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Leveraging scattering information to describe binary systems in generic orbits requires identifying local
and nonlocal in time tail effects. We report here the derivation of the universal (nonspinning) local in time
conservative dynamics at fourth post-Minkowskian order, i.e., OðG4Þ. This is achtieved by computing the
nonlocal-in-time contribution to the deflection angle, and removing it from the full conservative value in
[C. Dlapa et al., Phys. Rev. Lett. 128, 161104 (2022).; C. Dlapa et al., Phys. Rev. Lett. 130, 101401
(2023).]. Unlike the total result, the integration problem involves two scales—velocity and mass ratio—and
features multiple polylogarithms, complete elliptic and iterated elliptic integrals, notably in the mass ratio.
We reconstruct the local radial action, center-of-mass momentum and Hamiltonian, as well as the exact
logarithmic-dependent part(s), all valid for generic orbits. We incorporate the remaining nonlocal terms for
ellipticlike motion to sixth post-Newtonian order. The combined Hamiltonian is in perfect agreement in the
overlap with the post-Newtonian state of the art. The results presented here provide the most accurate
description of gravitationally bound binaries harnessing scattering data to date, readily applicable to
waveform modeling.
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Introduction.—Motivated by the impending era of
high-precision gravitational-wave (GW) astronomy with
observatories such as LISA [1], the Einstein telescope [2]
and the Cosmic Explorer [3], and the incredibly rich amount
of information expected from compact binary sources [4–9],
the (long dormant [10]) post-Minkowskian (PM) expan-
sion in general relativity—entailing a perturbative series in
G (Newton’s constant) but to all orders in the relative
velocity—has experienced a resurgence in recent years,
e.g., [11–46]. This is, in part, thanks to the repurposing of
modern integration techniques from collider physics (see
Refs. [42,44] and references therein), which have led to a
plethora of new results. Notably, using worldline effective
field theory (EFT) methodologies [47–51], the rapidly
evolving state of the art includes the total relativistic
impulse (yielding the scattering angle and emitted GW
flux) of nonspinning [11,12] and spinning [39,40] bodies
to OðG4Þ, akin of a “three-loop” calculation in particle
physics, as well as partial results in the conservative sector
at 5PM [46].
The derivations in [11,12], together with a (Firsov-

type [52,53]) resummation scheme [21,22], have led to

an unprecedented agreement between analytic results and
numerical simulations [54–56], paving the way to more
accurate waveform models for hyperbolic encounters.
However, due to nonlocal in time effects [57,58], unbound
results cannot be used to describe generic ellipticlike
motion (away from the large-eccentricity limit [11]). As
shown in [23], the binding energy for quasicircular orbits
obtained from scattering results [via the “boundary-to-
bound” (B2B) analytically continuation [21,22] ] does not
reproduce—other than logarithms—the known post-
Newtonian (PN) values [57–61] (see also [62]). Hence,
to fully harness the power of scattering calculations, a
separation between local and nonlocal in time effects was
thus imperative. In this Letter we report the derivation of
the universal (nonspinning) local in time conservative
dynamics of binary systems at OðG4Þ. This is obtained
via a direct computation of the nonlocal-in-time contribu-
tion to the scattering angle. Following [23,63], the calcu-
lation entails an integral over the energy spectrum times the
logarithm of the center-of-mass GW frequency. To solve
the integration problem, we implement the methodology of
differential equations, already used in [11,12]. However,
unlike the total impulse, which obeys a simple (power-law)
mass scaling [16,21], isolating (non)local effects in a gauge-
invariant fashion entails dealingwith two relevant scales: the
velocity and mass ratio. Despite the complexity of the two-
scale problem, we find that it can be factorized into solving
two second-order Picard-Fuchs (PF) equations. The non-
local part of the angle features multiple polylogarithms

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 221401 (2024)

