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We perform classical-statistical real-time lattice simulations to compute real-time spectral functions and
momentum broadening of quarks in the presence of strongly populated non-Abelian gauge fields. Based on
a novel methodology to extract the momentum broadening for relativistic quarks, we find that the
momentum distribution of quarks exhibit interesting nonperturbative features as a function of time due to
correlated momentum kicks it receives from the medium, eventually going over to a diffusive regime. We
extract the momentum diffusion coefficient for a mass range describing charm and bottom quarks and find
sizable discrepancies from the heavy-quark limit.
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Introduction.—Heavy quarks are excellent probes of the
quark gluon plasma (QGP) formed in collisions (HIC) of
heavy nuclei, performed in large-scale collider experiments
at RHIC and LHC [1]. Heavy charm (c) and bottom (b)
quarks are particularly interesting since these are almost
exclusively formed in the very early stages of ultrarelativ-
istic HICs through perturbative hard scattering process of
the colliding nuclei. Subsequently, these heavy quarks
interact with the QGP formed in HICs, thus charting out
its entire time history until hadronization. Historically, the
in-medium dynamics of heavy quarks has primarily been
modeled as a Brownian motion in a medium consisting of
colored degrees of freedom through the Langevin equations
[2,3]. More recently, the effect of color interactions [4] have
been implemented including color memory effects [5,6] in
the Langevin dynamics. Despite the existence of successful
phenomenological models, major theoretical challenges in
the description of heavy-quark dynamics still remain to be
addressed. First, the QCD medium traversed by the heavy
quark both in the pre- and near-equilibrium stages interacts
with it nonperturbatively [7–10], and gluon (color)
exchange processes cannot be described semiclassically
except in the limit of infinite number of colors [11].
Because of this the dynamics of heavy quarks in a colored
medium can be described using the Langevin equation
only under specific circumstances [11]. Second, in view of
the experimental data on the elliptic flow v2 for charm

quarks [12–15]—the nonrelativistic approximation often
applied for the heavy quarks may not be well justified for
charm quarks. Since the experimentally observed v2 of
charm quarks is consistent with that of light quarks, this
may hint towards the need for a full relativistic treatment of
charm quark dynamics beyond the existing studies at or
close to the infinite-mass limit [16].
To understand the interactions of the heavy quarks with

the QCD medium, a quantity of interest is the heavy-quark
diffusion coefficient κ, which quantifies the autocorrelation
function of the noise term that model the random momen-
tum kicks that it receives in the medium during its evolution
[17,18]. In a plasma in local thermal equilibrium, the
fluctuation-dissipation theorem relates κ to the drag coef-
ficient which quantifies the rate at which kinetic equili-
bration occurs. Since its reconstruction at the level of
spectral function is difficult [19], at leading order in 1=m,
where the mass m of the heavy quarks which is assumed to
be much larger than all other scales, the coefficient κ can
be related to the spectral function of the color-electric
field correlator [20,21]. In this approximation, κ has been
calculated within perturbative QCD, showing a poor con-
vergence [22] emphasizing the need for its nonperturbative
calculation. Such a nonperturbative calculation in the
continuum limit using lattice techniques have been per-
formed both in the quenched case [22–29] as well as in
QCD medium with dynamical fermions [30]. These results
on κ are significantly lower than the perturbative estimates
[31,32] moving towards the upper edge of the theoretical
systematic uncertainty band of weak-coupling calculations
at temperatures of ∼1 GeV [29]. Very recently 1=m2

corrections to κ have been calculated, which receive
different contributions, significant among which is the
color magnetic part of the Lorentz force [33]. The κ that
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arises out of the color magnetic correlator has nontrivial
renormalization effects which are being investigated only in
recent years [34–38]. The magnetic part of κ is comparable
to its electric counterpart [37], which implies a 20(34)%
correction to κ for bottom (charm) quarks, respectively,
using lattice results of their mean-squared velocities [39].
Recent phenomenological studies also demonstrate that a

