, 11 place Marcelin Berthelot, 75005 Paris, France
3European Theoretical Spectroscopy Facility, 91128 Palaiseau, France

(Received 13 January 2024; accepted 26 April 2024; published 28 May 2024)

Spin- or orbital-selective behaviors in correlated electron materials offer rich promise for spintronics or
orbitronics phenomena and applications deriving from them. Strong local electronic Coulomb correlations
might lead to an orbital-selective Mott state, characterized by the coexistence of localized electrons in some
orbitals with itinerant electrons in others. Nonlocal electronic fluctuations are much more entangled in
orbital space than the local ones. For this reason, finding orbital-selective phenomena related to nonlocal
correlations, such as orbital-selective magnetic transitions, is a challenge. In this Letter, we investigate
possibilities to realize an orbital-selective Néel transition (OSNT). We illustrate that stabilizing this state
requires a decoupling of magnetic fluctuations in different orbitals, which can only be realized in the
absence of Hund’s exchange coupling. On the basis of two-orbital calculations for a Hubbard model with
different bandwidths we show that the proposed OSNT can be found all the way from the weak to the strong
coupling regime. In the weak coupling regime the transition is governed by a Slater mechanism and thus
occurs first for the narrow orbital. At strong coupling a Heisenberg mechanism of the OSNT sets in, and the
transition occurs first for the wide orbital. Remarkably, at intermediate values of the interaction we find a
nontrivial regime of the OSNT, where the Slater mechanism leads to a Néel transition occurring first for the
wide orbital. Our work suggests strategies for searching for orbital-selective Néel ordering in real materials
in view of possible spin-orbitronics applications.
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The most striking effects of electronic Coulomb corre-
lations in strongly correlated materials are probably phase
transitions to various ordered states induced by collective
electronic behavior. Strong local Coulomb repulsions
between electrons favor localization of the electrons on
atomic sites and can drive the system toward a Mott-
insulating state [1,2]. Nonlocal collective electronic fluc-
tuations are responsible for other types of orderings, in
particular magnetic or superconducting states. In multi-
orbital systems, the orbital degrees of freedom not only
have the potential to enhance these effects but can also
enable the emergence of nontrivial states of matter that
cannot be realized in the single-orbital case. Celebrated
examples are orbital-selective states characterized by the
coexistence of radically different collective electronic
behaviors associated with distinct orbitals. Such pheno-
mena have attracted tremendous attention since the exper-
imental observation of non-Fermi liquid behavior in the
resistivity and an enhanced spin susceptibility in the
metallic phase of the doped (0.2 < x < 0.5) ruthenate
Ca2−xSrxRuO4 [3]. The material was suggested to undergo
an orbital-selective metal-insulator transition (OSMIT) to a
phase, where itinerant electrons in some orbitals coexist
with localized electrons living in other orbitals [4]. Such
“orbital-selective Mott transitions” have instantaneously
become a hot topic of condensed matter physics, triggering

enormous excitement not only for ruthenate compounds
[5–11], but also for iron-based superconductors [12–15],
iron chalcogenides [16–18], and the Van der Waals ferro-
magnet Fe3−xGeTe2 [19]. The link between theoretical
findings in model systems [4,20–58] and observations in
real materials remains, however, controversial, even more
so as the orbital-selective Mott phase is a rather fragile state
that is unstable against both local [59] and nonlocal [60]
interorbital hopping processes and can also be destroyed by
strong magnetic fluctuations [61].
Because of technical limitations, the overwhelming

majority of theoretical studies so far have focused on the
formation of a paramagnetic Mott state, driven by local
electronic correlations. Likely more relevant to real materi-
als questions at low temperatures are an entirely different
kind of orbital-selective phases, which are states originating
from orbital-selective magnetic fluctuations, and in the
extreme case magnetic orderings. Speculations about the
existence of such states have been spurred on by the vast
literature on iron-based superconducting materials [62–72],
but to date no strategy for realizing even the simplest
orbital-selective Néel phase has been established. Doing so
requires using advanced theoretical methods that go
beyond local approximations. Taking into account spatial
collective electronic fluctuations in a multiorbital frame-
work is computationally demanding, which greatly limits
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possibilities of studying OSMITs to a symmetry-broken
magnetic state [47–58]. Nonlocal collective electronic
fluctuations that would drive the magnetic OSMIT are
strongly entangled in orbital space [61,73], which addi-
tionally complicates realizing the orbital-selective magnetic
state. Existing theoretical studies of magnetic OSMITs
mostly start from models that assume the existence of a
local magnetic moment, which is then explicitly introduced
in the theoretical description [47–53]. While giving inter-
esting insights into the consequences of orbital-selective
magnetic moments, such approaches do not allow one to
decide on their existence. On the contrary, it has been
shown recently that the ordered magnetic state is formed
simultaneously within all orbitals that are coupled by
the local interorbital exchange interaction (Hund’s rule
coupling) [61].
There are only few works, where the OSMIT to the

