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Higgs Oscillations in a Unitary Fermi Superfluid
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Symmetry-breaking phase transitions are central to our understanding of states of matter. When a
continuous symmetry is spontaneously broken, new excitations appear that are tied to fluctuations of the
order parameter. In superconductors and fermionic superfluids, the phase and amplitude can fluctuate
independently, giving rise to two distinct collective branches. However, amplitude fluctuations are difficult
to both generate and measure, as they do not couple directly to the density of fermions and have only been
observed indirectly to date. Here, we excite amplitude oscillations in an atomic Fermi gas with resonant
interactions by an interaction quench. Exploiting the sensitivity of Bragg spectroscopy to the amplitude of
the order parameter, we measure the time-resolved response of the atom cloud, directly revealing amplitude
oscillations at twice the frequency of the gap. The magnitude of the oscillatory response shows a strong
temperature dependence, and the oscillations appear to decay faster than predicted by time-dependent
Bardeen-Cooper-Schrieffer theory applied to our experimental setup.
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The ability of interacting particles to act collectively
underpins many of the remarkable properties of quantum
matter. From superfluidity and superconductivity to mag-
netism and elementary particles, order parameters and their
fluctuations govern a wide variety of collective quantum
phenomena [1]. Phase transitions characterized by a com-
plex bosonic order parameter are generally accompanied by
the emergence of two distinct collective excitations. Phase
fluctuations that manifest as sound waves in neutral
systems [2] become massive in the presence of long-range
interactions [3,4], while amplitude (or strictly speaking
modulus) fluctuations are always gapped. This behavior is
reminiscent of the Higgs field [5] in high-energy physics,
whose phase is responsible for mass acquisition via the
Anderson-Higgs mechanism and whose amplitude gives
rise to the Higgs boson. The analogy relies on the iconic
“Mexican hat” potential [6,7], governing the dynamics of
these complex bosonic fields. Among the systems where an
effective action with this form emerges in nonrelativistic
matter are Bose gases near the superfluid-Mott insulator
transition [8,9], spinor Bose-Einstein condensates (BECs)
[10], atoms in optical cavities [11], dipolar gases in the
supersolid phase [12], and antiferromagnetic materials [13].

The analogy with the Higgs field is often extended to the
order parameter A of fermionic pair condensates [14-16].
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This case, however, is more subtle as the dynamics of |A|
result from (pair-breaking) biexcitations of the fermionic
quasiparticles. Unlike phase fluctuations, which obey super-
fluid hydrodynamics [17], amplitude fluctuations cannot be
modeled by a low-energy effective action such as the
Mexican hat potential [18] and remain an intrinsically
many-body phenomenon, with unique phenomenology.

The microscopic description of a Bardeen-Cooper-
Schrieffer (BCS) superconductor and/or superfluid shows
that there exists a collective amplitude mode within the
pair-breaking continuum [19], which persists even in
presence of amplitude-phase coupling [20]. In the zero-
momentum limit, the spectral weight of the amplitude
mode vanishes, yet amplitude oscillations still occur due to
the presence of a nonanalytic singularity in the amplitude
response function. Within a mean-field approximation, the
frequency of these amplitude oscillations is set at twice
the gap in the fermionic excitation spectrum [21], and the
oscillations decay according to a power law with an
exponent that changes at the transition from BCS to the
BEC regime [22-26]. In the regime of nonlinear excita-
tions, other asymptotic behaviors become possible, includ-
ing persistent oscillations [27-29].

Nonlinear amplitude oscillations have been recorded
through third harmonic generation in BCS [14] and cuprate
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[30,31] superconductors, and a dressed amplitude mode has
been observed in charge density wave [32-34] super-
conductors. The case of neutral Fermi gases is a priori
favorable since the strength |A| of the pair condensate can
be accessed directly, either by tuning the interaction
strength [35] or via radio-frequency coupling to a third
internal state [36]. To date, a broad spectroscopic peak was
reported around the threshold of the pair-breaking con-
tinuum [16,35], but the spectral resolution was too low to
unambiguously identify the singularity responsible for
amplitude oscillations. Modulated interactions have pre-
viously been used to study the dynamics of pair conden-
sation [37-39].

