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Atoms and ions confined with electric and optical fields form the basis of many current quantum
simulation and computing platforms. When excited to high-lying Rydberg states, long-ranged dipole
interactions emerge which strongly couple the electronic and vibrational degrees of freedom through state-
dependent forces. This vibronic coupling and the ensuing hybridization of internal and external degrees of
freedom manifest through clear signatures in the many-body spectrum. We illustrate this by considering the
case of two trapped Rydberg ions, for which the interaction between the relative vibrations and Rydberg
states realizes a quantum Rabi model. We proceed to demonstrate that the aforementioned hybridization
can be probed by radio frequency spectroscopy and discuss observable spectral signatures at finite
temperatures and for larger ion crystals.
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Introduction.—Systems of trapped ions have led to a
number of breakthroughs in the fields of quantum many-
body and nonequilibrium physics [1–3]. They have been
used to study quantum phases of interacting spins [4–6],
quantum phase transitions in open quantum many-body
systems [7–9], quantum thermodynamics principles [10],
and molecular physics using Rydberg aggregates [11–13].
In conventional trapped ion quantum simulators, ions in
energetically low-lying electronic states are employed to
encode fictitious spin degrees of freedom (qubits) [14–18].
Interactions and high-fidelity conditional operations are
then mediated using a so-called phonon bus [19,20], the
required spin-phonon or vibronic coupling being achieved
by state-dependent light shifts [21]. In a relatively recent
development (see, e.g., Refs. [22–27]), trapped ions have
been excited to energetically high-lying electronic states,
known as Rydberg states, that interact via electric dipole
forces. This mechanism allows for the implementation of
strong coherent interactions, which have been utilized to
generate submicrosecond entangling gate operations [28],
and to mediate effective spin interactions that do not rely on
the phonon bus. It also frees up the phonon degrees of
freedom, augmenting the trapped ion quantum simulator,
facilitating the study of a range of interesting many-body
phenomena in which trap vibrational modes are coupled to
interacting electronic states [29–33].
In this Letter, we investigate a scenario where we create

strong vibronic coupling in the electronic Rydberg state
manifold between a pair of trapped ions. This is achieved
by exciting Rydberg states under so-called facilitation or
anti-blockade conditions [34–41]. Within this regime, the
vibronic coupling between excited electronic states and
phonon modes is described by a variant of the quantum

Rabi model [42]. We show how the hybridized states can be
experimentally probed via radio frequency modulation of
the Rydberg state excitation laser, discuss the spectral
signatures of the vibronic coupling, and also study their
dependence on the temperature and number of ions. Our
investigation highlights the potential in using systems of
trapped ions, or even atoms, excited to Rydberg states to
realize complex scenarios with coupled electronic and
vibrational motion that are of the utmost importance in,
e.g., biological processes [43], chemical reactions [44–46],
and molecular dynamics [47–49].
Model.—We consider a chain of ions trapped within a

linear Paul trap. The internal degrees of freedom of each ion
are modeled by two levels, denoted j↓i and j↑i, that,
respectively, represent an electronically low-lying ground
state and high-lying excited Rydberg state of an alkaline
earth metal ion [50]. These states are coupled by a laser
with Rabi frequency Ω and detuning Δ. The state j↑i is
assumed to be a dressed Rydberg state that is generated by
coupling two suitably chosen states from the Rydberg
manifold via a microwave (MW) field (see Refs. [26–28]).
This dressing technique produces strong and controllable
electric dipole-dipole interactions amongst Rydberg ions
with a strength parametrized by V ∝ d2=R3