ordered magnetic state was addressed more accurately
based on interacting electronic models [54–57]. In this
set of works the authors performed dynamical mean-field
theory (DMFT) [74] or mean-field calculations for a two-
orbital Hubbard model on a square lattice. Various ordered
magnetic states were investigated either by introducing two
sublattices or within the dynamical cluster approximation
[75]. The authors argue that having distinct band disper-
sions for different orbitals is crucial for realizing the
OSMIT to the ordered magnetic state, and the proposed
mechanism is not sensitive to the strength of the Hund’s
coupling J [56]. Interestingly, this conclusion seems to be
in contradiction with the absence of an OSNT found
recently in a similar system in the case of a finite
Hund’s coupling J [61].
In this Letter using an advanced many-body approach

that includes spatial fluctuations beyond DMFT, we pro-
pose a mechanism for the orbital-selective Néel transition
(OSNT) that can be realized in a system with different
bandwidths in the absence of Hund’s coupling for an
arbitrarily strong local Coulomb interaction. We find that
the OSNT occurs differently in the weak and strong-
coupling regimes, which can be associated respectively
with the Slater and Heisenberg mechanisms of the Néel
transition. Interestingly, despite the absence of Hund’s
coupling, the electrons in different orbitals still do interact
by means of the interorbital local Coulomb potential. This
interaction manifests itself in the Kondo screening of the
local magnetic moment of the narrow orbital by itinerant
electrons of the wide orbital, which results in a simulta-
neous formation of the local moment in both orbitals.
Model and method.—We consider a half-filled two-

orbital Hubbard model on a cubic lattice described by
the Hamiltonian

H ¼
X

jj0;l;σ

tljj0c
†
jlσcj0lσ þ

1

2

X

j;flg;σσ0
Ul1l2l3l4c

†
jl1σ

c†jl2σ0cjl4σ0cjl3σ;

where cð†Þjlσ is the annihilation (creation) operator for an
electron on the lattice site j, in orbital l∈ f1; 2g, with spin
projection σ ∈ f↑;↓g. tljj0 is the intraorbital (l) hopping
amplitude between sites j and j0. We restrict ourselves to
nearest-neighbor hoppings, and choose the half-bandwidth
of the narrow band as our unit of energy, i.e., t1jj0 ¼ 1=6.

The second band is double as wide with t2jj0 ¼ 1=3.
The interaction is parametrized in the Kanamori form
that includes the intraorbital Ullll ¼ U, interorbital
Ull0ll0 ¼ U − 2J, spin flip Ull0l0l ¼ J, and pair hopping
Ulll0l0 ¼ J terms. J is the Hund’s rule coupling.
An accurate description of the Néel transition requires

accounting for long-range magnetic fluctuations and their
influence on the electronic excitations (see, e.g., Refs. [76–
78] and references therein). In the multiorbital framework
both of these aspects can be consistently taken into account
by an advanced many-body approach dubbed “dual triply
irreducible local expansion” (D-TRILEX) [79–81], which
extends the “TRILEX” approach of Refs. [82,83] to the
dual fermion [84–87] and boson [88–96] variables. In this
method, nonlocal collective electronic fluctuations are
treated self-consistently [97–100] by performing a dia-
grammatic expansion around DMFT [101,102]. A decisive
advantage of the D-TRILEX method is its rather
simple diagrammatic structure, which facilitates tractable
numerical calculations within a multiorbital framework
[61,73,103,104]. Crucially, despite its relative simplicity,
D-TRILEX maintains the same level of accuracy as
significantly more complex diagrammatic approaches,
providing good results for both single and two-particle
observables [80,81] and especially for the Néel temperature
(See Fig. 6.13 in [78]) relevant for the current work.
Results.—We have first performed D-TRILEX calcula-

tions for the two-orbital Hubbard model in the absence of
Hund’s coupling (J ¼ 0). We calculate the orbital-selective
Néel temperatures (TN) by identifying the divergences of
the orbital components of the static (ω ¼ 0) spin suscep-
tibility Xsp