0031-9007=24=132(22)=221401(6) 221401-1 Published by the American Physical Society

https://orcid.org/0000-0003-4336-3170
https://orcid.org/0000-0002-6697-775X
https://orcid.org/0000-0002-2628-9063
https://orcid.org/0000-0003-0129-1930
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.221401&domain=pdf&date_stamp=2024-05-28
https://doi.org/10.1103/PhysRevLett.128.161104
https://doi.org/10.1103/PhysRevLett.130.101401
https://doi.org/10.1103/PhysRevLett.130.101401
https://doi.org/10.1103/PhysRevLett.132.221401
https://doi.org/10.1103/PhysRevLett.132.221401
https://doi.org/10.1103/PhysRevLett.132.221401
https://doi.org/10.1103/PhysRevLett.132.221401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(MPLs), complete elliptic integrals, and integrations thereof.
We find agreement in the overlap with the 6PN values
in [63].
We derive the local in time contribution to the

conservative scattering angle by removing the (unbound)
nonlocal terms from the total result in [11,12]. The local
radial action follows directly via the B2B map [21–23].
Using the relations in [21,22], we reconstruct the universal
local-in-time center-of-mass momentum and Hamiltonian
in isotropic gauge, together with the complete logarithmic
dependence, all applicable to generic motion. We also
provide—for all practical purposes—results expanded to
30 orders in the (symmetric) mass ratio and all orders in the
velocity (with an error beyond 30PN). To incorporate the
remaining (nonlogarithmic) nonlocal part of the bound
dynamics, we adapt to our isotropic gauge the values
obtained in [63] to 6PN order. The combined Hamiltonian
at OðG4Þ perfectly matches in the overlap with the state of
the art in PN theory [62–64]. The results presented here can
be directly inputed onto waveform models for gravitation-
ally bound eccentric orbits, potentially increasing their
accuracy by incorporating an infinite tower of (local in
time) velocity corrections.
(Non)local in time tail effects.—The scattering of the

emitted radiation off of the binary’s gravitational poten-
tial, or “tail effect,” enters in the 4PM conservative
dynamics both through local as well as nonlocal in time
interactions [57–61]. Because of this, although an effec-
tively local description is possible to any order [11,12],
the coefficients of the radial action (or Hamiltonian)
depend on the type of motion, and therefore are not
related via analytic continuation for generic orbits. Our
strategy is to identify the local and nonlocal in time parts
of Sr, the total radial action. Because of the structure of
tail effects [23,57,58], the nonlocal in time tail terms can
be shown to take the gauge-invariant form

SðnlocÞ
r ¼ −

GE
2π

Z
ω

dE
dω

log

�
4ω2

μ2
e2γE

�
; ð1Þ

where
R
ω≡

Rþ∞
−∞ ðdω=2πÞ, E and ðdE=dωÞ are the total

(incoming) energy and emitted GW spectrum in the
center-of-mass frame. The “renormalization scale” μ,
which cancels against a similar term in the local in time
part [11,34,58], can be arbitrarily chosen. The factor of
4e2γE (with γE Euler’s constant) follows the PN con-
ventions [57,58]. An explicit derivation of (1) in the
context of the PM expansion can be found in [23], see
also [63] for a discussion in the PN regime. For unbound
motion, the scattering angle is given by ðχ=2πÞ ¼ −∂jIr,
with Ir ≡ ðSr=GM2νÞ and j≡ ðJ=GM2νÞ the (reduced)
radial action and angular momentum, and M ¼ m1 þm2,
q ¼ m2=m1 (m2 ≤ m1), ν ¼ m1m2=M2 the total mass,
mass ratio, and symmetric mass ratio, respectively. We

split the PM coefficients of the deflection angle in impact
parameter space as

χ

2
¼

X
n¼1

�
χðnÞb þ χðnÞ logb log

μb
Γ

��
GM
b

�
n
; ð2Þ

where γ ≡ u1 · u2 (using the mostly negative metric
convention), u1;2 the incoming velocities, and
Γ≡ E=M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðγ − 1Þp
. (The reader should keep

