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We propose a mechanism for engineering chiral interactions in Rydberg atoms via a directional
antiblockade condition, where an atom can change its state only if an atom to its right (or left) is excited.
The scalability of our scheme enables us to explore the many-body dynamics of kinetically constrained
models with unidirectional character. We observe nonergodic behavior via either scars, confinement, or
localization, upon simply tuning the strength of two driving fields acting on the atoms. We discuss how our
mechanism persists in the presence of classical noise and how the degree of chirality in the interactions can
be tuned, opening towards the frontier of directional, strongly correlated, quantum mechanics using neutral
atoms arrays.
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Introduction.—Despite being far from full fault-tolerant
quantum computing [1], reliable analog quantum simula-
tions are nowadays attainable across a variety of atomic,
molecular optical (AMO) as well as solid-state platforms.
Among the former, atomic Rydberg arrays stand out promi-
nently due to their remarkable degree of programmability, as
highlighted in various studies [2–6]. This has led to ground-
breaking experiments in areas such as topological order
[7,8], engineerable quantum phase transitions [2,3,9,10],
lattice gauge theories [11], and strongly correlated quantum
dynamics [2,12–14]. Such broad flexibility suggests oppor-
tunities for designing quantum simulators with no direct
counterpart in traditional AMO or condensed matter phys-
ics. In this context, a challenge centers on creating systems
hosting nonreciprocal processes that can differentiate, par-
ticularly in one dimension, between the flow of information
in the right and left directions. Directionality, already when
restricted to single-particle processes, has proven useful in
various tasks, such as mitigating backaction effects [15],
realizing chiral transport [16], aiding the preparation of
nontrivial topological states [17–20], and realizing uncon-
ventional phases of matter [21,22]. Thus, combining direc-
tional interactions with the high control achieved in
Rydberg platforms would pave the way for entering the
realm of chiral strongly correlated phenomena as an
uncharted frontier of quantum information processing [23].
In this work, we achieve this goal by presenting a

blueprint for Rydberg atomic arrays featuring chiral inter-
actions that are not symmetric when neighboring atoms are
exchanged. Specifically, we consider a one-dimensional
array with a staggered configuration of atomic positions
and drive fields [cf. Fig. 1(a)]. In such a scenario, due to
strong Van der Waals interactions, we can access a regime

we term directional antiblockade, wherein an atom can
change its internal state solely when an atom to its right (or
left) becomes excited. We then show the robustness of these
mechanisms to experimental imperfections, like thermal
disorder in atomic positions, opening up its usage in state-
of-the-art platforms and for simulating exotic many-body
systems, such as directional kinetically constrained quan-
tum models (KCMs). KCMs have attracted considerable
interest due to their capability to display nonergodic be-
havior despite their nonintegrable and disorder-free char-
acter [22,24–29]. In KCMs, slowdown of thermalization
could occur through various mechanisms: quantum scars
[2,30–35], realized in Rydberg arrays [2] or with super-
conducting qubits [36], where a few nonthermal excited
states can lead to non-relaxing dynamics; Hilbert space
shattering [37], realized in ultracold atoms [38,39]; con-
finement of quasi-particles induced by many-body inter-
actions [11,40–42], observed in trapped ions [43]; or slow
dynamics resulting from localization [24,25]. These mech-
anisms are intricately linked to the specific constraints at
play, and each of them would necessitate a distinct
experimental platform. Remarkably, in our Rydberg imple-
mentation, we can realize all of these mechanisms by
simply adjusting the strength of the external drive fields.
This versatility transforms our platform into a universal
quantum simulator for nonergodic quantum dynamics. As
an additional benefit, our platform allows for the imple-
mentation of the quantum East model [24,44], which has
been absent in prior studies, albeit several Rydberg imple-
mentations have focused on related constrained models
[45–51]. The significance of the quantum East model lies in
its distinction as one of the rare cases where an inter-
acting system undergoes a disorder-free transition between
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delocalization and localization in the ground state and
dynamics [24], in a fashion markedly distinct from many-
body localization [52,53].
Chiral interactions in Rydberg arrays.—The key ingre-

dient to engineer a directional interaction is a staggered
configuration of the atomic spacings and drive fields in a
Rydberg array [cf. Fig. 1(a)]. The Hamiltonian describing
such a scenario, in the rotating frame with respect to the
bare atomic transitions, can be written as