0 with d the
electric transition dipole moment between the microwave
coupled Rydberg states and R0 the equilibrium distance
between the ions [51]. The interaction amongst Rydberg
states also gives rise to mechanical forces that, as shown in
Fig. 1(a), induce state-dependent displacements [31,80].
Note that mechanical effects are also present when single
trapped ions are excited into Rydberg states [25,81]. For
simplicity, we will not account for these here as they can be
eliminated through precise control of the polarizability of
the MW dressed Rydberg states [82].
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To illustrate our ideas, we initially consider a system that
consists of two ions, as depicted in Fig. 1(a), and later
generalize to many ions. For brevity, we only outline the
derivation of the spin-phonon coupled Hamiltonian here,
and reserve further relevant details to the Supplemental
Material (SM) [51]. The model Hamiltonian for a system of
trapped Rydberg ions is given by (note, ℏ ¼ 1),

H¼
X2
i¼1

hiþV12n1n2þω2a
†
2a2; hi¼ΔniþΩσxi ; ð1Þ

where ni ¼ j↑ih↑ji is the projector onto the Rydberg state
of ion i and σxi ¼ j↑ih↓ji þ j↓ih↑ji the associated spin-flip
operator. The first two terms describe the effective spin
dynamics modeling the ions’ internal electronic degrees of
freedom, the former the interactions of the ions with the
electric field, and the latter the interactions between the ions
in the Rydberg states via the distance-dependent potential
V12 ¼ VðR12Þ with R12 the interionic distance. The final
term governs the external vibrational degrees of freedom,
which are modeled by a single phonon mode of frequency
ω2 with creation and annihilation operators a†2 and a2. In
order to obtain a leading order coupling term, we linearly
expand the dipole-dipole interaction potential VðR12Þ about

the equilibrium separation R0 between the ions [33–35,83].
Expressing the displacements of the ions about their
equilibrium positions in terms of the phonon mode oper-
ators we get V12 ≈ V þP

2
p¼1 κp½a†p þ ap� with the spin-

phonon coupling strength given by,

κp ¼ −
3V
R0

Γpffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mωp

p ; V ¼ 1

4πϵ0

d2

R3
0

: ð2Þ

Here, M is the ion mass and Γp the coupling coefficient
associated to the phonon mode p with frequency ωp. For
two ions, state-dependent forces only couple the relative
vibrational motion with the electronic dynamics. In terms
of the ion trap frequency ν [see Fig. 1(a)], the frequency of
the relative mode is ω2 ¼

ffiffiffi
3

p
ν and the coupling strength

κ2 < 0 since Γ2 ¼
ffiffiffi
2

p
. In contrast, for the center of mass

mode we have ω1 ¼ ν, yet κ1 ¼ 0 as Γ1 ¼ 0. Accordingly,
the Hamiltonian reads [see Eq. (S61) in the SM [51] ],

H ¼
X2
i¼1

hi þ Vn1n2 þ ω2a
†
2a2 þ κ2½a†2 þ a2�n1n2: ð3Þ

The strength of the spin-phonon coupling κp scales as
κp ∼M5=6ν13=6, therefore, the heavier the ion and larger
the trap frequency, the stronger the coupling between the
electronic and vibrational motion [51]. For two ions, this is
why we consider barium 138Baþ ions of isotopic massM ¼
137.9 u as opposed to strontium 88Srþ (M ¼ 87.9 u) or
calcium 40Caþ (M ¼ 40.0 u) ions which are currently used
in trapped Rydberg ion experiments [26]. Here, the
electronically low-lying ground state j↓i is the metastable
state j5D5=2i, while the highly excited dressed Rydberg

state j↑i is a superposition j↑i ¼ ½jnP1=2i − jnS1=2i�=
ffiffiffi
2

p
.

