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A general organizing principle is proposed that can be used to derive the equations of motion describing
the near-equilibrium dynamics of causal and thermodynamically stable relativistic systems. The latter are
found to display some new type of universal behavior near equilibrium that allows them to be grouped into
universality classes defined by their degrees of freedom, information content, and conservation laws. The
universality classes expose a number of surprising equivalences between different theories, shedding new
light on the near-equilibrium behavior of relativistic systems.
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Introduction.—The construction of a relativistic hydro-
dynamic theory usually relies on two choices. First, one
must choose the degrees of freedom that describe the
hydrodynamic state. Then, a guiding principle is used to
derive the dynamical equations for those fields. Such
guiding principle may be, e.g., a thermodynamic principle
[1–5], a variational principle [6–9], kinetic theory [10],
holography [11,12], or effective theory arguments [13–18].
The level of freedom involved in these two choices is
immense [19], leading to a plethora of alternative theories,
which are constantly being added to the “relativistic
hydrodynamics landscape” [1,10,12–16,18,20–36]. Never-
theless, it is known that some theories can become
equivalent in certain regimes. For instance, second-order
theories for viscous hydrodynamics arising from very
different choices of both fields and dynamical equations
[10,12,37–41] are mathematically equivalent near equilib-
rium [42–45]. Equivalency here means that, although those
theories can be different in the nonlinear regime, they
become indistinguishable when linearized around homo-
geneous equilibrium states. Demonstrating such equiva-
lency sometimes requires making a complicated change of
variables so that, almost “magically” (see, e.g., [45]), one
linearized theory is transformed into the other. The fact that
such transformations are possible near equilibrium cannot
be some fortuitous coincidence. Rather, this should follow
as a consequence of the underlying properties of equilib-
rium states in relativity.
Here, we present a general organizing principle that can

be used to derive the equations of motion (EOM) describ-
ing the near-equilibrium dynamics of any causal and
thermodynamically stable relativistic system. The method
is based on a new result, rigorously proven here, which
establishes that the EOM describing the system’s linearized
disturbances can always be obtained from a four-vector
field Eμ known as the “information current” [46], which is a

quadratic function of the perturbations (e.g., temperature
variations). Assuming an isotropic and homogeneous
equilibrium state, we show how the information current
can be systematically constructed for arbitrary theories in
terms of the corresponding linear-order perturbation fields,
grouped according to their transformation properties under
the SOð3Þ rotation group. Entropy production follows from
∂μEμ ≤ 0, which describes the fact that our initial infor-
mation about the microstate of the system [47] is erased as
all microstates evolve towards the equilibrium state.
Furthermore, we prove that, no matter how complicated
a hydrodynamic theory is, one can always rearrange its
equations of motion so that they resemble Israel-Stewart
theory [1] near equilibrium. This is used to reveal that
causal and thermodynamically stable theories of relativistic
fluid dynamics possess a new type of universal behavior
near equilibrium that allows them to be grouped into
universality classes. Each class describes a physically
different behavior, defined solely by the degrees of free-
dom, the corresponding information current, and the
conservation laws. The existence of such universality
classes unveils a number of startling equivalences between
seemingly different sets of equations of motion. Finally, as
an application, we use our approach to show that (in the
linear regime) an isotropic solid may be viewed as a fluid
with an additional conserved charge, which transforms as a
symmetric (0,2)-tensor under SOð3Þ. Many more specific
examples can be worked out for different universality
classes (see accompanying paper). Notation: We use
ℏ ¼ kB ¼ c ¼ 1, a ð−;þ;þ;þÞ Minkowski metric,
Greek indices run from 0 to 3, lowercase Latin indices
from 1 to 3. Uppercase Latin indices are multi-index labels.
MðABÞ andM½AB� denote symmetric and antisymmetric parts
of MAB.
Hyperbolicity from thermodynamics.—To understand

how the universality classes come about, we need to derive
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some new results concerning the properties of the EOM of
relativistic systems near equilibrium. We first recap some
general facts about relativistic thermodynamics. All states
of thermodynamic equilibrium maximize some thermody-
namic potential Φ [48–53]. For equations linearized about
equilibrium, the quantity E ≔ Φeq −Φ ≥ 0 plays the role
of a nonincreasing Lyapunov functional [54], which can be
expressed as a volume integral EðΣÞ ¼ R