significant amount of v2 for heavy quarks already starts to
build up during the preequilibrium stages of HIC [40,41],
hence a precise determination of κ in this regime is
important. At early times this medium has nonperturba-
tively high occupation numbers of low-momentum gluons,
hence the precise determination of κ is challenging. The κ
has been estimated within transport models [1,42–44]
as well as in classical-statistical lattice gauge theory
simulations in the infinite quark mass limit [45,46] showing
a sizable difference from perturbative kinetic theory esti-
mates [47]. It will be thus desirable to develop a more
fundamental theoretical formalism to measure κ without
resorting to an expansion in powers of 1=m. We thus, for
the first time report the value of the heavy-quark diffusion
coefficient in a nonequilibrium plasma, treating them as
relativistic particles. We choose a specific nonequilibrium
condition of a highly occupied non-Abelian plasma in a
self-similar scaling regime at its classical fixed point and
perform a time evolution of quarks inside such a medium.
We monitor the momentum broadening as a function of
time and measure its κ from the width of the distribution.
Our formalism is very general, which enables us to measure
κ for a wide range of bare quark masses.
Details of the classical-statistical lattice simulations.—

We follow previous works [48–51] and first generate gauge
field configurations using a classical-statistical evolution of
the color fields using the classical Yang-Mills equations
of motion defined using the (Minkowski) Wilson gauge
action on a lattice of spatial volume N3 and spacing a.
Color electric fieldsEa

i and gauge linksUi are time evolved
up to a reference time of Qt ¼ 500, 1000, 1500 using a
leap-frog integrator, whereQ is the characteristic hard scale
in the problem. By these times the gauge field evolution
reaches a self-similar regime where the momentum dis-
tribution function fg attains a fixed point scaling with time,

of the form g2fgðjpj; tÞ ¼ ðQtÞ−4
7fs½ðQtÞ−1

7ðjpj=QÞ� with a
scaling function fs [49,51]. We perform our simulations
with two different initial conditions for the SU(2) gauge
group for performing statistical averages, and if not
stated otherwise we consider lattices of size N ¼ 256 with
lattice spacing as ¼ 0.5=Q and a time step at ¼ 0.025Q in
our Letter.
Over the course of the self-similar evolution, the non-

equilibrium plasma establishes a separation of scales
[52,53], which is analogous to the separation of scales
in a high- temperature equilibrium plasma. The hardest
scale is set by the highest momenta ΛðtÞ ∼QðQtÞ1=7, the
electric screening (Debye) scale is mDðtÞ ∼QðQtÞ−1=7

and the magnetic screening scale is simply
ffiffiffiffiffiffiffiffi
σðtÞp

∼
QðQtÞ−3=10. While at initial times all these scales are ∼Q,
they start to separate dynamically culminating in the
scaling regime where

ffiffiffiffiffiffiffiffi
σðtÞp

< mDðtÞ ≪ ΛðtÞ, such that at
Qt ¼ 1500 ð1750Þ, where we typically start (end) our
measurements, the scales are Λ ¼ 2.1Q ð2.14QÞ, mD ¼
0.21Q, ð0.206QÞ, and

ffiffiffi
σ

p ¼ 0.03Q, ð0.029QÞ, respec-
tively [54].
We then study the dynamics of relativistic quarks in this

scaling regime, as described in detail in Appendix A.
Starting from a reference time Qt, we initialize the
fermionic wave function as ϕu=v

λ;s ðt;xÞ ¼ u=vλ;sðPÞe�iP:x

[55], representing a free relativistic quark or antiquark with
a fixed momentum P, spin index s ¼ 1, 2 and color index
λ ¼ 1;…; Nc at the initial timeQt. Subsequently, the quark
wave functions ϕu;v

