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Linear elastic fracture mechanics theory predicts that the speed of crack growth is limited by the
Rayleigh wave speed. Although many experimental observations and numerical simulations have
supported this prediction, some exceptions have raised questions about its validity. The underlying
reasons for these discrepancies and the precise limiting speed of dynamic cracks remain unknown. Here,
we demonstrate that tensile (mode I) cracks can exceed the Rayleigh wave speed and propagate at
supershear speeds. We show that taking into account geometric nonlinearities, inherent in most materials, is
sufficient to enable such propagation modes. These geometric nonlinearities modify the crack-tip
singularity, resulting in different crack-tip opening displacements, cohesive zone behavior, and energy
flows towards the crack tip.
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The speed at which cracks propagate is a fundamental
characteristic that has implications in various fields such as
material design [1], earthquake mechanics [2], and even the
phenomenon of popping balloons [3]. Linear elastic frac-
ture mechanics (LEFM) [4] plays a crucial role in predict-
ing crack speed cf by establishing an energy balance
between the energy release rate, which drives crack growth,
and the fracture energy (Γ), which resists it. This frame-
work, which assumes that Γ is dissipated solely at the crack
tip, predicts that the material Rayleigh wave speed cR
serves as a limiting speed for crack propagation. This
prediction has been experimentally confirmed [5]. Crack
growth occurring at speeds between cR and the shear wave
speed cs is considered physically inadmissible, as it would
generate energy rather than dissipate it. Nevertheless, LEFM
predicts that cracks can propagate at supershear speeds
cf > cs if one assumes that dissipation occurs within a
spatially extended zone around the crack tip [4,6]. However,
the specific conditions that allow for supershear propagation
of, particularly, opening (mode I) cracks and the processes
involved in the transition through the forbidden speed range
remain largely unknown.
Supershear crack growth is predominantly observed

in cracks under shear (mode II) loading conditions, as
described theoretically [7,8] and widely supported by nu-
merical simulations [8–10], experimental studies [11–15],
and natural observations [2,16–19]. Supershear propaga-
tion is generally associated with high-stress states [8,9]. In
contrast, supershear propagation in cracks under mode I
loading conditions is relatively rare. Molecular dynamics
(MD) simulations [20,21] and lattice models [22–25] have
shown instances of supershear crack speeds, while exper-
imental observations have been reported for rubberlike
materials [3,26,27], hydrogels [28] and structural materials

where the loading is applied directly at the crack tip by
some extreme conditions [29]. The presence of some type
of nonlinearity, extending beyond the limits of LEFM, is a
recurring feature in both simulations and experiments,
indicating its potential contribution to enabling supershear
growth in tensile cracks. However, the specific type of
material nonlinearity required for this phenomenon, as
well as its generality across different materials, remains
unknown.
Here, we investigate the minimal requirements for the

transition to supershear propagation of tensile cracks using
numerical simulations. Our simulations reveal that the
presence of geometric nonlinearities alone is the primary
factor driving supershear crack growth resulting from a
continuous acceleration through the transonic speed range.
Since such nonlinearities are generally present in materials,
these findings demonstrate that supershear propagation is
an inherent characteristic in dynamic crack problems,
independent of the specific material constitutive laws.
We consider the most generic and simple model without

introducing a nonlinear material constitutive law or any
additional material parameter. The material deformation is
described by a two-dimensional plane-strain tensor Eij,
defined as

Eij ¼
1

2

�
∂ui
∂xj

þ ∂uj
∂xi

þ α
∂uk
∂xj

∂uk
∂xi

�
; ð1Þ

where ui and xi are the ith displacement and coordinate
component (i≡ x, y), respectively. To easily switch
between linear and geometrically nonlinear (GNL) cases,
we introduce the factor α∈ f0; 1g. Therefore, for α ¼ 1, Eij

corresponds to the Green-Lagrangian strain tensor, while
for α ¼ 0, it is its linear approximation, the infinitesimal
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strain tensor εij [see Fig. 1(a)]. In our model, we employ
a linear elastic constitutive law, as described by the
shear modulus μ and Poisson’s ratio ν, to relate the two-
dimensional 2nd-Piola-Kirchhoff stress tensor σij to Eij,
through