ll0 ðq;ωÞ ¼ hmz
q;ω;lm

z
−q;−ω;l0 i obtained at the anti-

ferromagnetic (AFM) wave vector Q ¼ fπ; π; πg [61].
Here, mz

q;ω;l ¼
P

k;ν;σ c
†
kþq;νþω;l;σσ

z
σσck;ν;l;σ, and σz is the

familiar Pauli matrix. Details of the calculations are
presented in the Supplemental Material (SM) [105]. The
results are summarized in Fig. 1.
In the weak-coupling regime (U < 1.95) upon lowering

the temperature the l ¼ 1 (narrow orbital) component of the
AFM susceptibility diverges first, while the l ¼ 2 (wide
orbital) component remains finite at the transition point.
This behavior indicates the OSNT to a phase, where
electrons in the narrow orbital order antiferromagnetically,
while the wide orbital stays itinerant. At U > 1.95 we
observe the opposite situation: the transition to the ordered
AFM state occurs first for the wide orbital, while the narrow
orbital remains itinerant. Remarkably, the system exhibits
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an OSNT for any value of the interaction, except for U ≃
1.95 where TN1

¼ TN2
.

We now argue that the choice of vanishing Hund’s
coupling made above is essential for these results. Indeed,
in a multiorbital system magnetic fluctuations of different
orbitals are coupled due to the presence of Hund’s
exchange coupling J. This coupling is realized through
interorbital three-point (Hedin [106]) vertex corrections
that are present in the self-energy and the polarization
operator for any finite value of J. These vertices connect the
renormalized interaction in the spin channel to the elec-
tronic Green’s function and thus are responsible for mixing
different orbital contributions to the spin susceptibility.
Strong spatial magnetic fluctuations enhance this mixing,
which leads to a simultaneous Néel transition for different
orbitals [61]. Therefore, realizing the OSNT necessarily
requires magnetic fluctuations of different orbitals to
decouple. This happens in the absence of Hund’s coupling,
since in this case the interorbital components of the vertex
function in the spin channel are identically zero. In realistic
materials, the Hund’s coupling can be suppressed, e.g.,
through the Jahn-Teller effect of phonons, which, as has
been demonstrated for fullerides, can result even in a sign
change of J [107–111].
Since at J ¼ 0 magnetic fluctuations of different orbitals

decouple, the proposed mechanism of the OSNT can be
qualitatively illustrated on the basis of single-orbital cal-
culations. Let us consider two separate single-orbital
Hubbard models on a cubic lattice with different band-
widths defined by the nearest-neighbor hoppings t1 ¼ 1=6

(narrow orbital) and t2 ¼ 1=3 (wide orbital). In Fig. 2 we
compare the Néel temperatures for these two models as a
function of the interaction U. The Néel phase boundaries
for the narrow (red) and wide (blue) orbitals are obtained by
rescaling the results of DMFT calculations taken from
Ref. [112].
Figure 2 demonstrates that in the weak coupling regime

the Néel temperature of the narrow orbital is larger than the
Néel temperature of the wide orbital (TN1

> TN2
).

However, in the strong coupling regime the relation
between the Néel temperatures is opposite, namely
TN1

< TN2
. This result can be explained by the fact that

in the Slater regime of magnetic fluctuation TN increases
with increasing interaction. For a given value ofU, the ratio
U over the bandwidth, U=W, is stronger for the narrow
orbital, which results in a higher TN for this orbital at weak
coupling. In contrast, in the Heisenberg (strong-coupling)
regime the Néel temperature is determined by the exchange
interaction TN ∼ t2=U, and the latter is larger for the wide
orbital.
These two regimes of magnetic fluctuations can be

distinguished by the absence (Slater) or presence
(Heisenberg) of a local magnetic moment in the system.
In the single-orbital Hubbard model the formation of the
local magnetic moment has been studied in Ref. [96]. The
critical point at the Néel phase boundary, where the local
magnetic moment starts to form prior to the transition, is
depicted in Fig. 2 by “þ”markers. It occurs close to the top

FIG. 2. Sketch of the proposed mechanism for the OSNT. Red
and blue curves show the Néel phase boundaries predicted by
DMFT for a half-filled single-band Hubbard model on a cubic
lattice as a function of the local interaction strengthU. Results are
taken from Ref. [112] and rescaled to get the phase boundaries for
two different bandwidths defined by the nearest-neighbor hop-
ping amplitudes t1 ¼ 1=6 (red) and t2 ¼ 1=3 (blue). “þ”markers
indicate the point on each phase boundary at which the local
magnetic moment is formed (see Ref. [96]), which separates the
Slater (at smaller U) and Heisenberg (at larger U) regimes of the
Néel transition.