Σ E
μdΣμ, where Σ

is a Cauchy surface, dΣμ is its normal surface element (with
orientation dΣ0 > 0 [55]), and Eμ is the information current
[46] (see the Supplemental Material [56] for a brief review).
For the state of thermodynamic equilibrium to be stable
against perturbations in all reference frames [57,58], Eμ

must be future-directed and timelike for any nonvanishing
perturbation [46]. The second law of thermodynamics also
requires

∂μEμ ¼ −σ ≤ 0; ð1Þ

where σ is the entropy production rate. We consider here
the dynamics of linear deviations about thermodynamic
equilibrium. Hence, let φAðt; xjÞ be some real linear-order
perturbation fields that we use to characterize the system’s
state. Thus, φA ¼ 0 in equilibrium. We now prove the
following result:
Theorem 1.—Consider the following system of partial

differential equations on R1þ3,

Mμ
AB∂μφ

B ¼ −ΞABφ
B; ð2Þ

where Mμ
AB and ΞAB are constant matrices, and M0

AB is
invertible. Suppose that there exist constant symmetric
matrices Eμ

AB and σAB such that Eq. (1) holds for any
smooth solution of (2), where Eμ and σ are given by

Eμ ¼ 1

2
Eμ
ABφ

AφB; σ ¼ σABφ
AφB; ð3Þ

and Eμ is future-directed timelike (and hence nonvanishing)
over the support of φA. Then, the system (2) is causal, and it
can be equivalently rewritten in a symmetric hyperbolic
form as follows:

Eμ
AB∂μφ

B ¼ −σABφB − Ξ½AB�φB: ð4Þ

Proof.—System (2) admits smooth solutions of the form,

φAðt; xjÞ ¼ ðe−ðM0Þ−1ΞtÞABðZB −WBÞ
þ ðe−ðM0Þ−1ðΞþMjajÞtÞABWBeajx

j
; ð5Þ

for any real ZA;WA; aj ¼ const. Thus, Eμ
ABZ

AZB ¼ 2Eμð0Þ
must be timelike future directed for any ZA ≠ 0. In
particular, E0

AB must be positive definite and, hence,
invertible. Now, we always have the freedom to redefine

the matrices Mμ
AB and ΞAB by contracting both sides of (2)

with an invertible matrix N A
C. Let us then “fix” the matrix

M0
AB to coincide with E0

AB (this is possible because both are
invertible). If we contract (2) with φA, and we plug (3) into
(1), we obtain the two equations below,

φAMμ
AB∂μφ

BþφAΞABφ
B¼0; φAEμ

AB∂μφ
BþφAσABφ

B¼0:

ð6Þ
Both are respected along all solutions of (2). If we subtract
the second equation of (6) to the first, the terms φAM0

AB∂tφ
B

cancel out (we have fixed M0
AB ¼ E0

AB). Evaluating the
result along (5), at xμ ¼ 0, we obtain

ZAðMj
AB − Ej

ABÞajWB þ ZAðΞAB − σABÞZB ¼ 0: ð7Þ
Since this must be true for any choice of ZA,WA, and aj, we

obtain Mj
AB ¼ Ej

AB and ΞðABÞ ¼ σAB. We have recovered
(4). But the matrices Eμ

AB are symmetric [59], and E0
AB is

positive definite. Thus, the system (4) is symmetric hyper-
bolic and, since Eμ

ABZ
AZB is future-directed timelike for

any ZA ≠ 0, it is also causal [19]. ▪
This theorem shows that thermodynamic stability in