σij ¼ 2μ

�
Eij þ

ν

1 − 2ν
δijEkk

�
; ð2Þ

where δij is the Kronecker delta. Notice that, as sketched
in Fig. 1(a), the GNL model (α ¼ 1) induces a strain-
enhancing effect with respect to the linear case (α ¼ 0). The
advantage of this model, compared to one with a non-linear
constitutive law (e.g., neo-Hookean), is that it allows
isolation of the effect of nonlinearity on the crack propa-
gation. In the following, we choose μ ¼ 39.2 kPa and
ν ¼ 0.35, and then solve the problem for the conservation
of linear momentum (full details provided in [30]).
Fracture of the material is modeled using a cohesive

approach, where cohesive tractions across the crack plane
represent the progressive failure of the material. In our
model, see Fig. 1(a), we adopt a linear cohesive law with
σc ¼ 20 kPa and Γ ¼ 15 J=m2, which gives a critical
opening distance of δc ¼ 1.5 mm (for details, see
Ref. [30]). This cohesive approach allows for the repre-
sentation of a cohesive zone that captures localized
spatially distributed dissipation, providing an approxima-
tion of the process zone observed in natural fractures. We

use standard numerical techniques, detailed in [30], to
accurately simulate crack growth.
We examine the behavior of fracture growth in a two-

dimensional plane-strain system of height H ¼ 102.6 mm
and length L ¼ 154 mm mimicking the most common
experimental configuration [see Fig. 1(a)]. The dimensions
are chosen sufficiently large to avoid any wave reflections
that could affect the results (see Ref. [30]). We apply a
uniform and constant remote displacement Δ ≫ δc, which
results in a uniform stretch λ ¼ 1þ ðΔ=HÞ on the entire
sample. We initiate crack growth at time t ¼ 0 by arti-
ficially introducing a seed crack that slightly exceeds
Griffith’s critical length for plane-strain conditions given
by LG ¼ 2μΓ=πð1 − νÞσ2∞ ¼ 5.1 mm where σ∞ is the
applied stress induced by the imposed remote displacement
Δ. The growth of the crack is confined to a (weak) plane
perpendicular to the imposed stretch and aligned with the
seed crack, restricting its propagation to a straight path
y ¼ 0 [as illustrated in Fig. 1(a)]. This constraint effecti-
vely prevents crack branching instabilities, commonly
observed [31,32], imitates the grooves used in experi-
ments [28,31], and enables a thorough exploration of crack
speeds across the full range.
First, we consider the linear elastic case (α ¼ 0).

Immediately after the seed crack is introduced, it becomes
unstable, accelerates, and propagates through the entire
interface [Fig. 1(b), left]. The crack-tip position, as defined
by the transition from intact material to the cohesive zone
[see Fig. 1(b), left], moves through the interface, leading
to a growing crack length aðtÞ. We observe that the crack
speed, as computed by cf ¼ da=dt, approaches cR [see
Fig. 1(b), left] but does not exceed it respecting the limiting
speed given by LEFM. Considering the exact same model
with the sole difference of including geometric nonlinear-
ities (α ¼ 1), we observe a different crack propagation
[Fig. 1(b), right]. In this case, the crack continuously
surpasses both cR and cs, and propagates at supershear
speeds. These results reveal an unknown mechanism for
supershear propagation, which is simply due to geometric
nonlinearities.
For a quantitative evaluation of the different crack

growth behavior, we consider the instantaneous crack-tip
dynamics, as shown in Fig. 2. For uniform systems, LEFM
predicts that cf=cR ≈ 1 − LG=a (details provided in [30]),
which shows that a LEFM-governed crack remains sub-
Rayleigh—even if it gets infinitely long. We observe that
the simulation with a linear elastic material (α ¼ 0) agrees
quantitatively well with the LEFM prediction (Fig. 2).
Specifically, it asymptotically approaches cR, satisfying
the theoretical limit by remaining at sub-Rayleigh speeds
for all crack lengths. In contrast, the simulations with
geometric nonlinearities (α ¼ 1) do not follow the LEFM
prediction and exceed the limiting speed cR.
These results reveal a few important mechanisms for