ĤðtÞ¼V1

X

jodd

Q̂jQ̂jþ1þV2

X

jeven

Q̂jQ̂jþ1

þVNNN

XN−2

j¼1

Q̂jQ̂jþ2þ
1

2

XN

j¼1

ðΩjðtÞσ̂þj þH:c:Þ; ð1Þ

where σ̂þj ¼ j1ijjh0j transfers the jth atom from the ground

state j0i to the Rydberg state j1i; Q̂j ¼ j1ijjh1j; V1 (V2) are
Van der Waals interactions [VðrÞ ¼ C6=r6] on odd (even)
bonds; VNNN is the next-nearest neighbor interaction;
ΩjðtÞ ¼ Ω1e−iVj−1;jt þ Ω2e−iðV1þV2Þt a classical drive field
with Vj−1;j the Van der Waals interaction on the (j − 1)th
bond, and Ω1;2 independent Rabi frequencies. Throughout,
we work in the regime V1;2; jV1 − V2j ≫ Ω1;2 ≫ VNNN.
In this regime, interactions play a crucial role in dictating

the dynamics of the single atom. Specifically, two extreme
scenarios can be realized: excited atoms either inhibit spin
flips of neighboring ones (blockade) [54], or facilitate them
(antiblockade) [55]. The blockade condition occurs by
setting the drive field resonant with the bare atomic
transitions so that the interaction energy due to a neighbor-
ing excited atom makes it off resonant. Instead, the anti-
blockade occurs when the acting drive field is detuned from
the bare atomic transitions by the interaction, and thus it
becomes resonant solely if a neighboring atom is excited. In
translational invariant systems, each atom cannot distin-
guish its right neighbor from the one to its left, and so no
preferable direction can appear. In our scheme instead,
since V1 ≠ V2, the atom can distinguish the two neighbor-
ing atoms and we can selectively make processes resonant
towards one direction and off-resonance towards the other.
We term this mechanism directional antiblockade, which
implies that an atom can flip only when an atom to its right
(or left) is excited. To achieve this regime, it is enough to
apply the drive field controlled by Ω1 on each atom, and so
we temporarily set Ω2 ¼ 0. The drive field Ω1e−iVj−1;jt

acting on site j is detuned by V1 (if j is even) or V2 (if j is
odd) from the bare atomic transition, so that it is resonant
solely when the atom to its left is excited and the one to its
right is not, obtaining the anticipated directional antiblock-
ade [see Fig. 1(b)]. The net result is that an excitation
seeded in the system triggers an avalanche of excitations
solely toward “East” [see Fig. 1(c)]. In the Supplemental
Material [56], we give further details on the experimental
setup, and an alternative scheme where the staggered
configuration is imprinted on the atomic frequencies while
the drive field is monochromatic.
Experimental realization.—In actual experiments, the

directional antiblockade could be spoiled by finite temper-
ature fluctuations, inhomogeneities due to the harmonic
frequency trap holding the atoms, or dephasing coming
from finite laser linewidth. The first two can be taken into
account including quenched disorder in the atomic posi-
tions [61]. Specifically, at low enough temperature T, the
displacements δrj from the ideal atomic positions are
constant during a single experimental realization and
distributed accordingly to a Gaussian distribution with
zero average and width ηα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

αÞ
p

along the α
axis, with ωα the trapping frequency and m the atomic
mass. Instead, dephasing induced by finite linewidth of the
laser can be modeled by a Lindblad master equation with
jump operators L̂j ¼ ffiffiffi

γ
p

Q̂j, with j∈ ½1; N�. Yet, in our
setup, we work in regimes where γ ∼ 10 kHz is at least 2
orders of magnitudes smaller than the other energy scales,
and therefore it can be neglected. Specifically, we will show
results up to a time of 10 μs, where our approximations
hold and spontaneous decay from the Rydberg state can be
neglected. We elaborate further in the conclusions and [56]
on the opposite limit, where dephasing is large, illustrating
how our scheme readily enables us to investigate “classical”

(a)

(c) (d)

(b)

