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A short, abrupt increase in energy injection rate into steady strongly driven rotating turbulent flow is
used as a probe for energy transfer in the system. The injected excessive energy is localized in time and
space and its spectra differ from those of the steady turbulent flow. This allows measuring energy transfer
rates, in three different domains: In real space, the injected energy propagates within the turbulent field, as a
wave packet of inertial waves. In the frequency domain, energy is transferred nonlocally to the low,
quasigeostrophic modes. In wave number space, energy locally cascades toward small wave numbers, in a
rate that is consistent with two-dimensional (2D) turbulence models. Surprisingly however, the inverse
cascade of energy is mediated by inertial waves that propagate within the flow with small, but nonvanishing
frequency. Our observations differ from measurements and theoretical predictions of weakly driven
turbulence. Yet, they show that in strongly driven rotating turbulence, inertial waves play an important role
in energy transfer, even in the vicinity of the 2D manifold.
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Introduction.—Understanding the dynamics governing
rotating turbulent flows is important in scientific fields
such as geophysics, astrophysics, and atmospheric sciences
[1–3]. However, certain fundamental processes governing
these flows remain unclear [4]. In particular, the relation
between two competing views, that of quasi-two-
dimensional (2D) turbulence and that of inertial-wave
turbulence, is not clear [5,6].
Rotating incompressible fluids are described by the

rotating-frame Navier-Stokes equations (RNSE) and the
incompressibility condition. In this work, we consider a
system rotating at a constant rate Ω around a vertical axis:
Ω ¼ Ωẑ (bmarks a unit vector). The system’s vertical extent
is comparable to its extent in the x, y “horizontal” directions,
perpendicular to the axis of rotation. Two dimensionless
numbers characterize such systems, the Reynolds number,
Re ¼ UL=ν and Rossby number, Ro ¼ U=ð2ΩLÞ, whereU
and L are the typical velocity and length scales, and ν is the
kinematic viscosity. Rotating turbulence emerges when
Re ≫ 1, indicating the dominance of nonlinear inertial
effects over viscous effects, and Ro ≪ 1, signifying the
dominance of Coriolis acceleration over nonlinear inertial
accelerations.
The inviscid linearized RNSE, obtained by dropping the

inertial and viscous terms, has solutions of the form of
plane inertial-waves [7] with frequency ω and a wave-
vector k that obey the dispersion relation [8]:

ω ¼ �2Ω cosðθÞ; cosðθÞ ¼ k̂ · ẑ; ð1Þ

i.e., the frequency does not depend on the magnitude of the
wave vector, k ¼ jkj, but only on the angle, θ, between k̂

and the rotation axis (ẑ). The vertical component of the
group velocity is given by

Cg;zðkÞ ¼
2Ωsin2 θ

k
: ð2Þ

Thus, for a given k, wave packets centered around hori-
zontal wave vectors with θ ≈ π=2 transfer energy vertically
with the highest speed.
Inertial waves, have been observed in experiments [9–13]

and simulations [13–15] of rotating turbulence decay and
build-up [15–20]. Theoretical descriptions of rotating tur-
bulence that take into account interactions have been derived
[14,21–23]; they are typically limited to weak wave turbu-
lence. Indeed, for weakly forced steady turbulence or
when the geostrophic flow is suppressed, 3D inertial waves
dominate the energy spectrum and energy transfer is
mediated by three-wave resonant interactions. Such a
behavior was predicted theoretically [21] and first shown
in recent experimental work [10,24]. It is also observed in
our system,when drivenweakly (see SupplementalMaterial
[25], Fig. S2). Yet, at stronger driving, which is relevant to
this work, the mode of energy transfer was changed, leading
to dominance of the quasigeostrophic flow.
Previous observations indicate that as the rate of rotation

