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When the electron-phonon coupling is quadratic in the phonon coordinates, electrons can pair to form
bipolarons due to phonon zero-point fluctuations, a purely quantum effect. We study superconductivity
originating from this pairing mechanism in a minimal model and reveal that, in the strong coupling regime,
the critical temperature (Tc) is only mildly suppressed by the coupling strength, in stark contrast to the
exponential suppression in linearly coupled systems, thus implying higher optimal Tc values. We
demonstrate that large coupling constants of this flavor are achieved in known materials such as
perovskites, and discuss strategies to realize such superconductivity using superlattices.
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The electron-phonon (e-ph) interaction plays an essential
role in many quantum materials that exhibit superconduc-
tivity (SC) [1–3]. It is generally assumed that pairing
primarily arises from linear couplings between electron
densities and phonon coordinates. In this conventional
setup, it has long been recognized that the superconducting
critical temperature (Tc) is small both for large and small
values of the dimensionless electron-phonon coupling,
λ≡ ρ0Ue-ph, where Ue-ph is the characteristic energy scale
of phonon-induced attraction between two electrons, and ρ0
is the density of states at the Fermi energy, EF. In the
weak coupling, Bardeen-Cooper-Schrieffer (BCS) limit,
this reflects an exponentially small pairing scale, Δ∼
exp½−1=λ�, while for strong coupling regime, Tc is
set by the condensation temperature of Cooper pairs
(preformed bipolarons), which is inversely proportional
to their parametrically heavy effective mass m⋆ ∼
exp½2Ue-ph=ðℏω0Þ�, where ω0 is a characteristic phonon
frequency [3–11]. The maximum Tc for the (often realistic)
case ℏω0 ≪ EF has been estimated (on the basis of
numerics) to arise for λ ∼ 1, where kBTc is a small fraction
(∼0.1) of ℏω0 [4,12–15]. (This heuristic bound could be
violated in models with a large number of comparably
strongly coupled phonon modes [16], or when the phonon
couples to the electron hopping matrix elements [17–30]).
In this Letter, we consider e-ph couplings that are

quadratic in the phonon coordinates and linear in the
electron density introduced previously in context of various
systems [31–52] but for which, to date, the strong-coupling
regime and optimal Tc’s have not been considered. We find
that this type of coupling leads to the formation of small
bipolarons by a purely quantum mechanical effect—a
reduction of the zero-point energy of the phonons, without
any accompanying lattice displacement. As a result, the
exponential mass enhancement characteristic of the linear

problem is replaced by a much weaker, polynomial mass
enhancement, m⋆ ∼U3=2

e-ph. Moreover, even in the extreme
strong-coupling limit (Ue-ph → ∞), where charge density
wave order always precludes SC in the linearly coupled
case, in the present case we find a finite range of densities in
which the ground state is SC. These results suggest higher
optimal Tc values than achievable with linear couplings.
We theoretically estimate the strengths of quadratic e-ph
coupling in real materials and show that large coupling
strengths saturating the estimate are realizable in real
materials. We also show that engineered two-dimensional
(2D) superlattices can help to achieve strong-coupling SC
of this kind and potentially lead to high Tc values.
The model.—Studies of the Holstein model [53] have led

to significant advances in the understanding of the generic
physics of the electron-phonon system in real materials,
despite its simple form [54–69]. Following the same spirit,
in this work, we study a direct generalization, the quadratic
Holstein model [51,52]
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where ĉiσ annihilates a spin-σ electron on site-i, n̂i ¼P
σ ĉ

†
iσ ĉiσ is the electron density, X̂i and P̂i are the

coordinate and momentum operators of the optical phonon,
K and M are the bare stiffness and ion mass, and g is a
dimensionless coupling constant. It must be assumed that
g > −1=2 for the stability of this model. (When g < −1=2,
higher order terms in the phonon potential must be
included.) On a site with m ¼ 0, 1, 2 electrons, the phonon
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oscillates with frequency ωm ≡ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmg

p
, where ω0 ≡ffiffiffiffiffiffiffiffiffiffiffi

K=M
p

is the bare phonon frequency of the system. Below
we will show that Ue-ph ¼ ℏω1 − ℏðω2 þ ω0Þ=2.
The more familiar (linear) Holstein model, to which we

will make comparisons, is of the same form but with
Kgn̂iX̂

2
i → −2αn̂iX̂i, and Ue-ph ¼ α2=K.