FIG. 1. (a) An array of Rydberg atoms in a staggered configu-
ration of drive fields (each color refers to a different frequency) and
spacings r1 and r2, with corresponding nearest-neighbor inter-
actions V1 and V2. (b) Scheme of the most resonant processes (see
box) that happen exclusively at the right of excited atoms due to the
directional antiblockade. (c) Dynamics of the excitation profile
seeding a single excitation for experimentally feasible parameters,
including thermal disorder in the atomic positions η̃x ¼ 0.012 (see
text). (d) Dynamics of the imbalances IEast (continuous line) and
IWest (dashed line) starting from the same state as in (c) for
different η̃x. The imbalance IEast (IWest) is given by the sum of the
excitations to the right (left) of the initially seeded one. Excitations
propagate preferably towards East as desired (IEast > IWest)
despite finite temperature effects.
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dynamics with directional character. For concreteness, we
consider 87Rb atoms located along the x axis, at temperature
T ¼ 3 μK and optical traps with ωx ¼ ωy ¼ 5 × ωz ¼
40 kHz, which give rise to an anisotropic disorder ηx ¼
ηy ¼ ηz=5 ≈ 0.1 μm. We consider the atomic level 70S as
the Rydberg state which has C6=ð2πÞ ¼ 864 GHz=ðμmÞ6.
In the following, we measure disorder as the relative varia-
tion with respect to the mean distance, namely, η̃α ≡ ηα=r1.
We consider Rabi frequencies Ω1;2 in the range between
2π × 1 MHz and 2π × 5 MHz. For this set of parameters,
we found V1=ð2πÞ ¼ ð15.0� 1.0Þ MHz, V2=ð2πÞ ¼
ð30.0� 2.2Þ MHz, and VNNN=ð2πÞ¼ð0.33�0.02ÞMHz,
as a good compromise between fast dynamics, small impact
of disorder, and Ω1;2 ≪ fV1;2; jV1 − V2jg. In the experi-
ment, these interactions correspond to average spacings
r1 ¼ 6.2 μm and r2 ¼ 5.4 μm, for which η̃x ≈ 0.01. Despite
we show results mostly in this parameters’ regime, we keep
η̃α as a free parameter to explore different experimental
scenarios. In the following, we show results averaged over
50 realizations of disorder, for which statistical errors are
∼1% or less. As can be seen in Figs. 1(c)–1(d), the main
impact of disorder is a reduction of the propagating front,
while its directional character is not appreciably spoiled.
Having shown the robustness of our scheme, we now
proceed to discuss some models immediately accessible
by simply tuning the strength of the external drive fields.
Kinetically constrained models.—Before discussing the

resulting dynamics of our scheme, we note that using a
single drive field, an atom remains frozen when both
neighbors are excited. To enrich dynamics, we reintroduce
the additional global drive field with frequency detuned by
V1 þ V2 from the bare atomic transition, i.e.,Ω2e−iðV1þV2Þt,
so that it allows the transition j101i ↔ j111i [cf. Fig. 1(b)]
[56]. As is apparent, there is still no resonant process where
an atom changes its state in the absence of an excited one to
its left. To make it visible, we write down the following
effective Hamiltonian describing the most resonant proc-
esses without taking into account disorder in the atomic
positions (for further details see [56]):

Ĥ ¼ Ω1

2

X

j

Q̂jX̂jþ1P̂jþ2 þ
Ω2

2

X

j

Q̂jX̂jþ1Q̂jþ2

þ ϵ
X

j

Q̂j þ VNNN

X

j

Q̂jQ̂jþ2; ð2Þ

where X̂ ¼ j0ih1j þ j1ih0j, P̂ ¼ 1 − Q̂, and we have intro-
duced the detuning ϵ from the perfect directional anti-
blockade which, together with VNNN, can spoil the perfect
resonance condition and inhibit spin flips, as we will show
later. The Hamiltonian in Eq. (2) belongs to the family of
kinetically constrained quantum East models, where
dynamics are activated solely to the right of excited sites.
East models are characterized by a so-called “East sym-
metry” [24], which implies that empty regions without