λ;s ðt;xÞ are then evolved quantum
mechanically as a function of time, t0, in the background
of classical color gauge fields using the Oða2Þ-improved
Wilson-Dirac Hamiltonian on the lattice

i∂t0ϕ
u;v
λ;s ðt0;xÞ ¼ γ0½−iγiDi þm�ϕu;v

λ;s ðt0;xÞ; ð1Þ

where Di (i ¼ 1, 2, 3) represents the spatial part of the
Wilson-Dirac operator in the presence of the gauge fields.
By performing a spatial Fourier transform of the time-
evolved quark wave functions at time t0 > t denoted as
ϕ̃u;v
λ;s;pðt0;pÞ, the quark spectral function can be calculated

by projection on the free Dirac spinors corresponding to
(anti) particles ½vλ;sðpÞ�uλ;sðpÞ as [56]

ρðt0;pÞαβ

¼ 1

N3

X
λ;s

½ϕ̃u;α
λ;s ðt0;pÞu†;δλ;sðpÞ þ ϕ̃v;α

λ;s ðt0;pÞv†;δλ;sð−pÞ�γδβ0 ;

ð2Þ

which can then be decomposed into scalar (ρS), pseudo-
scalar (ρP), vector (ρ

μ
V), axial-vector (ρ

μ
A), and tensor (ρμνT )

components using the Clifford basis.
Similarly, the momentum distribution dN=d3q at time

t0 ¼ tþ Δt is calculated by projecting the evolved quark
wave functions ϕ̃u

λ;sðt0;xÞ (measured in the Coulomb

gauge) onto the noninteracting eigenstates u†λ0;s0 ðqÞe−iq:x
according to

dN
d3q

¼ 1

2Nc

X
λ;λ0;s;s0

ju†λ0;s0 ðqÞϕ̃u
λ;sðt0;qÞj2; ð3Þ

where the sums over λ; λ0; s; s0 correspond to averaging over
initial and final spin and color states. Since for initial
momentum P≡ ð0; 0; 0Þ, the momentum distribution
dN=d3q measures the momentum acquired by the quark
through interactions with the medium, the second moment
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of the distribution can then be used to calculate the
diffusion coefficient κ as discussed further in the penulti-
mate section (also see Appendix B).
Quark spectral functions: Effective masses and

lifetimes.—We first investigate the behavior of the spectral
function of a quark inside the medium, which contains
information about its dynamics in an interacting quantum
field theory. We will be considering a wide range of bare
quark masses mbare ¼ m in units of the initial hard scale Q
and study the corresponding spectral functions inside the
highly occupied non-Abelian plasma described in the
previous section. We anticipate that in the nonequilibrium
glasma created in the initial stages of high-energy heavy-
ion collisions the characteristic hard momentum scale
Λ≳ 1 GeV, such that the values m=Q ¼ 1–2 and m=Q ¼
4–8 represent quarks with masses close to charm and
bottom quarks, respectively.
We recall that in a previous study [56], it was shown that

the behavior of the spectral function for massless quarks
can be well described by a modification of the hard-thermal
loop (HTL) result [57] introducing an effective damping
rate γ, such that for vanishing spatial momentum jpj ¼ 0,
the vector component ρV of the spectral function can be
parametrized as [56], Reρ0VðtÞ ¼ e−γ:t cosðmeff :tÞ. We find
that this ansatz also describes the spectral functions of
heavy flavor quarks, when the medium induced quark mass
meff and damping rate γ are considered to depend on the
bare quark massmbare. Only for intermediate quark masses,
ðmeff −mbareÞ ∼mbare, we find that the spectral function
is not well described by this rather simple form (see
Appendix C). By performing a fit (cf. Appendix C for
details) of the above ansatz to the real-time spectral
functions in a time interval QΔt ¼ 500ð100Þ for bare
quark masses mbare=Q < 0.01ð≥ 0.6Þ, we obtain the
medium induced masses and the widths shown in Fig. 1.
The medium induced mass meff −mbare is ∼0.08Q for a
range of bare masses for which mbare < ðmeff −mbareÞ

beyond which it decreases rapidly falling to less than a
tenth of that value for mbare ¼ 2.1Q ∼ ΛðtÞ. This suggests
that for the typical mass range near the bottom quarks the
medium-induced effects are negligibly tiny whereas for the
charm quarks, it can still be significant but less than that of
the light quarks. As a naive comparison, for 2þ 1 flavor
QCD in thermal equilibrium, the thermal mass for light
quarks comes out to be mth=T ¼ 0.725ð14Þ at around
T ¼ 3Tc ≃ 470 MeV [58], though the spectral functions
in both these regimes can be very different and needs a
dedicated study [56,59].
From the plot of the damping factor γ as a function of the