in mind that logarithms of the velocity may still appear in
both coefficients.) In the rest of the Letter we choose μ≡
1=GM for the renormalization scale.
Integrand construction.—Because of the overall factor

of G in (1), it is sufficient to construct the integrand to
OðG3Þ. Using the results in [33], and multiplying by a
factor of ð2eγEk · ucomÞ2ϵ̃, with k ¼ ðω; kÞ the (on-shell)
radiated momentum, and ucom ≡ ðm1u1 þm2u2Þ=E the
center-of-mass velocity, we readily derive a covariant
version which, after projecting on the center-of-mass
frame, matches at Oðϵ̃Þ the expression in (1). We find
it convenient to distinguish the ϵ̃-expansion from the
standard D¼ 4−2ϵ that we use for dimensional regu-
larization. To the families of (two-loop) scalar integrals
introduced in [33] for computing the total impulse,
we add

I��;T5…T9
ν1…ν10 ¼

Z
l1;l2

δðν1−1Þðl1 · u1Þδðν2−1Þðl2 · u2Þ
ð�l1 · u2Þν3ð�l2 · u1Þν4

× ðk · ucomÞ2ϵ̃−ν10
Y9
j¼5

1

D
νj
j;Tj

; ð3Þ

with a noninteger powered propagator, where we use the
same notation as in [33] (see also [42]). The radiative
momentum is rewritten as kα ¼ lα

1 þ lα
2 − qα, with qα ≡

ðq0; qÞ the momentum transfer, obeying q · ua ¼ 0 (not
to be confused with the mass ratio). The choice of
i0þ-prescription for the square propagators, either re-
tarded or advanced, is encoded in Tj ∈ fret; advg:

D5;ret=adv ¼ ðl0
1 � i0Þ2 − l2

1; D6;ret=adv ¼ ðl0
2 � i0Þ2 − l2

2;

D7;ret=adv ¼ ðl0
1 þ l0

2 þ q0 � i0Þ2 − ðl1 þ l2 − qÞ2;
D8;ret=adv ¼ ðl0

1 − q0 � i0Þ2 − ðl1 − qÞ2;
D9;ret=adv ¼ ðl0

2 − q0 � i0Þ2 − ðl2 − qÞ2: ð4Þ

Using integration-by-parts (IBP) reduction techniques
implemented in the packages LiteRed [65] and
FiniteFlow [66], we find 17 master integrals contrib-
uting to the radiation region (where the k momentum goes
on-shell), which isolates the contribution to the energy
loss from the total impulse. It is possible to select
integrals such that we can take ν1 ¼ ν2 ¼ 1, ν10 ¼ 0.
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The final set, specified by ν3���9, becomes

ð−1;0;0;0;1;1;1Þ; ð−1;0;0;0;1;1;2Þ; ð−1;0;0;0;1;2;1Þ;
ð−1;0;0;0;2;1;1Þ; ð0;−1;0;0;1;1;1Þ; ð0;−1;0;0;1;1;2Þ;
ð−1;0;0;1;1;0;1Þ; ð0;−1;0;1;1;0;1Þ; ð−1;0;0;1;1;1;1Þ;
ð−1;0;1;0;1;1;0Þ; ð0;−1;1;0;1;1;0Þ; ð−1;0;1;0;1;1;1Þ;
ð−1;0;1;1;1;1;1Þ; ð−1;0;1;1;1;1;2Þ; ð−1;0;1;1;2;1;1Þ;
ð0;1;1;1;1;0;0Þ; ð1;0;0;0;1;1;1Þ;

modulo different choices of i0þ-prescriptions (T5���9) and
signs in front of linear propagators.
Integration.—To solve for the master integrals, we derive

differential equations in x and the mass ratio, q, where x is
given by γ ¼ 1

2
ðxþ 1=xÞ. We then adopt the strategy of an

ϵ- (and ϵ̃-)regular basis [67], such that we can set ϵ ¼ 0, and
consider the expansion of the integrand, differential equa-
tions, and boundary constants, only to Oðϵ̃Þ. The latter are
determined via a small-q expansion, together with the
techniques described in [42] (adapted to the new factors of
ϵ̃). From this setting, it is then straightforward to find a
solution of the differential equations through iterated
integration.
For the parts containing MPLs, and similarly to the x

variable, it is useful to rationalize the square root of the energy

ðE=m1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2γq þ q2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq þ xÞðq þ 1=xÞp