excitations to their left remain frozen. As a consequence,
the location of the first excitation encountered starting from
the left edge of the system does not change [see Fig. 1(c)],
and the Hilbert space splits in N disconnected sectors, with
N the system size. Once the East symmetry sector is
specified by the location of the first excitation, we can
further shape the accessible Hilbert space simply by
changing the relative power of the drive fields Ω1 and
Ω2 [cf. Fig. 2(a)], which directly reflects in the mobility of
excitations. Specifically, we will show that with a single
drive field the East symmetry sector shatters in OðeNÞ
disconnected sectors [62], while when both are active it is
irreducible [24], meaning the dynamics connect all states
(see Fig. 2). Then, we will illustrate the mechanisms by
which in each regime the onset of thermalization consid-
erably slows down within each irreducible sector, exhibit-
ing scars, confinement, and localization (in [56] we provide
further details on the dynamical features in each regime). In
the following, we discuss these three regimes using the
effective Hamiltonian in Eq. (2) as guidance. Then, we

(a)

(b)

FIG. 2. (a) Sketch of the accessible Hilbert space upon
initializing product states, at fixed East symmetry sector, in a
system of size N as a function of the Rabi frequencies Ω1;2.
Colors indicate allowed transitions and they are in one-to-one
correspondence with those used for the drive fields in Fig. 1(a).
Blank spaces indicate forbidden transitions. For Ω1 ≠ 0 and
Ω2 ¼ 0 strings of excitations can only shrink or expand without
merging or splitting, leading to Hilbert space shattering; for
Ω2=Ω1 ≠ 0, strings achieve complete mobility, rendering the
system ergodic, as any product state becomes accessible from any
other. For Ω2=Ω1 ¼ 1 we recover the quantum East model
[24,44]. (b) Dynamics of the excitation profile starting from

the product state⊗N=2
j¼1 j1i ⊗N

j¼N=2þ1 j0i in the shattered (Ω2 ¼ 0)

and ergodic regime (Ω1;2 ≠ 0) including thermal disorder η̃x ¼
0.012 in units of the average spacing r1 ¼ 6.2 μm.
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show how those features survive upon simulating the full
theory in Eq. (1).
QXQ model.—For Ω1 ¼ 0 and Ω2 ≠ 0 directionality is

lost and a spin flip occurs solely when both neighboring
atoms are excited. This is reminiscent of the well-known
PXP model, in which a spin flip occurs when both
neighboring atoms are in the ground state. Indeed, the
PXP model and ours share the same physics as they are
connected via the transformation Û ¼ Q

N
j¼1 X̂j, which

translates to interchanging j0i ↔ j1i. This includes
Hilbert space shattering [63] and the presence of quantum
many-body scars, which slow down the onset of thermal-
ization when initializing specific states (e.g., Néel state)
[2,31].
QXP model.—When Ω1 ≠ 0 and Ω2 ¼ 0, strings of

consecutive excitations can shrink or grow but not merge
or split (j101i=↔j111i), effectively experiencing a repulsive
interaction. Additionally, the unidirectional character of the
dynamics further reduces their mobility since the left edge
of each string cannot move. Because of these constraints,
each string of excitations is confined between its left edge
and the left edge of the next one, and no entanglement can
be generated between them during dynamics. As a result,
the Hilbert space gets shattered in OðeNÞ disconnected
sectors [62]. Since each string of excitations evolves
independently from the others, we will focus on the largest
irreducible sector containing a single string. We find that its
dynamics (for ϵ ¼ 0) are described by the Hamiltonian [56]

Ĥ¼Ω1

2

XN−1

k¼1

ðjkihkþ1jþH:c:ÞþVNNN

XN

k¼2

ðk−2Þjkihkj; ð3Þ

with jki≡ j1ikj0iN−k, where the first term controls the
change of the string length, while the second the potential
energy proportional to its length. This Hamiltonian is
integrable and has been derived in similar scenarios

[42,64–66]. Direct inspection shows that Eq. (3) is the
well-known Hamiltonian of an electron in a lattice sub-
jected to a constant electric field [65,66]. Dynamics dis-
play Stark localization [65], which leads to real-time
Bloch oscillations of period TBloch ¼ 2πΩ1=VNNN and size
lBloch ∼Ω1=VNNN originating from the rightmost edge of
the string. Hence, excitations and quantum correlations are
confined, preventing thermalization, closely resembling
confinement in nonintegrable systems [11,40,41,67].
Upon introducing disorder, Bloch oscillations are still
visible [see Fig. 2(b) and [56] ] although partly suppressed.
Quantum East model.—When both drive fields are active