Quantum bipolarons.—To understand the origin of the
effective electron-electron attraction, consider the atomic
limit where t ¼ 0. Since now the number of electrons on
each site is conserved, we can evaluate the effective
interaction between a pair of electrons by comparing the
ground-state energy when they are placed on two distinct
sites, or both placed on the same site. As illustrated in
Fig. 1, in the linear Holstein model, the equilibrium value
of the phonon coordinate depends on the occupancy of the
site, hX̂ii ¼ hn̂iiα=K, and correspondingly there is an
effective bipolaron binding energy Ue-ph ¼ α2=K that is
classical in the sense that it is independent of M, even as
M → ∞. For the quadratic Holstein model, hX̂ii ¼ 0 is
independent of the electron occupation number; however,
the phonon quantum zero-point energy is occupation-
number-dependent as long as M is finite. Specifically,
the energy of one doubly occupied site and one empty site
is lower than that of two singly occupied sites by an amount

Ue-ph ¼ ℏω0

� ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g

p þ 1

2

�
: ð2Þ

Importantly, the energy gain of binding two electrons
together is always positive for any g > −1=2 [since
ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

0 þ ω2
2Þ=2

p
> ðω0 þ ω2Þ=2]. The origin of this

attraction is purely a quantum mechanical effect that is

intrinsically different from that of the linear e-ph coupling;
for this reason, we call the bipolarons formed by this
mechanism “quantum bipolarons” [70].
Weak-coupling limit.—When g → 0, the characteristic

energy scale, Ue-ph ∼ ℏω0g2=8, appears as the effective
interaction vertex in the diagrammatic treatment [45,46].
As long as λ ¼ ρ0Ue-ph ≪ 1, the standard BCS analysis
applies, and we obtain the familiar expression for Tc
[73,74]:

TBCS
c ∼minðℏω0; EFÞe−1=ðρ0Ue-phÞ; ð3Þ

where EF is the Fermi energy and ρ0 is the density of states
at the Fermi level. One interesting case is small electron
density, n ≪ 1, where EF ∼ n2=djtj, ρ0 ∼ n1−2=d=jtj, and
where d is the spatial dimension. Despite its formal
similarity to the results in the usual Holstein model, we
note that this formula implies an anomalously strong
isotope effect since Ue-ph ∼ 1=

ffiffiffiffiffi
M

p
.

Strong-coupling limit.—We next analyze the problem in
the “strong-coupling” limit,Ue-ph ≫ jtj. To the zeroth order
in t, the degenerate ground space manifold consists of
different occupation configurations of quantum bipolarons
(with no phonons). Within this subspace, we then perform a
perturbative expansion in powers of t to obtain a low-
energy effective model. To the second order, the resulting
Hamiltonian has the same form as that for the conventional
Holstein model, i.e., it maps to a model of hardcore bosons
(bipolarons) with annihilation operators b̂i ≡ ĉi↑ĉi↓,

Ĥeff ¼ −τ
X
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However, the expressions for τ and V, derived (explicitly in
the Supplemental Material [75]) by summing over virtual
processes associated with intermediate states with all
possible phonon excitations, are crucially different than
the corresponding expressions for the linear Holstein
model. The results can be expressed as