relativistic systems implies not only causality [46] but also
symmetric hyperbolicity in the linear regime (provided that
we have an information current). This is convenient given
that, in most physical systems, symmetric-hyperbolicity
follows directly from Onsager symmetry [60]. Further-
more, by showing that the EOM are symmetric hyperbolic,
we establish that the initial value problem of all thermo-
dynamically consistent theories linearized about homo-
geneous equilibrium is well posed [61–63], i.e., given
initial data, solutions to the equations always exist, are
unique, and depend continuously on the data. The assump-
tions in Theorem 1 are quite general, encompassing an
astounding number of different theories. For example, they
are satisfied by all Israel-Stewart-like theories [1,12,37,64], in
an arbitrary hydrodynamic frame [27,38,65], and with an
arbitrary number of chemical species [66]. They are also satis-
fied within Carter’s multifluid theory [6,40,67], GENERIC-
based theories [41,45,68,69], Geroch-Lindblom theories
[19,44,70,71], and divergence-type theories [39,42,72].
Theorem 1 shows that the EOM of all of those theories
can be found (and written in symmetric-hyperbolic form) in
terms of the information current. Later in this paper, we show
how the information current can be systematically determined
from symmetry arguments. In the Supplemental Material
[56], we explore the origin of Theorem 1 in detail.
Finally, we remark that the hypotheses of Theorem 1 are

violated by first-order theories [13,14,17,18,73–75]
because their regularized information current contains
derivatives [76]. Also, we note that in most hydrodynamic
theories, apart from the “holographic theories” discussed in
[44,77], one finds Ξ½AB� ¼ 0. Consequently, in this case, the
linear field equations (4) are uniquely determined by the
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information current and the entropy production rate. We
will assume this in the following and work with theories
specified by the triplet fφA; Eμ; σg.
In this context, one can find conditions under which two

seemingly different theories are, in reality, different man-
ifestations of the same near-equilibrium physics. This is the
content of
Theorem 2.—Let fφA; Eμ; σg and fφ̃C; Ẽμ; σ̃g be two

linear theories, for which all the hypotheses of Theorem 1
hold, and such that Ξ½AB� ¼ Ξ̃½CD� ¼ 0. Then, such theories
are equivalent if and only if there is an invertible matrixN A

C
such that, for arbitrary ZC,

EμðN A
CZ

CÞ ¼ ẼμðZCÞ; σðN A
CZ

CÞ ¼ σ̃ðZCÞ: ð8Þ

Proof.—Theorem 1 implies that the field equations of
the two theories can be recast as

Eμ
AB∂μφ

B ¼ −σABφB; Ẽμ
CD∂μφ̃

D ¼ −σ̃CDφ̃D: ð9Þ

Suppose that an invertible matrix N A
C that satisfies (8)

exists. Then Eμ
ABN

A
CN

B
D ¼ Ẽμ

CD, and σABN A
CN

B
D ¼ σ̃CD.

But this implies that if we contract the first equation of (9)
with N A

C, and we make the replacement φB ¼ N B
Dφ̃

D, we
obtain the second equation of (9). Hence, the equations of
the two theories are the same, just written using different
variables. Vice versa, suppose that the two linear theories
are the same theory. Then, since the information current is
unique [46], we must have that Eμ ¼ Ẽμ, and σ ¼ σ̃. But
this is equivalent to saying that there is a one-to-one
mapping φA ¼ N A

Cφ̃
C for which Eq. (8) holds, with

ZC ¼ φ̃C. ▪
Theorem 2 can be employed to prove that many

apparently different theories currently in use reduce to
exactly the same theory close to equilibrium. For example,
a fluid mixture of two chemical substances undergoing a
chemical reaction is indistinguishable from the Israel-
Stewart theory for bulk viscosity [78], close to equilibrium
(see also [79–81]). Several other examples are discussed in
our companion paper [82].
Israel-Stewart representation.—In classical field theory,

the existence of conservation laws is associated with the
presence of a collection of currents jμI (where I is a new
multi-index spanning the conserved quantities) with van-
ishing divergence ∂μj