(Ω1;2 ≠ 0), strings of excitations gain full mobility since
they can shrink, grow, merge, and split [cf. Fig. 2(b)]. Thus,
the accessible Hilbert space does not shatter and any
product state can be dynamically reached by any other
at fixed East symmetry sector [24]. Nonetheless, it is still
possible to observe an extreme slowdown of thermal-
ization. This can be immediately seen by setting
Ω2=Ω1 ¼ 1, for which Eq. (2) reduces to the quantum
East model investigated in Refs. [24,44] apart from addi-
tional density-density interactions, which do not alter the
qualitative picture. This model has been shown to display a
dynamical transition separating a fast and slow thermaliz-
ing phase [24,44] due to the competing kinetic term ∝ Ω
and on-site energy ∝ ϵ. Intuitively, if the kinetic term
dominates (Ω1;2=ð2ϵÞ≳ 1) strings of excitations expand
and merge ballistically, quickly washing local information
of the initial configuration, while if it is subleading
(Ω1;2=ð2ϵÞ ≲ 1), excitations expand slowly, making it
possible to retrieve information about the initial conditions.
Such behavior is strongly linked to the localization of the
ground state and it can be observed for an exponentially
large number, in the system size, of initial states [24].
Upon introducing thermal disorder η̃α, the picture is slightly
affected. Indeed, η̃α can already induce undesired mis-
matches from the perfect resonant directional antiblockade

(a) (b) (c)(c)

FIG. 3. Dynamics of the state j010010001110i under the full theory [cf. Eq. (1)] in the quantum East model regime (Ω1;2 ¼ Ω).
(a)–(b) Time-averaged autocorrelation function [cf. Eq. (4)] Cðt⋆Þ at time t⋆ ¼ 10 μs keeping fixed either thermal disorder η̃x or
detuning ϵ, respectively. For small Ω the memory of the initial state is kept up to long times [Cðt⋆Þ > 0], while instead for large Ω the
memory of the initial state is rapidly washed out [Cðt⋆Þ ≈ 0]. (c) Dynamics of the excitation profile in the two phases [marked via
symbols in (b)] at fixed thermal disorder η̃x ¼ 0.012 in units of the average spacing r1 ¼ 6.2 μm (see text).
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condition and aid localization. Thus, we expect the dynam-
ics to be dictated by the competition of Ω and the joint
contribution of η̃α and ϵ. We test this by initializing a
representative high-temperature product state characterized
by regions with low and high densities of excitations. In the
slow phase, heterogeneity in the initial state plays a crucial
role in dictating the dynamics up to very long times, in
contrast with typical fast thermalizing systems where all
local information is quickly lost except for global con-
served quantities. We choose the autocorrelation function
[22,24]

CðtÞ ¼ 2

Z

X

i

hQ̂iðtÞQ̂ið0Þi − 1; ð4Þ

where Z ¼ P
ihQ̂ið0Þi is a normalization constant, as

proxy for distinguishing the different dynamical phases.
For the initial product state considered, CðtÞ is the density
of the initially excited sites at time t, to which we subtract
an evenly distributed “background” corresponding to an
infinite temperature state with hQ̂ii ¼ 1=2. Thus, CðtÞ
serves as a good proxy for the memory of initial conditions,
as its initial value is Cðt ¼ 0Þ ¼ 1 and tends to zero when
the system thermalizes. In Figs. 3(a) and 3(b) we show the
time average Cðt⋆Þ ¼ R

t⋆
0 CðτÞdτ=t⋆ up to experimentally

accessible time windows using the full theory [cf. Eq. (1)]
in two scenarios: either keeping fixed the thermal disorder
and varying ϵ, or vice versa. As anticipated, both ϵ and η̃α
contribute to slowing down dynamics. Indeed, in both
dynamical phase diagrams, we can distinguish a phase
where the system retains memory of the initial state and a
phase where the system quickly thermalizes and all local
memory is quickly erased.
Perspectives.—In this work, we have proposed a scheme

