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In exploring supersymmetric theories with eight supercharges, the Higgs branches present an intriguing
window into strong coupling dynamics. Magnetic quivers serve as crucial tools for understanding these
branches. Here, we introduce the decay and fission algorithm for unitary magnetic quivers. It efficiently
derives complete phase diagrams (Hasse diagrams) through convex linear algebra. It allows magnetic
quivers to undergo decay or fission, reflecting Higgs branch RG flows in the theory. Importantly, the
algorithm generates magnetic quivers for the RG fixed points and simplifies the understanding of transverse
slice geometry with no need for a list of minimal transitions. In contrast, the algorithm hints to the existence
of a new minimal transition, whose geometry and physics need to be explored.
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Introduction.—The study of phases of quantum field
theory (QFT), and transitions between these phases, is
fundamental to our understanding of nature. One example
is the Higgs mechanism, where a scalar field acquires a
vacuum expectation value (VEV) that subsequently breaks
the gauge symmetry [1–4]. Beyond its central role in the
electroweak sector of the standard model, this mechanism
can be observed in any gauge theory with charged scalar
fields. It can further be generalized to intrinsically strongly
coupled theories, which lack a Lagrangian description, but
in this case a systematic understanding is still lacking, in
part due to the extraordinary diversity of the landscape
of QFTs.
This can be remedied by adding simplifying assumptions.

A particularly relevant playground in that respect is super-
symmetry. Supersymmetric theories (SQFTs) encompass a
very rich set of phenomena, from standard model–like
theories to strongly coupled systems, while maintaining
computational control. SQFTs with eight supercharges in
space-time dimension 3, 4, 5, and 6 generically possess a
continuous space of vacua known as the Higgs branch,
denoted H, parametrized by scalar fields (sitting only in
the so-called hypermultiplets) when the field approach is
available. The Higgs mechanism is then geometrized, and
corresponds to hitting singularities inH. The phase diagram
can then be identified with the structure of nested singular-
ities [5]. Mathematically, this so-called Hasse diagram

describes the finite stratification of the symplectic singularity
H into its partially ordered symplectic leaves. The latter can
be understood as sets of (Higgs branch) VEVs that trigger
distinct partial Higgs mechanisms. The phase/Hasse diagram
also encodes how SQFTs are related through deformations,
tunings of gauge couplings, and RG flows.
The description of H beyond the perturbative regime,

which includes most conformal SQFTs, is challenging.
Fortunately, a powerful technique has recently been intro-
duced: one defines H by means of an auxiliary combina-
torial object called a magnetic quiver (MQ) [6–34]. In the
simplest cases, a MQ defines an auxiliary 3D N ¼ 4
superconformal field theory (SCFT) whose Coulomb
branch [35] coincides by definition with H. It is known
that a MQ encodes the Higgs phase diagram. An algorithm,
dubbed quiver subtraction [5,17,29,38,39], has been devel-
oped over the last five years to extract this phase diagram
under certain limiting conditions: (1) It holds for theories
for which the class of phase transitions is already known.
That is it requires as an external input the list of magnetic
quivers for all elementary Higgsings (so-called isolated
symplectic singularities), which is still incomplete. (2) It
provides very limited information on the SQFTs at the
end of the Higgs branch RG flows. (3) It is computationally
complex, it being an algorithm acting on the graphs
underlying the quivers.
This Letter introduces a powerful operation on quivers

which addresses all the above problems: it provides the
phase diagram of nested singularities of H without relying
on any input, all the intermediate steps are well defined,
and the computation involves vectors, and not graphs.
Moreover, the algorithm generates the magnetic quivers of
SQFTs at the end of Higgs branch RG flows, therefore,
allowing one to propose candidate SQFTs. In many
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circumstances, including further known data (e.g., string
theory constructions, central charges, Coulomb branch
spectra) then allows one to identify a single candidate
SQFT. In a companion paper [40], we apply the algorithm
to SQFTs in various dimensions and show perfect agree-
ment with the literature, along with several new results. We
also give there the details of the geometry of transverse
slices, which are omitted here.
Decay and fission.—The algorithm can be described