μ
I ¼ 0 [83] (e.g., baryon number

conservation). In linear fluid theories characterized by
fφA; Eμ; σg such as those considered here, such currents
manifest themselves through the existence of a (constant)
matrixN A

I such thatN A
I σAB ¼ 0. In fact, if we contract the

field equations of the theory, Eμ
AB∂μφ

B ¼ −σABφB, with
N A

I , the right-hand side vanishes, and we recover the
equations ∂μj

μ
I ¼ 0, with

jμI ¼ N A
I E

μ
ABφ

B: ð10Þ

In the Supplemental Material [56], we prove the following
useful result:
Theorem 3.—Let fφA; Eμ; σg be a linear theory for

which all the hypotheses of Theorem 1 hold, and
Ξ½AB� ¼ 0. If the conservation laws ∂μðN A

I E
μ
ABφ

BÞ ¼ 0

are all independent, then there is a one-to-one change of
variables φA → fμI;Πag such that Eμ, jμI , and σ take the
form (all matrices below are constant),

Eμ ¼ 1

2
Eμ
IJμ

IμJ þ Eμ
Ibμ

IΠb þ 1

2
Eμ
abΠaΠb;

jμI ¼ Eμ
IJμ

J þ Eμ
IbΠb; σ ¼ σabΠaΠb; ð11Þ

where Eμ
IJ, E

μ
ab, and σab are symmetric matrices. If N A

I
accounts for all conservation laws, then σab is invertible.
Theorem 3 tells us that one can always rearrange the

EOM so that their mathematical structure “resembles”
Israel-Stewart theory. In fact, if σab is invertible, with
matrix inverse σab, we can express the field Eqs. (4) in
terms of the variables fμI;Πag as

∂μðEμ
IJμ

J þ Eμ
IbΠbÞ ¼ 0;

σabEμ
bc∂μΠc þ Πa ¼ −σabEμ

Jb∂μμ
J; ð12Þ

which we will refer to as the “Israel-Stewart representation”
of the theory. The first set of equations in (12) is the set of
all conservation laws. The second set gives relaxation-
type equations [84], which describe dissipation. Stability
requires that E0

ab and σab be positive definite so that the
second equation in (12) contains both ∂tΠa and Πa,
breaking time-reversal invariance. Thus, one can interpret
Πa as “dissipative fields” [70] (e.g., viscous stresses,
diffusive currents, and reaction affinities [85]). The fields
μI are the usual “dynamical fluid fields” [70] (e.g., temper-
ature, chemical potential, and flow velocity). Indeed, if
Πa ¼ 0 then 2Eμ ¼ μIjμI , meaning that μI may be inter-
preted as the “chemical potential” of the conserved density
j0I [60,86]. Therefore, thermodynamically stable relativistic
theories can always be expressed in this Israel-Stewart
representation specified by a choice of fμI;Πa; Eμ; σg.
Further insight can be obtained by realizing that, due to

rotational invariance of the equilibrium state, we may
further decompose μI and Πa into irreducible tensors of
the SOð3Þ rotation group. For example, if among the fields
there is a four-current δnμ, then δn0 behaves as a scalar
under rotations, and δnj (j ¼ 1, 2, 3) behaves as a three-
vector. Hence, we can assign to a given theory a list of
integers ðg0; g1; g2;…Þ that specifies the geometric char-
acter of its degrees of freedom, with g0 being the number of
scalars, g1 the number of vectors, g2 the number of
symmetric traceless tensors with two indices, and so forth.
One can repeat the same procedure for the conservation
laws, including in the count only the fields μI , which
transform under SOð3Þ as the respective conserved
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densities j0I . This produces a second list of integers,
ðḡ0; ḡ1; ḡ2;…Þ, where ḡn ≤ gn. From (12), we see that
the theory is nondissipative if and only if ḡn ¼ gn, ∀ n,
i.e., if there are as many conservation laws as degrees of
freedom. Therefore, one can fully specify a given theory by
saying that it is “of class ðg0; g1; g2;…Þ − ðḡ0; ḡ1; ḡ2;…Þ”.
For example, a perfect fluid at finite chemical potential is of
class ð2; 1Þ − ð2; 1Þ, and it does not dissipate, whereas a
bulk-viscous fluid at zero chemical potential is of class
ð2; 1Þ − ð1; 1Þ, and it dissipates (here, it is understood that
gn ¼ ḡn ¼ 0, for n ≥ 2).
Universality classes.—Pick a class, i.e., fix the values of