for realizing chiral interactions through a directional anti-
blockade condition, namely an atom can change its internal
state only if the atom to its right (or left) is excited. Our
scheme is based on “energetic” arguments and gives rise to
constrained interactions. Additionally, our protocol could be
readily extended in the presence of dominant classical noise.
In this regime, dynamics is effectively described by rate
equations, with rates dependent on the detunings, inter-
actions, and atomic configuration [45,47], opening up to the
simulation of dissipative unidirectional spin dynamics (for
further details see [56]). Finally, we highlight that the degree
of chirality in the interactions can be tuned by relaxing
the condition ΔV ≡ jV1 − V2j ≫ Ω1;2. Specifically, for
0 < ΔV=Ω1;2 ≲ 1, dynamics still has a preferable direction,
but there are near-resonant processes towards the other as
well (similar to other Rydberg proposals [68,69]). This
offers a path for accessing regimes with a tunable bias
towards one direction or the other. As an extreme example,
in the zero bias case (ΔV ¼ 0), and by setting Ω1 ¼ Ω2=2,

we can effectively simulate the quantum Fredrickson-
Andersen model [70,71].
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R. Bai, N. Lang, M. Fleischhauer, H. P. Büchler, T. Lahaye,
and A. Browaeys, Realization of a density-dependent
Peierls phase in a synthetic, spin-orbit coupled Rydberg
system, Phys. Rev. X 10, 021031 (2020).

PHYSICAL REVIEW LETTERS 132, 223201 (2024)

223201-7

https://doi.org/10.1103/PhysRevLett.130.010201
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1038/nphys3934
https://doi.org/10.1103/PhysRevB.102.041118
https://doi.org/10.1103/PhysRevB.102.041118
https://doi.org/10.1103/PhysRevLett.126.103002
https://doi.org/10.1038/s41567-021-01194-3
https://doi.org/10.1103/PhysRevB.92.100305
https://doi.org/10.1103/PhysRevLett.111.215305
https://doi.org/10.1103/PhysRevLett.111.215305
https://doi.org/10.1103/PhysRevA.98.021804
https://doi.org/10.1103/PhysRevA.98.021804
https://doi.org/10.1103/PhysRevA.93.040701
https://doi.org/10.1103/PhysRevA.93.040701
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.97.011603
https://doi.org/10.1103/PhysRevA.99.060101
https://doi.org/10.1103/PhysRevA.99.060101
https://doi.org/10.1103/PhysRevLett.118.063606
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevA.76.013413
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.223201
https://doi.org/10.1038/s41586-023-05859-2
https://doi.org/10.1038/s41586-023-05859-2
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1126/science.aax9743
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21105/joss.00819
https://doi.org/10.21105/joss.00819
https://doi.org/10.1088/2058-9565/aaf29d
https://doi.org/10.1088/2058-9565/aaf29d
https://doi.org/10.1103/PhysRevX.12.011050
https://doi.org/10.1103/PhysRevX.12.011050
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1103/PhysRevB.107.024306
https://doi.org/10.1103/PhysRevB.107.024306
https://doi.org/10.1103/PhysRev.117.432
https://doi.org/10.1103/PhysRev.117.432
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/PhysRevLett.122.150601
https://doi.org/10.1103/PhysRevLett.122.150601
https://doi.org/10.1103/PhysRevX.10.021031


[69] F. Perciavalle, D. Rossini, T. Haug, O. Morsch, and L.
Amico, Controlled flow of excitations in a ring-shaped net-
work of Rydberg atoms, Phys. Rev. A 108, 023305 (2023).

[70] J. M. Hickey, S. Genway, and J. P. Garrahan, Signatures of
many-body localisation in a system without disorder

and the relation to a glass transition, J. Stat. Mech.
(2016) 054047.

[71] G. H. Fredrickson and H. C. Andersen, Kinetic Ising
model of the glass transition, Phys. Rev. Lett. 53, 1244
(1984).

PHYSICAL REVIEW LETTERS 132, 223201 (2024)

223201-8

https://doi.org/10.1103/PhysRevA.108.023305
https://doi.org/10.1088/1742-5468/2016/05/054047
https://doi.org/10.1088/1742-5468/2016/05/054047
https://doi.org/10.1103/PhysRevLett.53.1244
https://doi.org/10.1103/PhysRevLett.53.1244