Here, we directly observe amplitude oscillations in an
ultracold atomic Fermi condensate with resonant inter-
actions. We excite the oscillations by a uniform (zero-
momentum) quench of the interactions using a magnetic
Feshbach resonance. We probe the ensuing out-of-
equilibrium dynamics using high-momentum Bragg scatter-
ing, tuned to resonantly excite condensed pairs, which is
highly sensitive to variations of the order parameter. Our
real-time experiment allows us to characterize the frequency,
magnitude, and decay of the oscillations. Compared to
predictions from time-dependent BCS theory, our experi-
ment confirms oscillations occur at twice the gap (2A) and
show qualitative agreement on the temperature dependence
of the oscillation magnitude, with a reduction as the number
of condensed pairs decreases near the critical temperature 7',
[22]. The observed oscillations at unitarity decay faster than
predicted by BCS theory, even when experimental effects
such as inhomogeneous broadening are taken into account.

Our experimental protocol is depicted in Fig. 1 [21]. An
ultracold gas of fermionic °Li atoms is prepared in a
balanced mixture of two spin states, initially at thermal
equilibrium. Elastic collisions between atoms in these
states can be tuned by an external magnetic field through
a broad Feshbach resonance [40]. Interactions are charac-
terized by the dimensionless parameter 1/(kpa) where
kg = (372%n)'/3 is the Fermi wave vector, n is the atomic
density, and a is the s-wave scattering length. The cloud is
initially prepared below T, slightly to the BCS side of the
Feshbach resonance [1/(kra;) ~ —0.18 + 0.02]. The mag-
netic field is then ramped to unitarity (where a — o0) in a
time 7, = 50 ps, too fast for the system to follow adia-
batically, creating a superposition of the more strongly
paired ground state and the continuum of excited states. As
this superposition evolves, the pairing field oscillates at a
frequency set by the energy difference between the ground
and excited states, leading to Higgs oscillations of the order
parameter.

According to Refs. [22,24,27] a power-law damping of
the oscillations occurs, due to the spread in energy of the
lowest-lying excited states. In the BCS (weak-coupling)
limit, the lowest energy excitations occur at the Fermi
surface, p = fikg, where the 3D density of excited states is
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FIG. 1. Excitation and detection of amplitude oscillations in a
paired Fermi superfluid. (a) Pairs of fermions (dashed ellipses)
initially at equilibrium are excited by a rapid variation of the
interatomic interactions in a time ¢, = 50 ps. After a variable
hold time ?;,, we measure the Bragg response of the nearly
uniform central region. The momentum imparted by the pulse is
accessed through the center-of-mass displacement in time-of-
flight images (see Supplemental Material [40]). The quench
projects the pairs into a superposition of the more tightly bound
ground state and the continuum of fermionic biexcitations, with
energies 2¢;. The pairing field thus begins oscillating, triggering
oscillations of the order parameter (purple curve). The continuum
edge at 2A = 2miny(e;) sets the frequency of the oscillations,
which attenuate over time due to the spread of the excited state
wave function over energies 2¢;, eventually stabilizing at A . At
nonzero temperatures, the superfluid pairs are surrounded by a
thermal cloud of unpaired atoms (isolated blue and red dots),
reducing the spectral weight of the amplitude oscillations. (b) The
imaginary part of the density-density response function in the
random-phase approximation and for the large pair center-of-
mass momentum ¢ used in our Bragg spectroscopy. The energy
and magnitude of the peak at the dissociation threshold Awy, =
V4A? + (h*q?/4m — p)? varies with A during the postquench
evolution, which makes our Bragg measurement sensitive to the
amplitude oscillations.