These two states are coupled by a two-photon excitation
scheme via the intermediate state j7P3=2i [26,28]. Using
Rydberg states with a principal quantum number n ¼ 60
and linear Paul trap with frequency ν ¼ 2π × 6 MHz, we
obtain an equilibrium ion separation R0 ¼ 1.12 μm which
returns an interaction strength V ¼ 28ω2 and a coupling
strength κ2 ¼ −0.20ω2 [see Fig. 2(b)]. We note that these
values are somewhat extreme, yet feasible [26]. Later, we
will show that these can be relaxed significantly to more
typical values when considering larger ion crystals.
Spectrum.—In the following, we consider the situation in

which the dynamics is subject to the facilitation (antiblock-
ade) constraint where the laser detuning Δ cancels the
interaction energy V (i.e., Δþ V ¼ 0), as illustrated in
Fig. 1(b). In this regime, the spin-phonon coupling is
particularly prominent and a simplified analytical model
can be developed. Because of the level symmetry, the laser
only couples the unexcited state j↓↓i, the singly excited
symmetric state jSi ¼ ½j↑↓i þ j↓↑i�= ffiffiffi

2
p

, and the doubly
excited Rydberg state j↑↑i [see Fig. 1(b)], with the singly

FIG. 1. System. (a) Two ions confined within a harmonic
potential with trap frequency ν. When both ions are in their
electronic ground states, i.e., j↓↓i ¼ j↓i ⊗ j↓i, the equilibrium
distance between the ions is R0. However, when both ions are
simultaneously excited to Rydberg states j↑↑i, electric dipole
interactions displace the ions from their equilibrium positions by
an amount proportional to κ=ν where κ parametrizes the strength
of vibronic (i.e., spin-phonon) coupling. (b) Relevant energy
levels for the system of trapped ions in the (stationary) lab frame.
The laser, with detuning Δ and Rabi frequency Ω, couples the
state j↓↓i, via the singly excited symmetric state jSi ¼ ½j↑↓iþ
j↓↑i�= ffiffiffi

2
p

, to the doubly excited (Rydberg) state j↑↑i. We
consider the regime where the laser detuning cancels the
interaction between the Rydberg ions at their equilibrium
separation R0 (i.e., Δ ¼ −V). Electric dipolar forces between
the Rydberg ions couple the electronic and relative vibrational
motion. (c) External dynamics in the (rotating) dressed frame of
the laser. In the state j↓↓i, the ions experience a virtually
unperturbed confinement, however, in the states jSi and j↑↑i,
they hybridize with the relative motional degrees of freedom. The
resulting coupled electronic potential surfaces are located at an
energy of approximately E ≈ −V.
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excited antisymmetric state jAi ¼ ½j↓↑i − j↑↓i�= ffiffiffi
2

p
decoupled from the aforementioned dynamics. Taking into
account that the interaction energy V ≫ Ω, we note that the
state j↓↓i only acquires a weak light shift and so can
similarly be neglected. On the other hand, the states jSi and
j↑↑i are resonantly coupled to the laser field with the
electronic state j↑↑i also coupled to the vibrational mode.
The approximate Hamiltonian is then (see SM [51]),

H¼
�
−V

ffiffiffi
2

p
Ωffiffiffi

2
p

Ω −V

�
þω2a

†
2a2þ κ2

�
1 0

0 0

�
½a†2þa2�; ð4Þ

where the energy of the hybridized states is with respect to
the state j↓↓i, as pictured in Fig. 1(c).
In Fig. 2(a), we show the full vibronic coupled spectrum

for V ¼ 28ω2 and κ2 ¼ −0.20ω2 as a function of the laser
Rabi frequency Ω. In the region with energy E ≈ −V, we
indeed observe an avoided crossing, indicated by a circle,
which is a manifestation of the strong coupling between the

internal electronic and external vibrational degrees of
freedom. In order to study this coupling, we remark that
the interaction strength V ≫ κ2 which allows us to treat the
spin-phonon coupling as a perturbation. Introducing the
following electronic eigenstates j�i ¼ ½j↑↑i � jSi�= ffiffiffi

2
p

of
the unperturbed Hamiltonian (i.e., for κ2 ¼ 0), we can then
rewrite the approximate model Hamiltonian as

H ¼
�
Eþ 0

0 E−

�
þ ω2a

†
2a2 þ

κ2
2

�
1 1

1 1

�
½a†2 þ a2�; ð5Þ

with E� ¼ −V � ffiffiffi
2

p
Ω the electronic energy eigenvalues.