increases, the flow field becomes increasingly two-
dimensional [4]. Under these conditions, some character-
istics of the horizontal flow resemble those of 2D
(nonrotating) turbulence [23,26–31], including the inverse
cascade of energy from small to large scales. These
characteristics, along with vertical uniformity of the flow,
persist even when energy is injected locally in space [29],
implying the existence of a mechanism homogenizing
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energy vertically. Motivated by these observations, models
that focus on the energy transfer to the geostrophic compo-
nent of the flow (flow parallel to the 2D horizontal plane)
were derived [14,23,32–36]. However, the precise mecha-
nism underlying this homogenization process remains not
fully understood.
These diverse results show that rotating turbulence is

spectrally heterogeneous, energetically dominated by the
geostrophic quasi-2D flow component, that coexists with
the inertial-wave-dominated 3D flow [11,12,33,37–39].
Still, the relationship between these components is not
well understood. Specifically, the process by which energy
is transferred from 3D to quasi-2D modes, and the role
that inertial waves play in the strongly driven turbulence
regime, are currently not clear. Because of the flow’s three-
dimensionality and anisotropy answers to these questions
are associated with rates of energy transfer in real space, in
the frequency domain and in the wave number domain.
Measuring transfer rates in steady flows is challenging,
and such multidimensional measurements have not been
conducted yet.
In this Letter, we perturb a rotating turbulent steady state

andmeasure the evolution of the perturbationwithin a three-
dimensional fluid domain. This measurement allows us to
probe the energy transfer rate in the three variables men-
tioned above. In [40] we showed that an abrupt and short
increase in the energy injection rate into existing turbulence
(an injection pulse) generates wave packets of intense
turbulence that propagate for long times. In the current
study, we demonstrate for the first time that the spectral
components of these wave packets obey the dispersion
relation of inertial waves.We observe two distinct processes
of energy transfer: The first, which has not been measured
before, is a rapid, nonlocal process. It transfers energy from
3D, high frequency waves to low frequency quasi-2D
modes. The second, slower energy transfer, is the inverse
energy cascade from short to long-wave modes in the quasi-
geostrophic manifold. In spite of its similarity with inverse
cascade in 2D turbulence, we observe that this process too, is
mediated by inertial waves propagating with a small, but
nonzero z component of their wave vector.
Experimental setup.—The experimental setup is detailed

in the Supplemental Material [25]. It is composed of a
rotating plexiglass cylinder of 80 cm diam and 90 cm
height, placed on a rotating table (Ω ¼ −Ωzẑ, with a
maximum rotation rate of 12.6 rad=s).
The tank is filled with water and covered with a trans-

parent flat lid. Energy is injected at the bottom of the tank
by circulating the water through an array of outlets and
inlets. The energy injection is concentrated at a central
wavelength 2π=kinj, which is a decreasing function of Ω
(see Ref. [40]) down to ∼5 cm at high rotation rates.
Using a vertically scanning horizontal laser sheet,

we measure the horizontal (x-y plain) velocity field,
u⊥ðx; y; z; tÞ, inside a ∼21 × 21 × 24 cm3 volume in the

interior of the tank. Spatial resolution is 0.22 cmhorizontally
and 0.7 cm vertically, at a rate of 21.4 Hz. In each experi-
ment, the system is brought to steady state by running it for
∼300 s with an angular speed 9.5 < Ω < 12.5 rad=s and a
constant energy injection rate, obtaining a turbulent flow
with 0.006 < Ro < 0.02 and 1500 < Re < 2100.
We then increase the pumping rate for a duration of 1.5 s,

chosen as the time interval (10.5 < t < 12 s), after which
the injection strength returns to its previous constant value.
We continually measure the velocity field until t ¼ 60 s.
The total energy of the pulse is less than 10% of the tank’s
total energy. Indeed, watching a video of the energy density
field [25,41], it is difficult to identify the moment of pulse
injection. Each experiment is repeated 6 times, and the
measurements are averaged over the repetitions.
The short increase in energy-injection generates a pulse