using analogies with nuclear reactions, applied to unitary
quiver theories [41]. Let us unpack this statement: in this
Letter, a quiver is an undirected graph, composed of nodes
and edges, that encodes a 3D N ¼ 4 SCFT. It does so by
specifying each node by the rank k of a unitary UðkÞ gauge
group, and the (bifundamental) matter content by the edges
in between nodes. A magnetic quiver is a quiver for which
emphasis is placed on its 3DN ¼ 4 Coulomb branch. Given
a magnetic quiver Q, it can decay, i.e., become lighter, or
fission into exactly two smaller quivers. These processes are
then repeated in all possible ways until one reaches stable
quivers, which can neither decay nor fission into nontrivial
quivers. The decay and fission reaction diagram then
coincides with the Higgs phase diagram of the theory of
which Q was a magnetic quiver. The rules specifying when
decays and fissions occur are given next in “The Algorithm”.
Before delving into the details, we preview what these
processes look like on concrete examples, and provide a
rationale for our proposed algorithm.
Decay: During this transition, a given quiver (specified

by shape and ranks) “decays” into a quiver of the same
shape, but with reduced ranks. For example,

ð1Þ

which reflects the Higgs branch RG flow of the 5D N ¼ 1
SCFT with low-energy effective description SUð5Þ1 gauge
theory with NAS ¼ 2, Nf ¼ 4 to the SCFT fixed point of
SUð4Þ1 with NAS ¼ 2, Nf ¼ 4. During decay, the change
in ranks (or equivalently, the dimension of the transition)
can be any integer between 1 and the entire sum of the
ranks. The latter is a terminal decay; i.e., the entire quiver
decays to nothing.
Fission: A given quiver can also “fission” into two

quivers of the same shape, but with smaller ranks. For
instance, the same quiver as above fissions as follows:

ð2Þ

which translates into the Higgs branch RG flow of the
SU(5) theory into a product of fixed points defined by
SUð3Þ1 with Nf ¼ 6 and SU(2) with Nf ¼ 4. In contrast to

decay, the change in (sum of all) ranks during fission is
always 1; thus, these are one-dimensional transitions. The 0
nodes in (2) can be dropped, as done from now on.
Physical interpretation: The decay transition finds

its origin in 3D mirror symmetry [44–47], in which the
correspondence with Higgsing is manifest. The fission
transition, on the other hand, can be understood as a
generalization of adjoint Higgsing in theories with higher
supersymmetry, like N ¼ 4 super Yang-Mills in 4D
with gauge group UðkÞ, which can be Higgsed to
Uðk0Þ × Uðk − k0Þ. In that case, the phases are labeled
by partitions [48], which fission obviously implements.
Our main result is that these two fundamental processes,

when appropriately combined, cover all eight supercharge
theories in any dimension.
Proof of concept: Testing and results: Decay and

fission consistently reproduce a large array of mathematical
results such as nilpotent orbit closures, slices in the affine
Grassmannian, or symmetric products. It can be derived
from string theory in the (restricted) cases where Hanany-
Witten brane setups and 3D mirror symmetry can be used.
Physically, the algorithm reproduces the Higgs branch
stratification of well-studied setups like partial closure of
punctures in class S theories, or nilpotent Higgsings in 6D
N ¼ ð1; 0Þ SCFTs. A host of such examples alongside the
new predictions offered by decay and fission are discussed
in the companion paper [40]. In “A Complete Example”,
the complete 5D N ¼ 1 example involving (1) and (2) is
considered, and direct validation from string theory argu-
ments is given.
The algorithm.—In this section, we give the precise rules

that govern the decay and fission processes introduced
above. The underlying graph of a quiver with n unitary
gauge nodes can be encoded into an adjacency matrix
A∈Matðn × n;ZÞ. For Ai;j ¼ Aj;i with i ≠ j, Ai;j ≥ 0 is
the number of (unoriented) links from node i to node j;
if Ai;j > 1, the link is said to have multiplicity Ai;j. By
convention Ai;i ¼ 2g − 2 where g ≥ 0 is the number of
loops on node i. If Ai;j < Aj;i for i ≠ j, we assume further
that ðAj;i=Ai;jÞ ¼ l∈Z>0; the edge between nodes i and j
is then l-non-simply laced [49] and may have multiplicity
Ai;j ¼ ðAj;i=lÞ ≥ 1. The quiver itself is specified by its
rank vector K ∈Nn. Given two rank vectors K1;2 ∈Nn,
we say K1 ≤ K2 if K2 − K1 ∈Nn.
Finally, we need to introduce the essential notion of