, by
introducing a new variable, y, defined through q−1 ¼ −γ −
ðv∞=2Þðyþ 1=yÞ, with v∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

. Hence, we find the
traditional harmonic polylogarithms with letters fx;1þx;
1−xg [26,33], aswell asMPLswhich depend on thevelocity
and mass ratio via the new letters: fy; 1þ y;1− y;
y− ½ð1þ xÞ=ð1− xÞ�; y− ½ð1− xÞ=ð1þ xÞ�; 1þ 2½ð1− xÞ=
ð1þ xÞ�yþ y2g. In addition to MPLs, the solution to
the differential equations depend on another set of func-
tions, through an a priori irreducible fourth-order PF
equation, already at Oðϵ̃0Þ. However, a Baikov representa-
tion [68,69] of the maximal cut suggests a simpler
Calabi-Yau twofold as the relevant geometry. Indeed, in
terms of the variables ðqx; q=xÞ, the differential equations
can be solved, in the first and subsequently the second
variable, via two equivalent second-order PF equations
(per variable). The solution can then be written in terms
of products of K’s [such as the f1 in (5) below] as well as
the leading three derivatives w.r.t. the mass ratio. As in
previous PM computations, e.g., [11,12,34], KðzÞ ¼ R

1
0 dt=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − t2Þð1 − zt2Þ
p

, is the complete elliptic integral of the
first kind.

After the leading order solution is known, it is then
straightforward to obtain the Oðϵ̃Þ part. We find that it can
be written in terms of (at most) twofold iterated integrals,
with elliptic kernels depending on the mass ratio, q, as the
integration variable. The full set is given by

f1¼
Kð−qxÞKð1þ q

xÞ−Kð−q
xÞKð1þqxÞ

π
;

f2¼
f1
q
; f3 ¼ ∂xf1; f4¼

∂xf1
q

;

f5¼
�
1−x2

x
ð1þq∂qÞ−

1−q2

q
x∂x

�
f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqþxÞðqþ 1
xÞ

q : ð5Þ

Remarkably, while individually this is not the case, the
combination of complete elliptic integrals in f1 has a
simple power-series expansion in the PN limit (x → 1).
Furthermore, the fi’s are real, and have (at most) simple
poles in q. Let us point out, however, that a simplified
version of the iterated integrals may still be possible. In
particular, upon assigning to KðzÞ a transcendental weight
one, we notice that the iterated integrals would have up to
weight four, in contrast to the MPL part with maximum
weight two. Hence, we expect that either the naïve assign-
ment is incorrect or an even simpler form exists. We leave
this open for future work.
Scattering angle.—After solving for the master integrals

and plugging them back into the integrand, we arrive at the
radial action, and from there to the nonlocal in time

contribution to the deflection angle, χð4ÞbðnlocÞ and χð4Þ logbðnlocÞ,
at 4PM order. As anticipated in [34], the logarithmic part
takes on a simple closed form,

1

πΓ
χð4Þ logbðnlocÞ ¼ −2νχ2ϵðγÞ

¼ −2ν
ðγ2 − 1Þ2

�
h5 þ h9 log

�
γ þ 1

2

�

þ h10arccoshðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�
; ð6Þ

with χ2ϵ introduced in [34], and the h5;9;10 are polynomials
depending only on γ, which also enter the nonlogarithmic
part (see below). The latter, on the other hand, also involves
a set of iterated integrals in the mass ratio. Despite its
complexity, it is straightforward to construct a “self-force”
(SF) expanded version, for which we find the generic form,
valid to any nSF order,
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1