bare quark mass in Fig. 1, we conclude that the width of the
effective mass peak in the spectral function is quite large
∼20% for the range of mbare corresponding to the light
quarks, falling to less than ∼10% for heavier quarks.
Importantly, if the width is too broad, a heavy quark in
the medium will correspond to a collective excitation and
cannot be simply treated as a weakly interacting quasipar-
ticle. Since the typical spectral width of heavy quasipar-
ticles is significantly smaller than the lighter counterparts,
these can be treated as well-defined quasiparticles and
their dynamics can be modeled in terms of a Langevin
equation [2]. Conversely, for light quarks one would
require a more involved treatment of the medium-particle
interactions, as their large width of the spectral function
indicates a significant modification due to the medium.
Interestingly, particles with bare mass of the same order as
the charm quark, have intermediate widths between the
very heavy and light quarks and thus require a careful
treatment, beyond the infinite-mass approximation.
Momentum broadening of heavy quarks.—We next study

the scenario where a heavy quark with some fixed initial
momentum propagates through the medium. It is expected
that if the quark behaves like a Brownian particle and
experiences uncorrelated kicks from the gluons, it will
diffuse with time and its momentum distribution will show
a spread about its initial momentum value which can be
quantified though the heavy-quark momentum diffusion
coefficient κ. By analyzing the momentum spectrum
dN=d3q of a quark evolving in the dense gluonic medium
for different values of the bare quark mass m, we can then
investigate to what extent the dynamics of a heavy quark
can be approximated in terms of the motion of a non-
relativistic Brownian particle.
We present a compact summary of our findings in Fig. 2,

where we show the momentum distribution along the qx
direction (obtained by integrating over spatial momenta qy
and qz) at different times QΔt as a function of the Oða2Þ
improved lattice momentum q̂x ¼ −4=3 sinð2πnx=NÞ þ
1=6 sinð4πnx=NÞ for quark masses m=Q ¼ 1.2, 4.2.
Starting with an initial distribution which is a δ-function
at momentum q≡ ð0; 0; 0Þ, we observe that the momentum
broadening is clearly dependent on the quark mass, and
larger for the lighter quark mass, i.e., 1.2Q compared to

FIG. 1. Dependence of the medium-induced mass meff −mbare
(triangles) and the damping factor γ (circles) on the bare quark
mass mbare at Qt ¼ 1500. Vertical lines indicate magnetic (

ffiffiffi
σ

p
)

and electric ðmDÞ screening scales, as well as the hard scale Λ.
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4.2Q. Significant differences emerge in the tails of the
momentum distribution, which corresponds to momentum
transfer due to hard scattering with the medium constitu-
ents, while the broadening of the central peak is quite
similar for the different masses.
We further quantify the momentum broadening through

the second moment of the momentum distribution, which
measures the effective width of the distribution and hence
the variance of the momentum along qx: Our results
presented in Fig. 3 show distinct features as a function
of time; first a transient oscillatory behavior due to the
initial drift in the correlated gluonic medium and then a
subsequent monotonic increase with time. In the same

Fig. 3, the inset shows a comparative study of the
momentum broadening at very early times, for a range
of quark masses and also in the static i.e. m ≫ ΛðtÞ limit,
shown as a gray line. The hq2i calculated in the static limit
as obtained from the color-electric field two-point corre-
lator shows a very rapid early-time growth ∝ ðΔtÞ2, before
settling to an approximately linear rise ∝ Δt at later times.
By following the arguments of [47], the initial quadratic
rise occurs due to the fact that the high energy [∼ΛðtÞ]
classical gauge field modes act coherently for very initial
times Δt≲ ΛðtÞ−1. Even though a classical particle would
feel the this coherent force, the quarks being inherently
quantum mechanical excitations, do not feature this coher-
ent early-time behavior and instead only exhibit the
approximately linear rise, at later times where they can
effectively be treated as classical colored particles. By
comparing the late time momentum broadening hq2i for
different masses m in Fig. 3, we also observe that for
m=Q ≥ 6, the results converge towards the infinite mass
limit given by the color electric field correlator. However, in
the mass range of charm and bottom quarks there are still
significant differences which highlights the importance of
inclusion of relativistic effects, especially for the lighter
charm quarks.
Since at Qt ¼ 1500 the evolution of the nonequilibrium