FIG. 1. Néel temperature for the two-orbital half-filled Hubbard
model on a cubic lattice with different bandwidths of the two
orbitals. Results are obtained using D-TRILEX and DMFT for
different values of the Hund’s exchange coupling J. At finite J the
Néel transition occurs simultaneously for both orbitals (black
“triangle” and “cross”markers). The OSNT scenario is realized in
the absence of J: at U < 1.95 upon decreasing the temperature
the Néel transition occurs first for the narrow orbital (Orb 1, red
color), and at U > 1.95 for the wide orbital (Orb 2, blue color).
Critical interactions at which the local magnetic moment is
formed above the Néel transition are indicated by arrows.
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of each dome-shaped curve. Remarkably, at intermediate
couplings (1.5≲ U ≲ 2.7) one may expect a nontrivial
regime, where the Néel transition occurs first for the wide
orbital, where the local magnetic moment is not formed yet,
while the narrow orbital remains itinerant but exhibiting a
local moment.
To distinguish between the Slater and Heisenberg mech-

anisms of the OSNT we perform calculations for the local
magnetic moment along the lines of Ref. [96]: Excluding the
contribution of the itinerant electrons, we study the local free
energy F ½M1;M2�, which is associated with the behavior of
the local magnetic moment M1 and M2 of each orbital (for
details see Ref. [96]). Because of to the decoupling of the
magnetic fluctuations in the two orbitals, the free energy
takes the form F ½M1;M2�¼F ½M1�þF ½M2�. The corre-
sponding result for the free energy obtained along the Néel
phase boundary is shown in Fig. 3. Remarkably, despite the
decoupling, the local magnetic moment in both orbitals is
formed almost at the same point at the Néel phase boundary
(U1 ¼ 3.55 for Orb 1 and U1 ¼ 3.65 for Orb 2) as depicted
by arrows in Fig. 1). This effect cannot be explained by a
single-band picture that does not account for the interorbital
Coulomb interaction Ull0ll0 . This interaction does not couple
the magnetic fluctuations of different orbitals but is respon-
sible for spin-flip processes that couple different orbitals.
These processes allow for Kondo screening of the local
magnetic moment, which otherwisewould have been formed
at the narrow orbital at smaller values of U by itinerant
electronic fluctuations of the wide orbital. As a result, in the
intermediate coupling regime the OSNT is governed by the
Slater mechanism, although the Néel transition first occurs
for the wide orbital and not for the narrow orbital as in the
weak-coupling case.
To complete the story, we also perform AFM (two-

sublattice) DMFT calculations for J ¼ 0. In this case, in the
weak-coupling regime, the Néel transition occurs first for
the narrow orbital (TN ¼ 0.023, U ¼ 1.2, red “×” marker
in Fig. 1) and at larger values of the interaction—for the

wide orbital (TN ¼ 0.105, U ¼ 3.6, blue “þ” marker in
Fig. 1). The two Néel temperatures coincide at T ¼ 0.029
and U ¼ 2.4. We observe that at small values of the
interaction DMFT underestimates the transition temper-
ature, and the crossing point TN1

¼ TN2
is shifted to smaller

temperature and larger U compared to the D-TRILEX
result. At larger interaction U DMFT strongly overesti-
mates the transition temperature.
In addition, we perform both DMFT and D-TRILEX

calculations for a nonzero value of the Hund’s coupling
J ¼ U=6. As expected from Ref. [61], in this case the
OSNT transforms into an ordinary Néel transition that
occurs simultaneously for both orbitals. The corresponding
Néel temperatures are shown in Fig. 1 for U ¼ 1.2 and
U ¼ 2.4 by black “▴” (D-TRILEX) and black “×”
(DMFT) markers. We find that at both interaction strengths
DMFT predicts higher Néel temperatures compared to
D-TRILEX, which is consistent with single-orbital calcu-
lations [76–78]. To provide more insights into how the
Hund’s coupling destroys the OSNT, in Fig. 4 we show the
evolution of the Néel temperature as a function of J. As
expected, at weak coupling (U ¼ 1.2, red curve) TN
depends almost linearly on J, while at larger interactions
(U ¼ 2.4, blue curve) deviations start to show. The OSNT
scenario is realized only in the absence of Hund’s coupling,
where the two orbitals have different Néel temperatures
labeled as “Orb 1” and “Orb 2” in Fig. 4. Nevertheless, as
we demonstrate in SM [105], in the J ≠ 0 case the spin
susceptibilities of the two orbitals also become different
above the Néel transition. At larger values of J the
difference between the two susceptibilities is smaller
because Hund’s coupling causes a mixing of contributions
of different orbitals [73]. Upon decreasing J the difference