good quivers. Our approach adopts the following concise,
algorithm-friendly definition [52] based solely on ðA;KÞ:
(i) AK ≥ 0, (ii) the sum of the entries of K is at least 2, and
(iii) there is no long node index i with Ki ¼ 1 such that
AK̃ ¼ 0, with K̃j ¼ Ki − δi;j.
Intuitively, a quiver is called good [53] if all monopole

operators [36,37] in the 3D N ¼ 4 theory have R charge
≥ 1 (above the unitarity bound).
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Partial order: Given a good quiver ðA;KÞ, the finite set
of decay and fission products is defined by

V ¼ fK0 ∈NnjK0 ≤ K; ðA;K0Þgoodg: ð3Þ

To implement fission, we then assemble the products
in all possible ways: with V0 ¼ fK0 ∈VjK0 ≠ 0g, define
L0 ¼ f0g and

Lm ¼ fffK0
1;…; K0

mggj ∀ 1 ≤ j ≤ m; K0
j ∈V0

and K0
1 þ � � � þ K0

m ≤ Kg ð4Þ

for m ≥ 1. Elements of Lm are the multisets (i.e., with
repetitions allowed) of m vectors of V0 whose sum is ≤ K.
Finally, we write L ¼∪m∈N Lm. This is the (finite) set of
vertices of our Hasse diagram, which correspond to the
symplectic leaves of the 3DN ¼ 4 Coulomb branch of the
initial quiver ðA;KÞ. For L∈L, the unique m∈N such that
L∈Lm is called the length lengthðLÞ of L. We also denote
by ΣL∈Nn the sum of the elements of L.
Next, we define a partial order on L. Let L1;L2 ∈L.

We write L2 ⇝ L1 if jlengthðL1Þ − lengthðL2Þj ≤ 1,
lengthðL1 ∩ L2Þ ≥ lengthðL1Þ − 1, and ΣL1 ≥ ΣL2. The
relation⇝ is reflexive and antisymmetric, but not transitive
in general. Let us denote by ≽ its transitive closure, i.e.,
L1 ≽ L2 if there exists a chain L1 ⇝ … ⇝ L2. This is a
partial order relation. We claim that ðL;≽Þ coincides with
the poset of symplectic leaves in the 3D N ¼ 4 Coulomb
branch of the quiver ðA;KÞ.
Elementary transitions: The previous paragraph has

shown us how to associate to any quiver ðA;KÞ a poset
of (multisets of) quivers. The partial order can be depicted
using a Hasse diagram, in which elements of the poset are
represented as points, and lines are drawn between adjacent
elements: there is a line between L1 ≽ L2 if there is no leaf
L3 ≠ L1;L2 satisfying L1 ≽ L3 ≽ L2. This has a physical
and a geometric incarnation. Physically, this plays the role
of a Higgs branch phase diagram, in which lines represent
elementary phase transitions. Geometrically, we are in the
presence of a conical symplectic singularity, and lines
correspond to minimal degenerations [54,55]. The degen-
eration/transition type is then indicated next to the line
between two adjacent points in the Hasse diagram; see
Fig. 1 for example.
It is of both physical and mathematical relevance

to classify these elementary transitions. Interestingly, our
algorithm, originally designed to compute the phase dia-
gram for a particular theory, can be twisted to achieve this
goal. Namely, search systematically through the set of all
magnetic quivers, and identify those which have a phase
diagram that consists of exactly two phases; the quiver then
serves as a signature for that phase transition. A proof of
principle is provided in “Perspectives”.
A complete example.—To illustrate the decay and fission