of fluid flow with an enhanced energy density at the bottom
of the tank. The pulse propagates upwards on the back-
ground of the steady-state turbulent flow (Fig. 1). During its
propagation, the pulse gradually broadens and decays,
exciting the entire measurement volume. The flow returns
to its steady state after approximately 30 s.
We now analyze the spectral properties of the pulse as it

evolves in time. To confirm that the excess energy in the
pulse is composed of inertial waves, we calculated the
spectral energy distribution by applying a spatiotemporal
Fourier transform to the velocity field. By subtracting the
steady state energy density spectrum, we were able to
project the excess energy onto the frequency-polar angle
plane defined by the dispersion relation Eq. (1). Our results
demonstrate that the excess energy is concentrated around
the dispersion relation, providing strong evidence that these
waves are indeed inertial waves (see supplemental video
and Supplemental Material [25,42]).
Frequency component analysis.—We now calculate the

frequency-filtered velocity field u⊥ðt; r;ωÞ, applying a
Gaussian band-pass filter of width ∼0.1Ω centered at ω
to the measured velocity field through.
The kinetic energy density of the filtered field is

ju⊥ðt; r;ωÞj2 and we average it laterally in order to obtain
Efðt; z;ωÞ—the energy contained in a given frequency at a
given height and time. It is plotted as a function of z and t
for three different values of ω in Figs. 2(a)–2(c). The high-
frequency components [panels (a),(b)] propagate vertically
with a finite speed that agrees with the vertical group

FIG. 1. Horizontally averaged energy density Eðz; tÞ for an
ensemble average of 6 experiments with Ω ¼ 4π rad=s. Pulse
injection occurs at t ¼ 10.5 s.
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velocity Eq. (2) for the given frequency, ω and the injection
wave number ∼1.28 rad=cm, marked by the slopes of the
gray lines in Fig. 2. These modes lose their energy within a
few seconds. Contrarily, the slow, quasigeostrophic mode
[panel (c)] does not propagate as a sharp front and its
energy increases concurrently with the decay of the high-
frequency modes. This suggests a nonlinear process of
energy transfer in the frequency domain.
In order to gain insight to this process, we plot a

spectrogram of the energy in the time domain,Ēfðt;ωÞ
[Fig. 2(d)]. It is obtained via averaging Efðt; z;ωÞ along z
(full spatial average) together with normalization [25].
The wave packet propagation is revealed by the arrival

time of the energy pulse at the lowest measured plane
28 cm above the injection plane. This dependence on ω is
consistent with the predicted arrival time marked by the
dashed gray line [derived from Eq. (2)]. This is an addi-
tional confirmation for the existence of the linear process of

wave propagation, as observed above for the two frequen-
cies studied in Figs. 2(a) and 2(b), marked by the upper
horizontal dotted lines on the spectrogram. Another key
observation is that energy is transferred from the high-
frequency directly to the low-frequency components. The
rapid decay of the energy pulse, which is clearly evident for
all frequency components higher than 0.1Ω occurs con-
currently with the increase in the energy of the quasigeo-
strophic, low-frequency modes. There is no indication for a
cascade, or a gradual transfer in the frequency (orientation)
domain. The rapid decay of the high frequency modes
occurs within a timescale of τ ≈ 5 s. Notably, this timescale
is consistent with indirect estimation of the dominant
nonlinear time obtained by Yarom et al. [37] for strongly
driven steady state flows. There, τ was deduced from the
width of the energy spectrum. Performing similar analysis
for our steady flows yields τ ≈ 4 s.
Since the high-frequency part of the flow is dominated

by inertial waves, while the low-frequency flow is quasi-
geostrophic, we conclude that the energy injected by the
pulse is spatially distributed by linear wave propagation.
This is followed by a rapid, direct transfer of energy from
modes with significant vertical wave vector components to
quasi-geostrophic modes. We conjecture that this rapid
process works analogously in the steady flow, forming the
mechanism by which energy is fed from inertial waves and
accumulates in the quasigeostrophic flow.
Spatial spectral analysis.—Next, we focus on the evo-