large, and this small spread in energy leads to oscillations
decaying slowly, as #~'/2 [22]. In the opposite limit of
tightly bound molecules, the dispersion minimum occurs at
p =0, where the density of states vanishes, as for free
particles. The evolution of the excited wave function is thus
similar to a 3D ballistic expansion and the overlap with the
molecular ground state decays as r~/% [24].
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We model these dynamics using time-dependent BCS
theory [67]. The initial state of the gas is treated in first
approximation as a homogeneous BCS state at nonzero tempe-
rature, containing both superfluid pairs and unpaired thermal
atoms with a Fermi-Dirac distribution ng(ey ;) = 1/[1+
exp(ex.i/kgT)], where ey ; = /(R?k*/2m — p;)> + A? is
the initial spectrum, and A; and y; are the initial gap and
chemical potential, respectively. Following the quench, the
initial momentum distribution of the atoms ny (1 = 0) =
ny; and pair correlation function ¢\ (# = 0) = ¢y ; are out of
equilibrium and evolve according to the time-dependent
BCS equations,

iho,n, = Acy, — cxA*, (1)
iho,c = (R2k*/m)cy + (1 = 2ny)A, (2)

where a nonlinearity is caused by the gap equation A(7) =
9o [ @*key/(27)? with g, the coupling constant of the short-
range interactions.

For temperatures well below 7., our quench is shallow
(]A; — A(7)] < A;), and the cloud remains close to equi-
librium. In this limit, the dynamical system (1) and (2) can
be treated within linear response and the time evolution of
A can be expressed as a Fourier transform of the amplitude-
amplitude response function y s [40],

+o0 cos wt
A(f) = A, /2 e (@), ()

where the asymptotic value Ay, = A(f - +o0) is not
necessarily the equilibrium state in this integrable theory.
This frequency integral covers the superposition of all
excited states with energy 2¢,, giving rise to the collective
response of A(7). The gapped BCS spectrum sets the lower
bound 2A/#%, and the behavior near this pair-breaking
threshold governs the long-time behavior of A(z). In the
BCS regime (u; > 0, which includes unitarity), the ampli-
tude response has a square-root singularity at the con-
tinuum edge, ;(i’AHAlw_ScA/hl/\/a) —2A/h, leading to
power-law damped oscillations of the form
At) — Ay cos(2At/h + n/4)
— = An : (4)
A — Ay, > (2At/h)7n

Theory predicts that the amplitude Ay decreases with
temperature, whereas the damping exponent yy, = 1/2
stays constant. For larger quenches triggering nonlinear
dynamics, the oscillatory form (4) can remain valid, but the
oscillation frequency wy deviates from 2A/A [27,40].
We probe these dynamics using Bragg spectroscopy. Our
experiments use atom clouds confined in an oblate har-
monic potential, formed by a combination of optical and
magnetic fields [40], leading to a nonuniform density

distribution. As a consequence, the pairing gap A(r), set
by the local Fermi energy, Eg(r) = h?(37%n(r)*/3)/(2m),
varies with position r across the cloud. To overcome this,
we probe only a small, near-homogeneous volume of the
cloud using two-photon Bragg scattering. At the end of the
hold time ¢;,, we send in two tightly focused Bragg lasers
(Fig. 1), that intersect in the center of the trapped cloud,
where the density distribution is most uniform [46,68]. We
define the average density in the Bragg volume 7 =
J Qg (r)n(r)d*r/ [ Qg (r)d’r, where Qg (r) is the spa-
tially dependent two-photon Rabi frequency. In the experi-
ments presented here, we find 7 = (0.955 £ 0.018)n,,
where n; is the peak density in the trap center, to be
independent of temperature within our experimental reso-
lution (see Supplemental Material [40]). The remaining
small inhomogeneities can be accounted for in our theo-
retical description within the local density approximation
[40]. They cause an additional damping of the oscillations,
as regions oscillating at different frequencies gradually
dephase.

To resonantly excite pairs with zero center-of-mass
momentum, we set the frequency difference between the
two lasers to half of the atomic recoil [Am,/2 =
h%q*/(4m)] [46,47]. Bragg scattered pairs begin moving
with a velocity Aq/(2m), where q = k, — k,, is the differ-
ence of the wave vectors of the two Bragg lasers. We use
q ~ 4k to ensure that 7w is large compared to Ef, and the
Bragg pulse duration (tz = 50 ps) provides good spectral
resolution, while remaining 3 to 4 times shorter than the
typical oscillation period (zy = 27/ wy) so the oscillations
remain visible. We estimate that the observed oscillation
magnitude is reduced by less than 15% due to this time
averaging [40].