gn and ḡn. Working in the Israel-Stewart representation,
give some names to the fields μI and Πa and construct the
most general expressions for Eμ and σ, of the form (11),
compatible with rotational invariance. This produces the
most general theory of the given class. By Theorem 2, any
other theory belonging to the same class must be a
particular case of this general theory (for some specific
choice of parameters) since a mapping of the form (8) is
guaranteed to exist (Eμ and σ being the most general). This
general theory is usually very complicated, as it possesses a
plethora of free coefficients. Luckily, Theorem 2 comes to
our aid: one can reabsorb many transport coefficients
through changes of variables, as this does not modify
the dynamics of the system. A useful type of field
redefinition is the “change of hydrodynamic frame”: μI ¼
μ̃I þRI

cΠ̃c and Πa ¼ Ra
cΠ̃c (RI

c and Ra
c being constant

matrices), which preserves the structure (11), mapping
Israel-Stewart representations into Israel-Stewart represen-
tations. The goal is to find a transformation that maps the
general theory into an already existing theory (whose
physical interpretation is known), which plays the role
of a “representative” of the class. If this happens,
Theorem 2 guarantees that any linear theory belonging
to the class is a particular realization of the representative
and exhibits the same physical behavior.
We have applied this method to some selected (parity

invariant [26]) classes. The representatives are reported in
Table I (we have fixed gn ¼ ḡn ¼ 0, for n > 2). An
interesting pattern can be recognized. In the absence of
vector conservation laws, the currents do not have inertia,
and they can only diffuse. If we include one vector
conservation law, which plays the role of the linear
momentum, only then will the system behave like an
actual fluid. If we include more vector conservation laws,
the fluid can sustain multiple nondiffusive relative flows,
and it behaves like a superfluid. If we include a tensor
conservation law, the system can conserve the “memory” of
the deformations it experiences, and it becomes elastic.
Combine two vector conservation laws with one tensor
conservation law, and the result is a superfluid-elastic
system, i.e., a supersolid. We provide the information
currents and entropy production rates of the theories listed
in Table I in the Supplemental Material. In our companion

paper [82], we use those expressions to discuss in detail the
equivalence between the theories in the most relevant classes.
We consider here a system of class ð1; 1; 1Þ − ð1; 1; 1Þ. Its
fields are μI ¼ fδμ; δuk; δΠklg, which may be interpreted as
the perturbations to the chemical potential, flow velocity, and
shear stress tensor (which is symmetric and traceless). Since
we have as many degrees of freedom as conservation laws
(i.e., there are no fields of “Πa type”), the entropy production
rate vanishes. Thus, the most general theory is

TE0 ¼ 1

2

dn
dμ

ðδμÞ2 þ 1

2
ðρþ PÞδukδuk þ

δΠklδΠkl

4G
;

TEj ¼ nδμδuj þ δΠjkδuk; Tσ ¼ 0: ð13Þ
This information current contains all possible terms allowed
by symmetry, making this theory a valid representative of its

TABLE I. Universality classes near equilibrium.