lution of the energy density in wave number. For this
purpose we calculate the horizontal Fourier transform
of the energy density Eðz; k2d; tÞ, and its vertical average
Ēðk2d; tÞ. Axial symmetry implies that the mean energy
density depends only on the magnitude of the (horizontal)
wave vector k2d. The excess energy density due to the pulse
ΔE and ΔĒ is obtained from E and Ē (respectively) by
subtracting the mean steady-state energy density.
Experimental measurements of ΔĒ are presented in

Fig. 3(a) as a function of t and k2d, with the inset showing
ΔĒ as a function of k2d for three different times. Notably,
the excess energy distribution in the quasigeostrophic
manifold gradually shifts to smaller wave numbers (while
the total excess energy decreases as the pulse is dissipat-
ing). The observations are consistent with a local transfer of
energy from short to long-wave modes.
We quantitatively verify this scenario by following the

time evolution of k⋆2dðtÞ, the wave number of the maximum
of the averaged excess energy density [Fig. 3(b)]. The
linear growth of jk⋆2dðtÞj−2=3 is consistent with the filling by
a constant energy flux of a k−5=32d spectrum, that character-
izes 2D turbulence [43–46], and was also observed in the
energy spectrum of the geostrophic component of rotating
turbulence [26].
These observations seem to indicate that the physics of

the geostrophic component of rotating turbulence is analo-
gous to that of 2D turbulence. However, our measurement

FIG. 2. Time evolution of frequency-filtered energy density.
(a)–(c) Horizontally averaged energy density Ef as a function of
time and vertical position z, for ω ¼ 1.5ΩðaÞ, 0.6ΩðbÞ, and
0.1ΩðcÞ. Gray lines represent to the vertical group velocity of an
inertial wave packet with the respective central frequency. The
data was collected for experiments with Ω ¼ 3.5π rad= sec Re ≈
2100 and Ro ≈ 0.006. (d) Spectrogram of fully spatially averaged
energy density Ēf as a function of time and ω. The energy of each
frequency is normalized to 1 at the peak of the pulse. Gray dashed
curve marks the theoretical arrival time of an inertial wave packet
with frequency ω to the lowest measured plane.
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of the z-dependent energy density, reveals a weak but
significant vertical variation in ΔEðz; k2d; tÞ. Indeed, the
plots of ΔEðz; k2d; tÞ as a function of z, t for three fixed
values of k2d [Figs. 4(a)–4(c)] exhibit diagonal rather than
vertical correlations, indicating that information travels
vertically at a finite speed, while transferring energy to
broader horizontal scales. Moreover, the propagation speed
is given by the vertical group velocity component (2),
evaluated at k2d, with θ ¼ π=2. These waves propagate
upwards (white lines) as well as downwards (black lines).
Evidence for inertial wave carrying the excess energy
persists during the entire inverse energy cascade from
the large wave numbers in Fig. 4(a), through intermediate
(b) to small wave numbers (c). These observations provide
strong evidence that the energy that was shown to inversely
cascade in Fig. 3 consists of (nearly horizontal) iner-
tial waves.
Using a Hough transform of the measured ΔEðz; k2d; tÞ

for each k2d [25] we show that the vertical propagation

velocity is consistent with the k dependence of Cg;z

[Fig. 4(d)].
Discussion.—We used an injection pulse—a perturba-

tion, localized in time and space, of the energy injection, in
order to monitor energy transfer rates in developed rotating
turbulence. Assuming that the kinetics that govern the pulse
are similar to those of the statistically stationary steady state
flow, these measurements facilitate experimental observa-
tion of three energy transfer processes: spatial homogeni-
zation, transfer of energy from high frequency 3D modes to
low-frequency quasigeostrophic modes, and the inverse
cascade of energy within the quasigeostrophic manifold,
which carries the majority of energy in steady state.
The spatial homogenization of energy is achieved by

inertial wave propagation, which is the fastest process in
the system, and is well described by linear inertial wave
theory, even though the waves are strong and propagate on
the background of a turbulent flow.
The injected energy is dominated by inertial waves with