πΓ
χð4ÞðnSFÞbðnlocÞ ¼ ν

ðγ2 − 1Þ2
�
h1 þ

π2h2ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p þ h3 log
�
γ þ 1

2

�
þ h4arccoshðγÞffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h5 log

�
γ − 1

8

�
þ h6log2

�
γ þ 1

2

�

þ h7arccoshðγÞ2 þ
h8 logð2ÞarccoshðγÞffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h9 log

�
γ − 1

8

�
log

�
γ þ 1

2

�

þ h10 logðγ
2−1
16

ÞarccoshðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p þ h11Li2

�
γ − 1

γ þ 1

�
þ h12

�
arccoshðγÞ2 þ 4Li2

	 ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
− γ


�
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�
: ð7Þ

Because of the structure of the full solution, except for
the h1, h3, and h4 carrying information from the (iterated)
elliptic sector (h1;4) and the new letters in the MPLs
depending on the mass ratio (h3), the remaining hi’s are
SF exact. We find the nSF coefficients may be split as

hi ¼ hð0Þi ðγÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
hð1Þi ðγÞ þ Δhiðγ; νÞ; ð8Þ

where the hð0Þi ðγÞ, hð1Þi ðγÞ, are polynomials in γ only. The
Δhiðγ; νÞ vanish except when i ¼ 1, 3, 4, for which they
become polynomials both in γ and ν, up to OðνnÞ. We
provide in [70] their values up to n ¼ 30. The 30SF result
(with an error beyond 30PN) is in perfect agreement in the
overlap with the 6PN values in [63]. Let us emphasize that
the definition of nonlocal-in-time in [63,64] includes not
only the expression in (1) (W1 in [63]), but also an extra
contribution (W2 in [63]). Because of the local in time (and
gauge-dependent) nature of W2, we do not add it to (1).
Therefore, (7) agrees (in the overlapping realm of validity)
with the scattering angle obtained from the W1-only terms
in Eq. (3.14) of [63]. After subtracting from the total
conservative angle in [11,12], we arrive at the local in time
counterpart, [Although amenable to a conservativelike
description of the relative dynamics, we keep the other
(time-symmetric) radiation-reaction corrections, i.e., “2 rad”
in [12], in the dissipative part.]

χð4ÞbðlocÞ ¼ χð4ÞconsbðtotÞ −χð4ÞbðnlocÞ; χð4Þ logbðlocÞ ¼−χð4Þ logbðnlocÞ; ð9Þ

where we used the fact that the logðμb=ΓÞ cancels out in the
total value. The result in (9) can now be used to describe
generic bound orbits, as we discuss next.
Local in time conservative dynamics.—Following the

B2B dictionary, the local in time (reduced) bound radial
action takes the form [21]

i4PMrðlocÞ ¼
2v4∞
3ðΓjÞ3

�χð4ÞbðlocÞ
πΓ

þ
χð4Þ logbðlocÞ
2πΓ

log
j2

v2∞

�
: ð10Þ

Using the expressions in [21,22], and a dimensionally
rescaled distance r̂ ¼ r=ðGMÞ, we can also reconstruct the
center-of-mass momentum (notice we use different con-
ventions with respect to [21,22])

p̂2 ¼ v2∞
Γ2

�
1þ

X
n¼1

1

r̂n
ðfn þ flogn log r̂Þ

�
; ð11Þ

with p̂≡ p=ðMνÞ, and Hamiltonian, Ĥ ≡H=ðMνÞ,

Ĥ ¼ Êþ
X
i¼1

1

r̂i
ðĉi þ ĉlogi log r̂Þ; ð12Þ

where Ê ¼ P
a Êa, Êa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þ ðma=MνÞ2

p
. The coeffi-

cients ðĉ4ðlocÞ; ĉlog4ðlocÞÞ are displayed in [70].
Universal logarithms.—Nonlocal in time tail effects also

contribute with a log r̂ term in the bound dynamics.
Performing a small-eccentricity expansion of (1), and using
Kepler’s law (logΩ ¼ − 3