g0 g1 g2 ḡ0 ḡ1 ḡ2 Representatives

a 0 0 ≤ a 0 0 Chemistry

a 1 0 ≤ a 1 0 Fluid mixture [6,79]; models
for bulk viscosity [78]

a a 0 ≤ a ≤ a 0 Carter multifluids [67,90]

1 1 0

0 0 0 Diffusion of a nonconserved
density

1 0 0 Cattaneo model of diffusion
[84,91]

1 1 0 Perfect fluid at μ ¼ 0;
barotropic perfect fluid

2 1 0
1 1 0 Bulk viscous fluid at μ ¼ 0
2 1 0 Perfect fluid

2 2 0

2 0 0 Coupled diffusion of two
conserved densities [92]

1 1 0 Heat conductive bulk viscous
fluid at μ ¼ 0

2 1 0 Heat conductive fluid at
μ ≠ 0 [93]

2 2 0 Relativistic superfluid [94]

1 1 1

1 1 0 Maxwell material [45,95] at
μ ¼ 0

1 1 1 Elastic material at μ ¼ 0 or at
T ¼ 0 [88,89]

1 1 2 1 1 0 Burgers material [96] at
μ ¼ 0; MIS� [30]

3 2 1

1 1 0 Israel-Stewart theory in a
“general frame” [27] at μ ¼ 0

2 1 0 Israel-Stewart theory [1,37] at
μ ≠ 0

3 1 1 Elastic heat conducting
material

3 2 1 Supersolid [97,98]; Inner crust
of neutron stars [99]
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class. The transport coefficients have been given a physically-
motivated name to ease their interpretation: ρþ P may be
interpreted as the enthalpy density, G as the shear modulus,
and n as the background density. The prefactor of δΠjkδuk
could be set to unity by appropriately rescaling δΠjk with a
field redefinition of the form δΠjk → aδΠjk [87]. If we
compute the field equations from Eq. (4), we obtain

∂tδnþ ∂jðnδujÞ ¼ 0;

ðρþ PÞ∂tδuk þ ∂kðnδμÞ þ ∂jδΠ
j
k ¼ 0;

∂tδΠkl

2G
þ h∂kδuli ¼ 0; ð14Þ

where h…i extracts the symmetric tracelesspart. Toobtain the
last equation, one needs to account for the constraints on δΠkl
(see [60] for a detailed discussion). Equations (14) describe
the dynamics of an isotropic elastic material at zero temper-
ature. The first equation is the continuity equation for
particles, the second is the conservation of momentum, the
third incorporates shear-stress dynamics in the Hookean
approximation [88]. Combining all three equations, and using
dP=dρ ¼ n2dμ=ðρþ PÞdn, we obtain

∂
2
t δuk−

G
ρþP

∂
j
∂jδuk−

�
dP
dρ

þ G
3ðρþPÞ

�
∂k∂jδuj¼0; ð15Þ

which is consistent with standard formulas from the theory
of elasticity [89]. This describes an elastic material that
can sustain both longitudinal and transversal propagating
waves with speeds cL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdP=dρÞ þ ½4G=3ðρþ PÞ�p

and
cT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½G=ðρþ PÞ�p

, respectively [89].
Conclusions.—Our results establish, for the first time,

connections between elasticity, viscosity, superfluidity,
supersolidity, diffusion, and chemistry within a systematic,
fully relativistic formalism. Using this paper, one can easily
write down the (linearized) EOM of an arbitrary relativistic
hydrodynamic system with very limited knowledge about
its behavior: one only needs to know the relevant degrees of
freedom and conservation laws [100]. Then, the most
general information current can be constructed, from which
the EOM can be derived in full analogy with action
principles. Our method’s three main advantages are
(a) The resulting EOMs are always causal, stable, thermo-
dynamically consistent, and uniquely solvable for smooth
initial data. (b) Given the degrees of freedom and the
conservation laws, the associated theory is unique. (c) The
information current uniquely determines also the fluctuat-
ing generalization of the theory, giving rise to well posed
stochastic dynamics in terms of a path integral [102].
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