3D wave vectors. However, the resulting 3D flow field is a

FIG. 3. (a) Vertically averaged excess energy density spectrum
ΔĒ, as a function of time and horizontal wave number k2d. Inset:
ΔĒ as a function of k2d for t ¼ 13 (dashed line), 23 (dot-dashed
line), and 33 s (solid line) (marked on the main figure). The
maximum of the instantaneous ΔĒ, k⋆2dðtÞ, is indicated for
t ¼ 13 s. The gradual shift of the excess energy to lower wave
numbers is a manifestation of the inverse energy cascade.
(b) jk⋆2dj−2=3 as a function of time. The agreement with linear
growth beyond t ¼ 17 s indicates k⋆2d ∼ t−2=3. The dataset is the
same as in panel (a).

FIG. 4. (a)–(c) Excess energy density at fixed wave number,
ΔEðz; k2d; tÞ, as a function of vertical position z and time
(showcasing the same data as Fig. 3, with vertical resolution).
The fixed wave numbers in each subplot are k2d ¼ 2.28ðaÞ;
0.6ðbÞ; and 0.34ðcÞ rad=cm. Slopes of the dashed lines indicate
Cg;z for the relevant wave number and θ ¼ π=2 for waves that
propagate upwards (white) and downwards (black). As time
increases, energy cascades from large to small wave numbers
while propagating vertically up and down. (d) Estimation of the
energy propagation speed for each wave number k2d (symbols),
compared with Cg;zðk2dÞ from Eq. (2) (dashed curve).
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short-lived transient, whose energy is siphoned away towards
the geostrophic flow. The depletion of the 3D modes occurs
on a dynamical timescale determined by interaction of inertial
waves with the geostrophic flow [32,37,40].
Energy flows directly from wave vectors with arbitrary

polar angles to quasigeostrophic wave vectors, bypassing
intermediate ones (Fig. 2). This strongly indicates that the
energy transfer in the frequency (orientation) domain is not
mediated by intermediate interactions or a cascade.
Once the pulse energy has reached the quasigeostrophic

manifold, it gradually flows to smaller wave numbers in a
manner consistent with an inverse cascade of energy. This
observations seems consistent with dynamics analogous to
theKraichnan cascade of 2D turbulence [43,45]. However, an
analysis of the vertically resolved horizontal Fourier trans-
form of the flow shows conclusively that the inverse cascade
in Fourier space takes place in parallel with spatial propaga-
tion consistent with the linear dynamics of inertial waves.
This shows that inertial waves participate in all known energy
transfer processes, making the analogy between the rotating
turbulence inverse cascade the Kraichnan cascade tenuous.
Some of our results are directly related to theoretical

models of rotating turbulence. In this strongly driven
regime we find two nonlinear processes with different
timescales: rapid flattening and a slow inverse cascade,
such observations are qualitatively consistent with theo-
retical predictions [23,33,36]. However, our data exclude
energy cascade in the frequency domain (or orientation).
This unambiguous result contradicts assumptions incorpo-
rated in some of theoretical models [4,31]. In addition, to
the best of our knowledge, the mediation of the inverse
energy cascade by propagating waves was not discussed in
theoretical modeling.
We are, therefore, left with several open questions that

call for further work: Do the observed propagating modes
play a central role in the inverse energy cascade, or are they
3D “artifacts” of the inherently 2D process? Is the infinite
(in z) medium case a singular limit of the problem? It is
possible that the separation to 2D and 3D flow components,
as well as the focusing on the exact 2D manifold, are not
well determined in finite systems. We hope that further
theoretical and experimental works will shed light on these
important issues.
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