This Hamiltonian is a variant of the quantum Rabi model
with spin-phonon coupling constant κ2 [42]. For κ2 ¼ 0, the
spin-phonon dynamics decouple and the Hamiltonian
becomes diagonal. The corresponding energy eigenvalues
are E�;N ¼ E� þ Nω2, while the associated eigenstates are
j�; Ni ¼ j�i ⊗ jNi, where jNi is an eigenstate of the
number operator with eigenvalue N. A resonance occurs
when any pair of these energies becomes degenerate, e.g.,
the resonance shown in Fig. 2(a) is due to states jþ; 0i and
j−; 1i, which become degenerate at Ω ¼ Ωres ≈ ω2=2

ffiffiffi
2

p
.

Notice that this is only an estimate for the value of the
resonance frequency Ωres, since we are neglecting second
order light shifts. In general, resonances occur whenever
the Rabi frequency Ω ¼ Ωres ≈ Nω2=2

ffiffiffi
2

p
with N ∈N. If

we calculate the approximate eigenstates at the resonance
between the states jþ; 0i and j−; 1i highlighted in Fig. 2(a),
we find that [51],

jEres
� i ¼ 1

2
½j↑↑i ⊗ ½j1i � j0i� − jSi ⊗ ½j1i ∓ j0i��; ð6Þ

which evidently shows hybridization of the electronic and
vibrational degrees of freedom. The resonant energy level
splitting is given by the coupling strength κ2.
Spectroscopy.—In order to probe the energy spectrum

shown in Fig. 2(a) in an experiment, we propose to perform
radio frequency (rf) spectroscopy. To implement this, we
replace the Rabi frequency in Eq. (3) according to

Ω → ΩðtÞ ¼ Ωþ Ωrf cosðωrftÞ; ð7Þ

where ωrf and Ωrf are the radio frequency and amplitude
modulation of the field. The spectroscopic protocol is as
follows. To start, we prepare the system in the unexcited
state j↓↓i ⊗ j0i, i.e., the state within which both the spins
and the phonon are, respectively, in their electronic and
vibrational ground states. Next, we switch on the laser to set
the desired value for the time-independent part of the Rabi
frequency (i.e., Ω ≠ 0 and Ωrf ¼ 0). Assuming that this
proceeds adiabatically, this amounts to moving along the
blue line in Fig. 2(a). Note, however, that in practice, a
sudden turning on of the laser should also suffice, since
for all considered values of the Rabi frequency the state
colored in blue corresponds to the initial state j↓↓i ⊗ j0i,

FIG. 2. Spectrum and radio frequency spectroscopy. (a) Energy
spectrum of the two-ion Hamiltonian in Eq. (3) for V ¼ −Δ ¼
28ω2 with κ2 ¼ −0.20ω2 as a function of the Rabi frequency Ω.
The color of the line encodes the average number of Rydberg
excitations nRyd ¼ hn1 þ n2i of the approximate eigenstate. The
blue line represents the initial state j↓↓i ⊗ j0i which is adia-
batically connected to the electronic state j↓↓i in the limit κ2 → 0
since, for allΩ considered, it contains only a tiny admixture of the
Rydberg states j↑i. Transitions between states are driven by
applying a radio frequency (rf) field with frequency ωrf. This
facilitates the probing of the coupling that occurs in the vicinity of
the resonance at Ω ¼ Ωres ¼ ω2=2