plasma is slow compared to the timescale of the measure-
ment, a fit to the momentum broadening data at late
times QΔt > 250 for quark masses m=Q ≥ 1.2 shows a
linear growth as a function of time. Such a linear growth
then signifies the onset of a diffusive regime, and we
can therefore extract the momentum diffusion coefficient κ
from the slope of the linear fit to hq2i at late times.
For m=Q ¼ 1.2ð2.1Þ, we extract a κ ¼ 37.13ð5Þ×
10−5Q3½16.54ð4Þ × 10−5Q3�, which shows a significant
departure when compared to the earlier estimate of κ ¼
5.9 × 10−5Q3 obtained in the infinite mass limit [45]. On
the other hand κ ¼ 8.64ð2Þ × 10−5Q3½7.24ð1Þ × 10−5Q3�
for the bare quark mass m=Q ¼ 4.2ð6.0Þ similar to the
bottom quark is much closer to the static estimate. The
results for the variation of the momentum diffusion
coefficient as a function of the inverse of bare quark mass
in units ofQ, at different times of initiation of quark motion
Qt ¼ 500–1500, are summarized in Fig. 4. The lines in the
bottom left corner of the plot are the values of κ obtained
in the infinitely massive limit and agree well with the
calculation in [45]. To quantify whether this deviation in
the range of masses between charm and bottom quarks
can be understood in terms of 1=m2 correction to the static
limit estimate, κð∞Þ, we perform a fit of the values of
κðmÞ=Q3 ¼ κð∞Þ=Q3 þOð1=m2Þ for m=Q > 4.2, where
this ansatz is appropriate, and then extrapolate to lower
values of m. If charm, bottom quarks also follow this trend
then the κðm ≤ 4.2Þ will lie on the extrapolated graphs,
which is not observed in our data, re-emphasizing the need
for a relativistic treatment of heavy-flavor dynamics.
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Summary and outlook.—Based on microscopic ab initio
lattice simulations we show for the first time the detailed
dynamics of a relativistic quark in a highly occupied non-
Abelian plasma. We propose a new method to measure the
momentum distribution of a quark traversing in the plasma,
and based on this method report a significant excess of the
momentum diffusion of quarks in the mass range from
charm to bottom than previously calculated in the static
limit, thus highlighting the need for treating their dynamics
through a relativistic Dirac equation. Beyond the correc-
tions to the infinite mass limit, we also observe significant
correlations through the interaction of quarks with the
medium, which manifest themselves in oscillations of the
hq2iðΔtÞ, indicating that a Markovian description is only
applicable on relatively large timescales.
Since a highly occupied gluonic plasma considered in

our analysis is believed to be produced in the initial stages
of heavy-ion collisions, our Letter reemphasizes the fact
that a significant momentum broadening and hence a
buildup of elliptic flow of charm and bottom quarks
may already occur in the initial stages of heavy-ion
collisions [40,41,46,47]. However, to unambiguously con-
firm this, our calculation needs to be extended to an
expanding space-time geometry to properly capture the
dynamics of the correlated gluon fields in the glasma. Since
our formalism for investigating the dynamics of quark
probes is quite general, one can also study the dynamics of
light-quark jets through a highly occupied non-Abelian
plasma, which we would like to address in a future study.
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Appendix A: Details of the momentum mode occupancy
distribution.—When investigating the dynamics of heavy
and light flavor quarks, we start with a single quark in a
fixed momentum mode labeled by momentum P, spin
polarization s, and color λ and let it evolve in the
background of gauge fields in the self-similar regime
up to some time t0. By following the methodology of
[60–62] the associated fermionic field operator Ψðt0;xÞ
can be defined in terms of the time-independent
operators b†λ;s (t ¼ 0;p) and d†λ;sðt ¼ 0;pÞ and time
dependent wave functions ϕu;v