τ ¼ t2

Ue-ph
FτðgÞ; V ¼ t2

Ue-ph
FVðgÞ; ð5Þ
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FIG. 1. Illustration of the phonon wave function amplitude
before (in blue) and after (in red) a bipolaron hops from site 1 to
site 2, whose phonon coordinates are X1 and X2. The left panel
shows the conventional case of linear e-ph coupling, where the
phonon equilibrium positions are displaced during the process;
the right panel shows the quadratic case, where only the spreads
of the wave functions change. The overlaps between the wave
functions essentially result in the suppression of the effective
hopping amplitude of bipolaron, which is exponentially small in
Ue-ph in the linear case but is only polynomially small in the
quadratic case.
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These expressions are the central results of this work. Their
dependence on g is plotted, and their asymptotic behaviors
in the large g and g → −1=2 limits are indicated in Fig. 2.
The most important feature is that FτðgÞ is only poly-

nomially suppressed in the strong-coupling limit, in stark
contrast to the cases with linear e-ph couplings for which
the suppression of τ ∼ 1=m⋆ is exponentially strong
∼ exp½−2Ue-ph=ðℏω0Þ� [3,10,11]. This can be easily under-
stood by recognizing that when a bipolaron hops from one
site to another, no phonon needs to be classically displaced
(see Fig. 1). Therefore, the overlap between initial and final
phonon wave functions is substantial, in contrast to the
linear case.
The hardcore boson model in Eq. (4) (or equivalently the

spin-1=2 XXZ model) has been extensively studied on
various lattices and dimensions [79–93]. The nature of the
low T phases generically depends on τ=V and the boson
density nbipolaron ¼ n=2. At dilute densities nbipolaron < nc
and at low temperatures T < Tc ∼ n2=dbipolaronτ, SC generi-
cally develops [94–96] (even in the presence of an addi-
tional long-ranged Coulomb repulsion as long as the
density is not extremely low [97]). The critical density

nc (to the formation of some form of commensurate charge
density wave order with phase separation) depends on the
lattice structure but generally is an increasing function of
τ=V. Generically, as long as τ=V is not too small, SC can be
stable in a broad density range (even for all densities on
several frustrated lattices [88,91]). In the linear Holstein
model, τ=V → 0 rapidly with increasing coupling. In the
quadratic case, on the contrary, τ=V never approaches zero,
even when g → ∞. More quantitatively, τ=V varies from
0.5 to 0.18 as g varies from 0 to ∞ or −1=2. Given this
lower bound on τ=V, nc remains finite for the whole strong-
coupling regime (for example, nc ≳ 0.2 for square lattice
[93] and nc ≳ 0.3 for triangular lattice [91]).
For n ¼ 2nbipolaron < 2nc, the SC transition temperature

can be estimated as

Tc ∼ n2=d
t2

Ue-ph
g−1=4: ð11Þ

This implies a remarkable “inverse isotope effect” at strong
coupling, reversing the trend at weak coupling: Tc is
proportional to the square root of ion mass, Tc ∝

ffiffiffiffiffi
M

p
(holding all the other parameters fixed)!.
We note that unusually weak polaron mass enhancement

has been numerically observed in the single-electron
(polaron) sector of the same model in Refs. [51,52]. It is
straightforward to show with a similar strong-coupling
analysis that the mass enhancement in this case ∼g3=4. Our
results imply that at finite electron densities, the polaron
liquid is unstable to bipolaron formation, leading to an
ordered many-body ground state. We also note that mass
enhancement of polarons and bipolarons for negative g has
been explored in Refs. [41,42], where large jgj (regulated
by a quartic term in the phonon potential energy) have been
shown to lead to exponential mass suppression as in the
usual, linear case.
We remark that the perturbation series presented in this