ffiffiffi
2

p
, marked by the purple

circle. Note that the states in the lower branches denote
eigenstates in the limit κ2 → 0 (see the main text for details).
(b) Spectroscopy of the hybridized electronic and vibrational
states. The system is initially prepared in the state j↓↓i ⊗ j0i for
fixed Ω. Irradiating the ions with an rf field of frequency ωrf with
strength Ωrf ¼ 0.1ω2 [cf. Eq. (7)] and integrating the average
number of Rydberg excitations over a period ω2τ ¼ 30 yields the
signal shown. In the upper panel, where κ2 ¼ −0.20ω2, the
hybridization clearly manifests as an avoided crossing. This is in
contrast to the lower panel, where κ2 ¼ 0, and the electronic and
vibrational motion decouple.
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up to corrections of order ½Ω=V�2. Now the rf modulation is
switched on (i.e., Ωrf ≠ 0) and, if the radio frequency ωrf is
set to the energy splitting between two hybridized levels,
illustrated by the red arrow in Fig. 2(a), a transition occurs.
Given that the initial state contains no Rydberg excitations,
monitoring the number of ions that are in Rydberg states
provides a direct spectroscopic signature of whether a
transition has taken place, as demonstrated in Fig. 2(b),
where we plot the time-integrated number of Rydberg
excitations I ¼ R

τ
0 dthn1 þ n2iðtÞ as a function of ωrf and

ΩðtÞ over the time interval ω2τ ¼ 30.
Transitions can only occur if the Hamiltonian possesses a

nonvanishing matrix element between initial and final
states. For the chosen initial state j↓↓i ⊗ j0i, this is only
the case if the final state contains some admixture of the
state jSi ⊗ j0i. Hence, in the limit κ2 ¼ 0, only the states
j�; 0i can be excited, as demonstrated in the lower panel of
Fig. 2(b). However, with increased vibronic coupling the
electronic and vibrational motion hybridize such that, in the
vicinity of the resonance denoted in Fig. 2(a), the state is
approximated by that in Eq. (6). Given that this state
exhibits overlap with the state jSi ⊗ j0i, it can be excited
from the initial state and, from inspection of Fig. 2(b), one
clearly observes the associated avoided crossing.
At finite temperature, the initial phonon state is a thermal

state, ρT ¼ P∞
N¼0 e

−Nω2=T=½1 − e−ω2=T �jNihNj. The occu-
pation of these higher vibrational states opens novel
transition channels. Indeed, in contrast to the case where
T ¼ 0, these aforementioned transitions do not probe the
lower edge of the spectrum, delimited by the state j−; 0i
[see Fig. 2(b)], whose energy decreases linearly with Ω.
Rather, they lead to states being symmetrically repelled by
other states of higher and lower energy. For example, the
initial state in Fig. 2(a) couples to states with asymptotes
jþ; 0i and j−; 2i. This coupling to more symmetric parts of
the spectrum manifests in a spectroscopic signal, as
pictured in Fig. 3. For sufficiently low T, the signal is
similar to that in the upper panel in Fig. 2(b). However, as
the temperature increases the signal becomes symmetric

about ωrf ¼ V. Note that without spin-phonon coupling,
the spectrum would be identical to that in the lower panel of
Fig. 2(b) for all T. Hence, small, but finite temperatures
increase the spectral signature of the vibronic coupling.
Ion crystals.—We now generalize our considerations to a

chain of N ions confined within a linear Paul trap [27]. For
simplicity, we assume that only the centermost pair of ions
are irradiated with the laser such that the internal electronic
degrees of freedom of the unexcited ions decouple from the
many-body spin-phonon coupled dynamics. This leads to
the following Hamiltonian [51],

H ¼
X2
i¼1

hi þ Vn1n2 þ
XN
p¼1

½ωpa
†
pap þ κp½a†p þ ap�n1n2�;

ð8Þ
with the former two terms corresponding to the electronic
motion defined as in Eq. (3) and where for simplicity the
centermost pair of ions are labeled by i ¼ 1, 2. The latter
terms then, respectively, describe the external and coupled
motion, with ωp the frequency of the phonon mode p and
κp the associated strength of the coupling to the internal
dynamics. Note, for even numbers of ions N, the coupling
coefficients Γp and, consequently, the coupling strengths κp
[see Eq. (2)] for modes with odd p vanish. Hence, the
corresponding modes decouple and can be neglected.
Larger ion crystals give rise to increased spin-phonon

coupling strengths since ions in the trap center get closer
and their interaction features stronger forces (see Fig. 4).