algorithm, we consider the magnetic quiver at the bottom of

Fig. 1 for the SCFT-fixed point of 5DN ¼ 1 SUð5Þ1 gauge
theory with NAS ¼ 2 antisymmetric and Nf ¼ 4 funda-
mental hypermultiplets, and Chern-Simons level 1 [18].
Despite the low-energy effective description, the emer-
gence of massless (gauge) instantons at the SCFT-fixed
point means that the phase diagrams at the fixed point and
away from it differ drastically. This is because the Higgs
branch moduli at the fixed point include these instanton
operators as well. The lack of a Lagrangian description at
the fixed point implies that semiclassical approaches are
insufficient. In contrast, the decay and fission algorithm
outputs the phase diagram for the full “quantum” Higgs
branch, as shown in Fig. 1. The starting point can undergo
two distinct processes: the decay (1) and the fission (2).
The resulting MQs readily allow the identification of the
SCFTs which reside at the end of the Higgs branch RG
flows, due to the comprehensive catalogs of MQs for 5D
theories [6,10,14,15,18]. Therefore, the decay and fission
algorithm allows one to construct the Higgs branch
RG-flow diagram, as indicated in blue in Fig. 1.
Physically, the 5D N ¼ 1 theory can be realized in

Type IIB superstring theory by a 5-brane web [56,57] with
two O7− orientifolds. Crucially, the 5-brane web of the
SU(5) theory with NAS ¼ 2 requires two fractional Neveu-
Schwarz fivebranes (NS5) on the orientifolds [58]; the

FIG. 1. Decay and fission algorithm for the 5D N ¼ 1 SCFT
with SUð5Þ1 gauge theory description plus NAS ¼ 2 antisym-
metric and Nf ¼ 4 fundamental matter fields. The algorithm
generates the entire Hasse diagram by constructing for each leaf
one or more MQs. The minimal degenerations are labeled next to
the arrows and can be obtained in a subsequent step, detailed in
[40]. The corresponding 5DN ¼ 1 theories are indicated in blue.

PHYSICAL REVIEW LETTERS 132, 221603 (2024)

221603-3



Nf ¼ 4 fundamental hypermultiplets are constructed by
adding D7 branes. Here, we use the classical brane system
to gain insights; the quantum-mechanical brane web is
obtained after resolving O7− planes. The latter gives rise to
the MQs at the conformal fixed point.
The 5-brane web allows for two distinct Higgs branch

transitions: firstly, a “decay” of the SU(5) theory to the
SU(4) theory. This is realized by moving a single D5 brane
(a gauge 5-brane) off to infinity (along the flavor 7-branes);
see Fig. 2 (top left). Secondly, the fission is enabled by the
presence of two O7− orientifolds (and the fractional NS5s).
To see this, suppose that the gauge 5-branes all terminate on
both fractional NS5 branes. One possible brane motion
along the Higgs branch is to move one of the factional NS5
along the O7−. However, this is only allowed if the total
number of gauge branes is even, as required by the
orientifold projection. Thus, the fractional NS5s cannot
be moved for an odd number of gauge 5-branes. Instead, for
any number N of gauge 5-branes, one can “fission” the
stack into 2l and ðN − 2lÞ, for l∈ f1; 2;…; bN=2cg. The
stack of 2l branes can be moved away from the fractional
NS5s, along the O7−, while the stack of ðN − 2lÞ branes
remains suspended between the fractional NS5s; see
Fig. 2 (top right). The latter subsystem then realizes an
SUðN − 2lÞ world-volume gauge theory with NAS ¼ 2
and some fundamental hypermultiplets. The former 5-brane
subweb is 2l 5-branes intersecting two O7− planes (with-
out any fractional NS5s) and some Nf flavor 7-branes.
This is the T dual of 2l D4 branes inside a stack of Nf

coincident D8s in the presence of a single O8−—the
brane system realizing the moduli space of l SOð2NfÞ

instantons [59,60]. Therefore, the stack of 2l 5-branes
between the two O7− planes together with the flavor
7-branes yields an SpðlÞ world-volume theory with
NAS ¼ 1 and some fundamental matter. In the case of
Fig. 1 with N ¼ 5, l ¼ 1, the Higgs branch RG flow
takes the SU(5) theory to a product of an SU(3) and an
SUð2Þ ≅ Spð1Þ theory.
The decay from the SU(4) to the Sp(2) theory is realized