Letter can be calculated to higher orders in t=Ue-ph in a
systematic manner. The subleading terms include further
ranged effective bipolaron hoppings and interactions, reflect-
ing corrections to the binding energy and the effective
bipolaron radius.
Discussion.—In both the weak- and strong-coupling

limits, we have obtained well-controlled estimates of the
SC Tc, corresponding to the pairing and phase coherence
scales in the two limits, respectively. In the intermediate
coupling regime, both factors together determine the
physical Tc, the maximum value of which could thus be
reached by tuning the interaction strength to a “sweet spot”
interpolating the two asymptotic behaviors. Since the weak
coupling side is described by BCS theory for both linear
and quadratic e-ph couplings, it is crucial to understand the
enhancement of optimal Tc from the strong-coupling side.
To illustrate the difference, in Fig. 3 we plot the schematic
behavior of Tc for both quadratic and linear Holstein

FIG. 2. The log-log plot of FτðgÞ and FVðgÞ [as defined in
Eqs. (6) and (7)] for gþ 1=2∈ ½0; 1=2� (upper panel) and
g∈ ½0;∞� (lower panel). The asymptotic scaling behaviors as
g approaches the two extremes are indicated by dashed lines.
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models. Because SC is so much stronger in the strong-
coupling limit in the quadratic coupling case, it is certainly
plausible (as represented by the dashed lines interpolating
between the controllable limits in the figure) that the
optimal Tc is substantially higher.
Importantly, our central results remain robust when

relatively weaker linear couplings coexist with quadratic
ones, as long as the average phonon displacement asso-
ciated with bipolaron hopping, hX̂i ∼ ½α=ð1þ 2gÞK�, is
small compared to the root mean squared coordinate
fluctuations, i.e., ½α=ð1þ 2gÞK�≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=Mω0Þ

p
. Thus,

besides a large g and a small α, a large phonon stiffness
K and a small ion mass M are also conducive to the
quadratic e-ph couplings playing a central role.
Turning to the real-world implications, the local quad-

ratic e-ph couplings are ubiquitous in materials, since they
are always allowed by symmetry. In contrast, linear on-site
coupling to the electron density is forbidden by symmetry
for various phonon modes. An interesting example is a
transverse polar phonon. The conventional e-ph gradient
coupling vanishes exactly for these modes, as they generate
no bound charges. More generally, the fact that the polar
phonon is odd under inversion requires any linear coupling
to be either interband or intersite [98,99] and consequently
suggests that nonlinear couplings may be dominant, espe-
cially in the single-band case. Furthermore, in 2D systems,
the mirror reflection symmetry along z axis precludes linear
e-ph coupling to certain phonons. In particular, out-of-
plane optical phonon modes (known as ZO modes) that are
odd under the reflection cannot linearly couple to the
electron density operators. Such structures are experimen-
tally realizable (e.g., in a magic-angle twisted trilayer

graphene [100]), and both K and gK of all ZO modes
can be tuned by pressure.
An estimate of the scale of Ue-ph from quadratic e-ph

couplings can be obtained as follows. The coupling gK
originates from intra-unit-cell Coulomb force and therefore
the natural energy unit for it is E0 ∼ ðZe2=a0Þ, where a0 is
the lattice constant and Z is the phonon Born effective
charge. This leads to gK ∼ E0=a20 and thus Ue-ph ∼
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gK=M

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðℏ2=Ma20Þ

p
. Taking E0 in the range

0.1–1 Ry for a lattice constant of a few angstroms, and
with the ionic mass being 103−4 larger than the electron
mass, we estimate Ue-ph to be as large as order 100 meV. In
fact, in a perovskite, SrTiO3, the value of gK can be
estimated from the density-dependent shift of the soft TO
phonon frequency [46,76], which implies a large g ≈ 87
and Ue-ph ∼ 50 meV [75].
Given that quadratic e-ph systems do not suffer from an