FIG. 3. Spectroscopy at finite temperature. Radio frequency
spectra for the initially prepared state j↓↓ih↓↓j ⊗ ρT at differ-
ent temperatures T. Initial states with high vibrational mode
quantum numbers n couple to more symmetric parts of the
spectrum. As such, the higher the temperature, the more
symmetric the signal becomes about ωrf ¼ V. The data plotted
is generated using the parameters given in Fig. 2 with the
coupling strength κ2 ¼ −0.20ω2 [see Fig. 2(b) for details]. Note
that for κ2 ¼ 0, all these plots would be indistinguishable from
the bottom panel of Fig. 2(b).

FIG. 4. Larger ion crystals. Energy and radio frequency
spectrum of a chain of trapped Rydberg ions. As the number
of ions in the crystal N increases, the equilibrium separation
between the two centermost ions R0 decreases [84]. Here, we
consider a chain of N ¼ 8 strontium 88Srþ ions confined in a trap
with frequency ν ¼ 2π × 2 MHz. In the electronic ground state
j↓ � � �↓i, the equilibrium separation between the central ions
R0 ¼ 1.37 μm. When the centermost ions are excited to the
Rydberg states j↑i, they interact with strength V ¼ 43ν. In
contrast to the case of two ions (cf. Fig. 2), the two spins couple
to four phonons of frequency ω2 ¼ 1.73ν, ω4 ¼ 3.06ν,
ω6 ¼ 4.29ν, ω8 ¼ 5.44ν with coupling strength κ2 ¼ −0.06ν,
κ4 ¼ −0.10ν, κ6 ¼ −0.15ν, κ8 ¼ −0.27ν. Note, in particular, the
coupling to the latter mode which manifests as an avoided
crossing that can be probed via radio frequency spectroscopy
[cf. Fig. 2(b)], as demonstrated in the outset.
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To demonstrate this we consider an ion crystal of N ¼ 8

strontium 88Srþ ions of mass M ¼ 87.9 u with parameter
values that are significantly relaxed compared to the case of
N ¼ 2 barium 138Baþ ions considered initially. Here, the
state j↓i ¼ j4D5=2i is a metastable state, while the state

j↑i ¼ ½jnP1=2i − jnS1=2i�=
ffiffiffi
2

p
is a (dressed) Rydberg state

with principal quantum number n ¼ 50. With trap fre-
quency ν ¼ 2π × 2 MHz, the equilibrium separation of the
centermost ions R0 ¼ 1.37 μm and the corresponding
interaction strength V ¼ 43ν. In contrast to the two ion
case [see Fig. 1(a)], the spins now couple to four phonons,
with frequencies and coupling strengths that are listed in
Fig. 4. Here, the coupling to the p ¼ 8 mode manifests in
Fig. 4 as a clearly observable avoided crossing. Note that all
parameters used are tabulated in the SM [51].
Summary and outlook.—In this Letter, we demonstrate

that strong state-dependent forces in Rydberg ions allow for
the engineering and exploring of vibronic interactions in
trapped ion quantum simulators. Spectral signatures of
coupling between the electronic and vibrational motion are
directly visible in the spectroscopy of Rydberg states with
radio frequency modulated laser. While we focused on
analytically and numerically tractable situations, the expo-
nential growth of the number of degrees of freedom rapidly
allows one to reach many-body scenarios that are intrac-
table on classical computers. Spatially resolved and quan-
titative Rydberg state spectroscopy in the precisely
controllable environment of such augmented trapped ion
quantum simulation platforms can be used to benchmark
and advance numerical approximations schemes, e.g., by
facilitating an understanding of which quantum correla-
tions are most important to capture the observed spectral
signatures as the number of degrees of freedom grows.

The code used to produce the data supporting the
findings of this article is available on Zenodo [85].
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