λ;s as

Ψðt0;xÞ ¼ 1ffiffiffiffiffiffi
N3

p
X
λ;s;p

½ϕu
λ;sðt0;xÞbλ;sðt ¼ 0;pÞ

þ ϕv
λ;sðt0;xÞd†λ;sðt ¼ 0;pÞ�; ðA1Þ

where for our initial conditions the creation or
annihilation operators satisfy

hb†λ;mðt ¼ 0;pÞbλ0;nðt ¼ 0;p0Þi ¼ δλ;λ0δm;nδp;p0δp0;P

hd†λ;mðt ¼ 0;pÞdλ0;nðt ¼ 0;p0Þi ¼ 0: ðA2Þ

Now in order to extract the momentum distribution
of quarks inside the medium, we make use of the fact
that at any time t, the fermion field operator Ψðt;xÞ can
be decomposed in terms of time-evolved creation and
annihilation operators, labeled by the momentum p, the
color index λ and spin index s, as

Ψðt;xÞ ¼ 1ffiffiffiffiffiffi
N3

p
X
λ;s;p

ðuλ;sðpÞbλ;sðt;pÞe−ip:x

þ vλ;sðpÞd†λ;sðt;pÞeþip:xÞ: ðA3Þ

By inverting the above expression using the ortho-
normality of Dirac spinors, we can obtain then the time-
dependent creation operators bλ0;s0 ðt;qÞ in terms of
Fourier transform of the time-evolved fermion fields as

bλ0;s0 ðt;qÞ ¼
X
x

u†λ0;s0 ðqÞΨðt;xÞeþiq:x: ðA4Þ

Now, performing Fourier transform of the quark fields
and substituting them back in Eq. (A4), we get the
time-evolved annihilation operator bλ;sðt;qÞ entirely in
terms of time-dependent fermionic wave functions
ϕu;v
λ;s ðt0;xÞ. The momentum mode occupancy distribution

FIG. 4. The momentum diffusion coefficient κ as a function of
inverse of bare quark mass, at different times Qt ¼ 500, 1000,
1500. Solid lines at the bottom left corner correspond to the
values obtained in the infinite-mass limit using the color-electric
correlator. Shaded bands represent 1=m2 correction to the
infinite-mass limit.
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of fermions in a particular momentum state labelled by
q is defined as the expectation value of the number
density operator at that particular value of the
momentum,

dN
d3q

¼ 1

2Nc

X
λ0;s0

hb†λ0;s0 ðt0;qÞbλ0;s0 ðt0;qÞi: ðA5Þ

Now, instead of calculating this observable in terms of
bλ0;s0 ðt;qÞ and b†λ0;s0 ðt;qÞ we can use Eq. (A4) and
substitute b’s in terms of the Fourier modes uλ0;s0 ðqÞ and
ϕ̃u;v
λ;s ðt0;qÞ, the later quantity representing the fermion

wave functions in the Fourier space, given as

ϕ̃u;v
λ;s ðt0;qÞ ¼

X
x

ϕu;v
λ;s ðt0;xÞeiq:x: ðA6Þ

Thus the momentum distribution can now be rewritten as

dN
d3q

¼ 1

2Nc

X
λ;λ0;s;s0

ju†λ0;s0 ðqÞϕ̃u
λ;sðt0;qÞj2;

where we have used the initial conditions given in Eq. (A2)
to sum over various spin polarizations and color quantum
numbers.