The resulting center-of-mass displacement S = AX,
following time-of-flight expansion is proportional to the
momentum transferred to the atoms by the Bragg lasers
[40], hence to the imaginary part of density-density
response function y},(w,/2,q = 4kg) [68]. At large g,
. has a sharp peak at the continuum threshold [Fig. 1(b)],
which coincides approximately with the pair recoil fre-
quency [69,70]. Both the height and energy of this peak are
sensitive to variations in A. When fp < 7y, the Higgs
oscillations are approximately stationary during the Bragg
pulse and the time-dependent Bragg response can be
written as

d)(//
dA

Z/n/n(qu’ t) z)(Zn(w’q;Ai)—i_ [A(t)_Al] (5)

Our Bragg frequency w = w, /2 sits just on the high-energy
slope of the threshold peak [40], where y/,, is very sensitive
to variations of A. Experimentally, we observe that the
Bragg response at ® = w,/2 shows a strong dependence on

the condensate fraction, reflecting the temperature depend-
ence of the spectral weight of this threshold peak [40].
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FIG. 2.

(b)
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(a) Bragg response (center of mass displacement ), relative to the asymptotic response S, (+ — ©0), as function of hold time

after the quench for a selection of (final) equilibrium cloud temperatures. Points are the experimental measurements and solid lines are
fits to the data of a power-law damped sinusoidal function (see text). (b) Comparison with time-dependent BCS theory including
experimental effects [40]. The experimental points are shown as a function of wyt, and 7/T . using the fitted value of 2wy /Eg and the
estimated value T ;/Tp =~ 0.15 [72] at 1/kga = —0.18. The Bragg signal S(¢) — S, is scaled to its variation S, — S; under an adiabatic
sweep of the scattering length, which we measured independently, and the theoretical curves are offset by the delay accumulated during
the ramp [40]. The curves for different values of T are vertically offset by 0.2 for readability.

Armed with this capability, we use local Bragg scattering
as a sensitive, temporally resolved probe for oscillations of
the order parameter. Figure 2 shows examples of the
measured Bragg response, as a function of hold time ¢,
in units of the local Fermi time 7z = f/EF, for a range of
temperatures [40,71]. A damped oscillation is clear in the
Bragg response of the colder clouds, giving a direct
signature of the Higgs oscillations. The magnitude of the
oscillations decreases for warmer clouds, until nonoscilla-
tory behavior is observed for 7 2 0.157. Also shown
are fits of the data to a function of the form S(¢) =
Aex cos (wyt + @)/t + S, where A, @y, @, v, and S,
are fit parameters that characterize the oscillations.

To compare our experimental measurements to theory, we
obtain the asymptotic Bragg response S, (t = o0) and then
separately measure the responses §; and S, at thermal
equilibrium with the initial and final scattering lengths.
From these we construct the ratio [S(f) — S,]/(S; = S;),
which we directly compare to the theoretical equivalent
[A(f) = Ay]/(Af = A;). The advantage of comparing these
quantities is that they do not depend on the experimental
sensitivity dy/,, /dA or the offset in the experimental data due
to the normal phase response y,,(T > T.), which is not
captured in BCS theory. Note that the experimental and
theoretical temperatures are scaled by the respective critical
temperatures of the initial clouds 7', ;. In Fig. 2(b) we see good
agreement in the dynamics at short times and lower temper-
atures; however, at later times, the experimental signal decays
faster than theoretically predicted. This is emphasized in

Fig. 3(b), which shows the root-mean-square ampli-

tde A = /[1/(t2 = 1)] fi2 de[S(1) = S /(S = Si)2,
a quantity that does not depend on any of the fitted parameters
apart from S,. While the theory overestimates the magnitude
of the oscillations by only 10%—20% in the short time window
1 < t/ty < 10, the overestimate grows to roughly a factor of
2 atlater times 3 < t/7y < 20. Although the quicker decay of
the experimental signal may be due to experimental effects
other than those we have taken into account in our realistic
theory [40], we note that the prediction of a slow power-law
decay is based on integrable, collisionless theories [27] and
may be violated at long times, in particular, at times
comparable to the quasiparticle collision time [22].