FIG. 3. Local free energy F ½M1;M2� as a function of the value
of one of the two local magnetic moments M1 (Orb 1, left panel)
and M2 (Orb 2, left panel) obtained along the Néel phase
boundary. The transition from a parabolic form of the free energy
to a double-well potential form signals the formation of the local
magnetic moment, which for both orbitals occurs approximately
at the same value of the interaction U ¼ 3.55 (Orb 1) U2 ¼ 3.65
(Orb 2). FIG. 4. Néel temperature as a function of the Hund’s coupling

J. Model parameters are the same as in Fig. 1. Results are
obtained using D-TRILEX for U ¼ 1.2 (red) and U ¼ 2.4 (blue).
At J ¼ 0 the system displays the OSNT with different Néel
temperatures for the two orbitals indicated by “Orb 1” and
“Orb 2” labels.
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between the susceptibilities increases and they become
similar only in the vicinity of the Néel transition. At J ¼ 0
the mixing between the two orbital components disappears,
which eventually leads to the OSNT.
These findings motivate us to study the influence of

long-range magnetic fluctuations on the magnetic OSMIT
proposed previously in Ref. [56] on the basis of DMFT
calculations. Here, we consider a two-orbital Hubbard
model on a square lattice with nearest-neighbor t1 ¼ t2 ¼
1 and next-nearest-neighbor t01 ¼ 1, t02 ¼ 0 hopping ampli-
tudes, Coulomb interaction U ¼ 4, and Hund’s coupling
J ¼ 1. Within DMFT, for this set of model parameters the
system lies well in the orbital-selective phase, characterized
by localized Néel AFM behavior for the l ¼ 1 orbital, while
the l ¼ 2 orbital remains itinerant [56]. Within D-TRILEX,
on the contrary, for this set of model parameters we do not
observe any signature of an OSMIT, in line with the above
findings and Ref. [61]. Instead, within D-TRILEX we
observe a conventional (non-orbital-selective) Néel tran-
sition that occurs simultaneously for both orbitals. Indeed,
in SM [105] we show that both orbital components of the
AFM susceptibility diverge at the same critical temperature
TN ≃ 0.1. The absence of the orbital-selective phase is thus
due to the effect of long-range electronic correlations not
captured in the cluster DMFT calculations of Refs. [54–57].
Conclusions.—In this Letter, we have established strat-

egies for realizing orbital-selective Néel-ordered magnetic
states. We have demonstrated that in the absence of Hund’s
exchange coupling J the two-orbital Hubbard model with
different bandwidths can indeed undergo an OSNT at any
interaction strength (except one specific value of the
interaction). Remarkably, the OSNT occurs differently in
the weak and strong-coupling regimes of interaction. In the
weak-coupling regime it is governed by a Slater mecha-
nism, namely in the absence of a local magnetic moment.
Consequently, the Néel transition occurs first for the narrow
orbital, while the wide orbital remains itinerant. In the
strong-coupling regime, a local magnetic moment is
formed, and the Heisenberg mechanism of the OSNT leads
to localized behavior occurring first in the wide orbital,
while the narrow orbital stays itinerant. Interestingly, at
intermediate couplings we have found a nontrivial regime,
where the transition occurs first for the wide orbital, but the
local magnetic moment is not yet formed. The latter is
Kondo screened by electronic fluctuations of the wide
orbitals. This results in a Slater mechanism of the OSNT at
intermediate interaction strengths. Most intriguingly, in the
presence of Hund’s coupling the OSNT is destroyed
altogether: Hund’s exchange effectively couples orbital
degrees of freedom, and is thus detrimental to orbital-
selective behavior. The ubiquity of Hund’s exchange in
real materials may provide a natural explanation for
OSNTs likely being rather the exception than the rule.
Nevertheless, a systematic search for OSNT in real
materials might prove worthwhile in view of potential

applications in spintronics devices, e.g., for memory
applications, spin valves, or spin-charge converters. Our
work strongly suggests a materials screening among
materials with as low as possible Hund’s exchange cou-
pling. A trivial corollary of this argument is obtained by
replacing orbital indices by site indices: thanks to the
intrinsically weak direct intersite exchange interaction, site-
selective magnetic orderings in materials with several
correlated sites per unit cell should be found more easily
than orbital-selective OSNTs.
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