by moving one of the fractional NS5 branes along one of
the O7− branes off to infinity. This follows, as the differ-
ence between an SU(4) brane web with NAS ¼ 2 and an
Sp(2) brane web with NAS ¼ 1 is whether there are
two or one fractional NS5 branes [58], respectively; see
Fig. 2 (bottom).
We now turn to the physics of instantons to cross check

parts of the Hasse diagram in Fig. 1. The Higgs branch of
the Sp(2) with NAS ¼ 1 and Nf ¼ 4 SCFT is the moduli
space of two SO(10) instanton on C2, with magnetic quiver
2 ·QðD̂5Þ (recall footnote [52]). To see this, view instan-
tons as realized as k Dp branes within a stack of coincident
Dðpþ 4Þ branes [59,60], in the presence of a suitable
Oðpþ 4Þ orientifold. The MQ here is k ·QðĝÞ, and the
orientifold type determines g. The only possible Higgs
branch motions are to split the branes into two stacks of
ðk − lÞ and l coincident branes. The magnetic quiver
consequently fissions as k ·QðĝÞ→ðk−lÞ ·QðĝÞ⊗l ·QðĝÞ.
Only if one of the stacks is a single Dp brane another Higgs
branch motion arises: the Dp dissolves in the Dðpþ 4Þ
stack and realizes the instanton moduli. From the MQ
viewpoint, 1 ·QðĝÞ decays completely.
The remaining transitions in Fig. 1 can be analyzed with

similar arguments.
Perspectives.—The decay and fission algorithm places

particular emphasis on quivers that cannot decay or fission
into other nontrivial quivers. These stable quivers lead to
3D N ¼ 4 Coulomb branches [61,62] characterized by
isolated conical symplectic singularities (ICSS). These can
be seen as the geometric incarnation of elementary phase
transitions on Higgs branches, in addition to offering
interest to mathematics in their own right. This simple
observation offers a well-defined perspective to list all
ICSS that can be realized as Coulomb branches of unitary
quivers, reducing the problem to convex linear algebra, as
stated in Sec. III. As a proof of concept, we implemented
this principle on all quivers with up to three nodes. The
resulting list is presented in Fig. 3. Physically, this covers a
surprisingly vast array of theories: these quivers appear
within Higgs branches of theories ranging from 4D [11] to
6D SCFTs [29]. Remarkably, our exploration adds one new
element (highlighted in red), corresponding to a new ICSS
of complex dimension 8 with isometry so5. We predict that
the associated phase transition should show up in some yet
to be discovered SCFTs.
The above exploration will be carried out more generally

to arbitrary size quivers in a future work, thereby charting a

FIG. 2. Higgs branch motions in the (classical) 5-brane web
with O7− orientifolds; red arrows indicate which separation
induces VEVs. Top left: decay SUð5Þ → SUð4Þ via moving a
gauge 5-brane off to infinity along the flavor 7-branes. Top right:
Fission SUð5Þ → SUð3Þ × Spð1Þ via splitting the stack of gauge
branes into a stack of two gauge branes (away from the fractional
NS5s) and three gauge branes (remaining between the NS5s).
Bottom: decay SUð4Þ → Spð2Þ via moving a fractional NS5 off
to infinity along the orientifold.
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significant corner of the landscape of possible Higgs
transitions. Combined with an extension to decorated
quivers, we expect to be able to describe every single
minimal degeneration using the Coulomb branch construc-
tion. However, the set of unitary quivers does not cover all
possible (physically motivated) 3D N ¼ 4 quiver gauge
theories, although it is a vast class of pivotal importance.
Quivers involving gauge groups SUðnÞ, SOðnÞ, SpðnÞ,

or different matter field representations, (e.g., higher charge
or nonfundamental representations), are not covered in this
Letter, even though they appear prominently as magnetic
quivers for higher-dimensional theories (see Refs. [9,10]
and subsequent works). To apply decay and fission to them,
one needs to extend the combinatorial description of
Eqs. (3) and (4) and characterize the partial order, guided
by known field and string theory constructions.
Finally, we can further adapt our algorithm toward quiver

growth. This adaptation, combined with our deep under-
standing of elementary transitions, paves the way for a
bootstrap method; it opens possibilities for classifying
theories based on their Higgs branch geometry, thereby
complementing the Coulomb branch approach of [65,66].
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