From the fits to the experimental data we extract the osci-
llation frequency wy and damping exponent y. Figure 3(a)
shows Awy /2 ER versus temperature for data points taken in
the |F =1/2,mp = =£1/2) hyperfine states (= |1)—|2),
blue circles) and |F = 1/2,mp = +1/2)-|F =3/2,mp =
—3/2) hyperfine states (= |1)—|3), green squares) and
confronts the data to a selection of previous measurements
and calculations of the pairing gap A. Theoretically, we
expect Awy to provide a lower bound on 2A and to
approach this value at low temperatures when our quench
is in the shallow regime. Our measurements lie mostly in
the range 0.4 < Aiwy/2Ex < 0.5. At low temperature, they
are in good agreement with previous measurements of 2A
[36,68,73], as well as beyond mean-field predictions
[74,75] and quantum Monte Carlo calculations [76,77].
Although A is expected to vanish with a critical exponent of

223402-4



PHYSICAL REVIEW LETTERS 132, 223402 (2024)

0.50}(@)
0.45} —#ﬁ +
W et —Hz*_
3o040f T TTTTeeal
< -- Haussmann[72] |  TTm~o__
2A Hoinkafe8] | TTss(_
0.35} < Biss [73] \\\
w. |© This work - [1)-2) 1
H|@ This work - [1)-[3)
030 L 1 L
0.10 0.12 0.14
/T,
0.15
(b) Wyly|[1,10]]13,20] (c)
S~ Exp.data| & | @ 1.50F
012 "~ RealTh| = | o
: " Sing
<& 1.00 #ﬁ ﬁ
0.50F
B [1)-3) ©]1-12)
0.0 : . . I n :
0.6 0.7 0.8 0.9 1.0 0.10 0.12 0.14
T, /T,
FIG. 3. (a) Frequency of the Higgs oscillation wy versus the

normalized temperature 7/Tg, along with previous measure-
ments and a theoretical calculation (dashed line) of 2A. Blue
circles and green squares represent measurements using different
combinations of internal states (but for the same interaction
quench) [40]. (b) The root-mean-square magnitude of the
oscillations, measured experimentally (symbols with error bars),
predicted analytically from the amplitude response function
(solid line), and obtained from a numerical model taking into
account experimental imperfections (symbols without error bars)
[40]. (c) The fitted damping exponent y of the Higgs oscillation.

v~0.62 at T, [78], we do not observe a noticeable
reduction of wy in the temperature range we probe.

Figure 3(c) shows the fitted damping exponents y, which
all lie close to unity. While the uncertainties in y are
relatively large, our measurements are not consistent with
either the BEC or BCS exponents and display no obvious
temperature dependence. The average of our measured
damping coefficients is y = 0.98 - 0.15. This is signifi-
cantly above the theoretical prediction of yy, = 0.50 £ 0.02
[40], where we take into account the inhomogeneous
density and the finite experimental time window. These
effects lead to compensating shifts on the BCS prediction
vm = 1/2, resulting in a correction that is small compared
to the difference between BCS and BEC limits.

We note that fitting an exponentially decaying cosine
function to the experimental data gives a statistically
indistinguishable quality of fit such that we cannot rule
out exponential decay or that y is affected by other ergodic
processes such as quasiparticle collisions. In the vicinity of
T, the local density approximation may also break down
for describing delocalized pairs. Effects of the inhomoge-
neity of the cloud may thus become enhanced even in the
nearly uniform region probed by our Bragg beams.

Fifty years after their prediction [22], we present the
direct observation of amplitude oscillations in a weakly
excited Fermi superfluid. Using Bragg spectroscopy, we
probe the real-time dynamics at unitarity, in qualitative
agreement with time-dependent BCS theory at low temper-
atures. Our Letter opens a wide avenue of research, with
possible direct extensions to the BCS and BEC regimes,
different quench regimes [27], or dynamical crossings of
the phase transition [37-39]. Our Letter also opens path-
ways to investigate ergodic evolution and the possibility of
achieving preequilibrated states in strongly interacting
quantum matter.
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