crack dynamics of geometrically nonlinear materials. First,

FIG. 1. Model setup and illustrative examples. (a) 2D model
configuration with an elastic material and a weak cohesive
interface. (b) Temporal evolution of interface for simulations at
an imposed stretch λ ¼ 1.125 with (left) linear elastic material
(α ¼ 0) and (right) geometric nonlinear elastic material (α ¼ 1).
Blue indicates intact material, turquoise the cohesive zone area,
and yellow the broken interface. The crack speed cf is indicated
by white lines, and the Rayleigh wave speed cR by a black
dashed line.
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simulations at different stretch levels are superimposed
when normalized by Griffith’s length (see Fig. 2), which
suggests that there is a crack-tip equation of motion for
geometrically non-linear materials. Second, the crack
speeds in the GNL case are consistently and significantly
above the LEFM prediction even in the sub-Rayleigh
regime (i.e., cf < cR), indicating that the LEFM energy
balance is fundamentally changed. Third, the crack accel-
erates simply through the transonic speed range ½cR; cs� to
reach supershear speeds (cf > cs). This is fundamentally
different from the sub-Rayleigh–to–supershear transition
observed in shear cracks, in which a secondary crack ahead
of the main crack is required to allow for a crack speed
jump (i.e., discontinuity) across the forbidden transonic
speed range [9,12,15].
Next, we focus on the crack-tip opening displacement

to determine the mechanisms allowing for propagation
through the transonic regime. For the linear case (α ¼ 0),
see Fig. 3, the crack opening δ follows a square-root
behavior outside the cohesive zone, which is, as expected,
consistent with LEFM. The GNL material, however,
presents a different behavior. Close to the crack-tip (but
outside the cohesive zone), the exponent increases (see
inset in Fig. 3). This effect becomes even stronger when the
crack surpasses cR (see Fig. 3). These results suggest that
the square-root singular behavior of the strain and stress
fields is not relevant when GNL effects are considered. This
calls into question the foundations of brittle fracture
mechanics, which are based mainly on the consequences
of the square root behavior for energy budgeting and, thus,
for the crack equation of motion. Such an observation may
waver one of the fundamental corollaries of LEFM: the
maximum speed allowed by the rate of energy flow toward
the crack tip.
To visualize further the modified near-tip fields and the

associated energy flow to the crack tip, we compute the

Poynting vector [4,20] (details in [30]). For the linear
material, the Poynting vector field takes the ordinary shape
and values [see Fig. 4(a)]. At the same sub-Rayleigh crack
speed, the GNL material presents a significantly different
pattern [see Fig. 4(b)]. While the magnitude of the Poynting
vector is lower in the vicinity of the crack tip (note the
absence of blue color), it is somewhat increased further
away (see brighter red at jxj > a). Further changes occur at
transonic crack speeds [see Fig. 4(c)], where the magnitude
of the Poynting vector increases but remains below the
values observed in the linear material, and the lobes are
inclined to the back of the crack, which are forerunners of
the Mach cone in the supershear propagation regime [20].
These modifications to the near-tip crack fields confirm that
the crack dynamics changed due to the GNL material
behavior and point to a totally different energy budgeting
even in the subshear propagation regime.
The modified energy flux to the crack tip also causes

changes to the local dissipation, which manifests itself in
the properties of the cohesive zone. From the near-tip
Poynting vector fields [see Figs. 4(a)–4(c)], we observe an
increase in the cohesive-zone size XðcfÞ for the GNL case.
Quantitatively, the cohesive zone size for the linear material
follows, after some initial perturbations from the nuclea-
tion, the LEFM prediction [4] with a Lorentz contraction
from its static size X0 to zero towards cR [see Fig. 4(d)]. In
contrast, the cohesive zone in the GNL material is con-
siderably larger and appears to be relatively constant at
X ≈ 0.4X 0 while the crack traverses the transonic regime
and reaches supershear propagation. This suggests that
kinetic energy and bulk wave interference responsible for
the Lorentz contraction in LEFM yield completely different
results in materials where GNL effects are dominant. The
fact that X is finite in the transonic regime indicates that the

FIG. 2. Crack-tip dynamics for three different values of
stretches λ ¼ 1.0875, 1.1, and 1.125. The crack dynamics are
shown in green shades for α ¼ 0, and purple shades for α ¼ 1,
respectively. The red solid line is the LEFM crack-tip equation of
motion.