Appendix B: Calculating the second moment of
momentum distribution function through fermionic wave
functions and electric field correlators.—Once we obtain
the momentum occupancy distribution at time t from
fermionic wave functions following the procedure
described in the earlier subsection, for the whole set of
lattice momenta (with nx, ny, nz lattice indices), we
calculate the second moment (as a function of Δt) of the
distribution and define it as a measure of momentum
broadening, i.e.,

hq2i iðΔtÞ
Q2

¼ hq̂i2iðΔtÞ
ðQaÞ2 ; ðB1Þ

where, q̂i is the lattice momenta defined as

q̂i ¼ −
X
k

Ck sin

�
k
2πni
N

�
; ðB2Þ

where ni ¼ 0;…; N − 1 is the lattice momentum mode
index and 0; 1;…; Ck−1 are coefficients used for OðakÞ
improvement of the Wilson-Dirac operator. Specifically,
for the NLO, i.e., Oða2Þ improvement, the coefficients
are C1 ¼ 4=3 and C2 ¼ −1=6. Now, from the definition
of the second moment of the momentum distribution

hq̂i2iðΔtÞ ¼
X
fnjg

q̂i2 ×
dN
d3q

�Y
j

Δq̂j

�
ðB3Þ

we can extract hq2i i=Q2 as defined in Eq. (B1).
Now, to compare the results to those obtained in the

infinite-mass limit, we need to calculate hq2i i=Q2 using
color-electric field correlators [45] which is given as,

hq2i iðΔtÞ
Q2

¼ g2

2NcQ2

Z
tþΔt

t
dt0
Z

tþΔt

t
dt00 hEa

i ðt0ÞEa
i ðt00Þi;

where the repeated index a implies a sum over number of
color generators a ¼ 1;…; N2

c − 1. On the lattice, the
second moment of the momentum distribution can be
defined as

hq2i iðΔtÞ
Q2

¼ 1

2NcQ2

* X
ftn ∈ ½t;tþΔt�g

Êa
i ðtnÞ
a2

× at

!
2
+
; ðB4Þ

where, Êa
i ðtnÞ ¼ ga2sEa

aðtÞ denote the components of lattice
electric field defined at time tn and at is the lattice spacing
in the temporal direction.
In the diffusive regime, when the time variation of

½hq2i iðΔtÞ�=½Q2� is linear, we can calculate momentum
diffusion coefficient κ from the second moment of momen-
tum distribution from the following relation,

κ

Q3
¼ 1

3

d
dðQΔtÞ

�X
i

hq2i iðΔtÞ
Q2

�
: ðB5Þ

The factor of 1=3 in the expression of κ=Q3 comes from the
fact that we have isotropy in the space directions and the
momentum diffusion coefficient measures the amount of
broadening along any of the spatial dimensions. We have
calculated the slope using QΔt ¼ 350 which is long
enough for the diffusive and hence a linear dependence
in time to set in. Values of κ=Q3 thus obtained for various
quark masses and from the color-electric field correlator,
i.e., in the infinite massive limit are shown in Table I.

TABLE I. The momentum diffusion coefficient as a function of
quark mass.

Quark mass, m=Q κ=Q3 (×10−5)

1.2 37.13 (5)
2.1 16.54 (4)
4.2 8.64 (2)
6.0 7.24 (1)
12.0 6.20 (2)

∞ (EE-correlator) 5.227 (3)
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Appendix C: Fit to the spectral functions from
hard thermal loop perturbation theory.—To extract the
effective masses meff and damping factor γ of quarks we
perform a HTL-inspired fit to the component of vector
spectral function Reρ0V with the ansatz Reρ0VðQΔtÞ ¼
expð−γ · ΔtÞ cosðmeff · ΔtÞ. In Fig. 5 we plot the spectral
function measured in our simulations, the fit obtained
using our ansatz and the residual difference that is
obtained subtracting the fit function from the data. It is
evident from the figure that our ansatz for the vector
spectral function corresponding to light quark masses
mbare=Q<0.01 as well as heavy-quark masses mbare=Q≥
0.6 provides an excellent fit to the data, yielding a quite
small residual. However, for intermediate quark masses
for which mbare ∼ ðmeff −mbareÞ the residual, i.e., the
difference between the fit function and data, for the
spectral function is noticeably larger and we conclude
that in this mass range the spectral function is not well
described by the aforementioned ansatz.
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