exponential depression of the condensation scale, we hope
this work points toward a new route to high-temperature
SC. However, for any physical proposal to be relevant,
three criteria need to be satisfied: (1) the linear couplings
must be relatively small as analyzed above, (2) the band-
width must be comparable to or smaller than Ue-ph, and
(3) direct electron-electron Coulomb repulsion (which we
have neglected in all the above analysis) must be weaker
than Ue-ph [101]. As discussed above, symmetries can
forbid linear coupling to certain phonons, achieving (1). We
now show that (2) and (3) can be achieved in 2D systems
with superlattice engineering. The presence of a periodic
superlattice (created by a moiré pattern or electrostatically
[111]) creates bands with reduced bandwidth and enlarged
size (aorb) for the single-electron Wannier orbitals (Fig. 4).
This suppresses the strength of the Coulomb repulsion as
UCoulomb ∼ E0ða0=aorbÞ ∼ E0N−1=2, where N ∼ ðaorb=a0Þ2

FIG. 3. Schematic representation of the dimensionless mea-
sures of the mean-field (BCS) collective pairing scale [yðBCSÞ,
solid black line] and the strong-coupling condensation scale for
the quadratic [yð2Þ, blue solid line] and linear e-ph systems [yð1Þ,
red solid line] with dilute (n ≪ 1) electrons. y ¼ T=EF is the
dimensionless temperature and x ¼ Ue-ph=jtj is the dimensionless
coupling strength. The parameter x0 ¼ ℏω0=jtj also enters these
expressions. The dashed curves show a plausible interpolation
between the limiting behaviors for the two models. The asymp-
totic expressions for yð1Þ and yð2Þ are from, respectively,
Refs. [3,10,11] and Eq. (11).

FIG. 4. Schematic behavior of the effective interaction
strengths in a moiré superlattice as a function of N, the averaged
number of microscopic unit cells overlapping with each Wannier
orbital. The strengths are normalized by the case of N ¼ 1. The
curves respectively correspond to direct Coulomb repulsion
(wCoulomb, black line), phonon-mediated attraction originating
from linear [wð1Þ, red line], and quadratic [wð2Þ, blue line] e-ph
couplings.
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is the number of microscopic unit cells over which the
Wannier orbital is spread. On the other hand, the enlarged
unit cell includes more (∼N) optical phonons; although
each of them couples more weakly (∼1=N) to an electron in
a given Wannier state, the combined effect is an effective
attraction, Ue-ph≈Nℏω0ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg=N

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g=N

p
−1Þ=2,

which is slightly enhanced for a range of N ≲ g.
(Meanwhile, the values of the dimensionless factors Fτ

and FV can be relatively weakly N dependent [75].) By
contrast, in the linearly coupled case, the effective phonon-
mediated attraction can be similarly estimated as Ue-ph∼
α2=ðNKÞ, which is always strongly suppressed by the
superlattice. Thus, for 2D materials or interfaces with
sufficiently large g, appropriately strong superlattice poten-
tials can achieve points (2), (3), and partly (1) simulta-
neously. Moreover, for large orbital sizes, the electric fields
extend far enough out of the plane that screening in a
substrate with a high dielectric constant (such as SrTiO3)
can significantly reduce the Coulomb repulsion between
paired electrons [112]. Indeed, strong-coupling supercon-
ductivity has been suggested to occur in SrTiO3-based 2D
nanostructures with strongly suppressed kinetic energy
[113]; our work suggests a path to potentially achieve
higher Tc in these systems. Alternatively, bringing surfaces
of bulk materials into contact with a twist [114] can create
moiré patterns for electrons, doped [115] or residing in an
epitaxially grown top layer (such as FeSe [116]).
In conclusion, we have demonstrated that quadratic e-ph

interactions lead to the formation of small, light quantum
bipolarons in the strong-coupling regime. We suggest that
this implies higher optimal SC transition temperatures for
this mechanism. That relatively strong couplings of this sort
are physical is illustrated by the value inferred for SrTiO3

based on experimental data. Finally, we have argued that
tunable 2D electronic superlattices provide an excellent
platform to reach the optimal and strong-coupling regimes
while suppressing Coulomb repulsion effects, opening the
way for the realization of a new class of strong-coupling
superconductors.
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