FIG. 3. Crack-tip opening displacement, δ, for simulations at
λ ¼ 1.1 with small strain α ¼ 0 (shown in green) and geometric
nonlinear strain α ¼ 1 (shown in purples). For α ¼ 1, the light
purple corresponds to the sub-Rayleigh speed, cf ≈ 0.93cR, and
the dark purple corresponds to subsonic speed, cf ≈ 1.07cR. The
cross marks indicate the ends of the cohesive zone. (inset) A log-
log plot of δ as a function of r ¼ ðaðtÞ − xÞ=LG, the distance
from the crack tip. The black and red lines indicate r1=2 scaling.
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Lorentz contraction is superseded by a different mechanism
that could be related to either the cohesive zone response or
the nonsquare root singular behavior near the crack tip.
The present study confirms previous numerical simu-

lations related to the limiting speed of propagating
cracks [20–25]. In MD simulations, where hyperelasticity
was assumed, supershear propagation was related to an
increased local wave speed in the highly stretched region at
the crack tip compared to the far-field wave speed. In
simulations using a lattice model, a completely different
branch of supershear solutions for propagating cracks was
found for stretches above a critical value. However, the
novelty of the present work is to show that supershear
propagation is possible within a continuum elastic frame-
work. We show that GNL is the principal ingredient to
“break” the barrier of Rayleigh wave speed for tensile crack
propagation and that there is no forbidden interval velocity.
Tensile cracks accelerate smoothly from the sub-Rayleigh
regime to the supershear regime. These observations are
robust as they do not depend on the specific choice of
material parameter values (see Ref. [30]). Moreover,
they agree with experiments on crack propagation in
hydrogels [28] and rubberlike materials [26,27]. The
common thread between our model and these experiments
is that the materials considered exhibit a nonlinear elastic
response, for which LEFM is possibly not an adequate
framework. Note that in the case of hydrogels, experiments
show that supershear rupture is enabled above an applied
stretch level [28]. We believe that the existence of such a
critical stretch is caused by the velocity dependence of the
fracture energy of the hydrogel. Our model is consistent
with a constant Γ that allows the crack to always be in an
accelerating phase (both in LEFM and certainly in GNL
frameworks). For GNL simulations, our system size and
other crack nucleation aspects prevent us from determining
the terminal supershear speed of the crack, which is beyond
the scope of this study.

Let us conclude with a discussion on possible directions
for future work. The results for the crack-tip opening
displacement, energy release rate, and cohesive zone size
point toward the conclusion that the elastic field distribu-
tion and energy budgeting in the vicinity of the crack tip of
a GNL material exhibit completely different behaviors than
that of a linear elastic material. Recent attempts to uncover
the underlying mechanisms tackled such problems pertur-
batively [33]; however, our results lean toward a non-
perturbative effect. We believe that the methods developed
for static cracks in nonlinear materials [34] should be
generalized to the dynamic problem. Indeed, important
questions arise related to a material’s nonlinear response
which produces either strain stiffening or strain softening at
high stretches. How does it affect our findings and is any
nonlinearity capable of allowing supershear cracks? For
example, it is believed that dynamic crack growth in a
purely neo-Hookean material follows LEFM solutions [33].
How does this reconcile with the fact that the nonlinearity
used in our model is present in any material? Why is it
believed that supershear crack propagation is not possible
in engineering brittle materials such as glass? For this, other
instabilities may occur at lower speeds (such as micro-
branching, oscillatory instabilities, and instabilities along
the crack front) prevent cracks from reaching transonic and
supershear speeds. Moreover, the brittleness of such
materials does not allow them to store enough potential
energy prior to crack propagation. This would explain why
supershear cracks are commonly associated with direct
extreme loading on the crack surface [11,29].
Finally, the classical LEFM theory developed over the

last century [4,6] has been a strong backbone for our
understanding of material fracture. Here, we demonstrate
its breakdown by showing that naturally existing geometric
nonlinear strain causes supershear crack propagation,
which opens new perspectives in dynamic fracture
mechanics.

FIG. 4. Snapshots of energy flow density, represented as the magnitude of Poynting vector Pj (see Ref. [30] for more details). All the
snapshots are for an imposed stretch λ ¼ 1.125 (a) α ¼ 0 at sub-Rayleigh speed cf ≈ 0.93cR (b) α ¼ 1 at sub-Rayleigh speed, cf ≈
0.93cR (c) α ¼ 1 at subsonic speed, cf ≈ 1.04cR. (d) Evolution of cohesive zone size XðcfÞ for λ ¼ 1.125 with small strain α ¼ 0 and
geometric nonlinear strain α ¼ 1. The cohesive zone size is normalized by static cohesive zone size X0. The red solid line shows the
analytical solution for cohesive zone size from LEFM.
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