2
log r̂þ � � �, with Ω the 1PM

orbital frequency), we find

ĉlog
4ðnlocÞ
r̂4

¼ −
3

2

ĉlog
4ðlocÞ
r̂4

¼ −3G
Γ
ν

dE
dt


3PM

; ð13Þ

where (ξ≡ f½Ê1Ê2�=½ðÊ1 þ Ê2Þ2�g; γ ¼ νðÊ1Ê2 þ p̂2Þ)

G
dE
dt


3PM

ðr̂; p̂2Þ ¼ −
4ν3

3r̂4
γ2 − 1

Γ3ξ
χ2ϵðγÞ; ð14Þ

is the energy flux at 3PM order [23,34]. Similarly,

flog
4ðnlocÞ ¼ −

3

2
flog
4ðlocÞ ¼ −8Γνχ2ϵ; ð15Þ

consistently with (6). Hence, adding both terms,

ĤellðlogÞ
4PM ¼ 4ν2

3r̂4
ðγ2 − 1Þ
Γ2ξ

χ2ϵ log r̂; ð16Þ

and likewise,

ðp̂2ÞellðlogÞ4PM ¼ −
8νv2∞
3Γr̂4

χ2ϵ log r̂; ð17Þ

for the full logarithmic dependence of the bound
Hamiltonian and center-of-mass momentum at 4PM.
Towards the complete bound dynamics.—Putting

together the local in time coefficient plus exact logarithmic
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part, the total bound Hamiltonian up to 4PM order may be
written as

Ĥell
4PM ¼

Xi¼4

i¼1

ĉiðlocÞ
r̂i

þ
Xi¼4

i¼1

ĉiðnlocÞ
r̂i

þ 4ν2

3r̂4
ðγ2 − 1Þ
Γ2ξ

χ2ϵ log

�
r̂

e2γE

�
; ð18Þ

wherewe have absorbed the factor of e2γE that arises from (1)
into the logarithm. The ĉ1j2j3ðlocÞ are the known local-in-time
PM coefficients up to 3PMorder [18,20,25,26], and ĉ4ðlocÞ is
reported here for the first time. To complete the knowledge
of the bound dynamics, we are still missing the [non-
log ðr̂=e2γEÞ] nonlocal in time contributions, ĉiðnlocÞ, which
depend on the trajectory. These aremore difficult to compute
in a PM scheme, since they are often needed in the opposite
limit of quasi-circular orbits, thus entering at all PM
orders. Yet, they can be readily obtained within the PN
approximation by evaluating the radial action in (1) in a
small-eccentricity expansion. Adapting the (W1-only)
results in [63] to the isotropic gauge, we quote their values
in the Supplemental Material to 6PN and eight order in the
eccentricity [70]. The combined Hamiltonian in (18) is in
perfect agreement to OðG4p̂6Þ with the Ĥell

6PNð4PMÞ derived
in [62] using the state of the art in PN theory, while at
the same time it incorporates all-order-in-velocity correc-
tions. Ready-to-use expressions for the full results and
30SF-approximate are collected in [70].
Conclusions.—Novel integration techniques in combi-

nation with EFT methodologies have been extremely
successful in reaching the very state of the art in our
understanding of scattering dynamics in general relativity,
including conservative and dissipative effects [42,46].
However, as illustrated in [23,62], although local in time
and logarithms are universal, the full hyperbolic results fail
to describe quasicircular binaries. This is due to the
presence of orbit-dependent (nonlogarithmic) nonlocal in
time effects, which preclude a smooth analytic continuation
via the B2B map [21,22]. Hence, up until now, we were
lacking a direct correspondence to generic bound motion,
notably for the conservative sector. We have computed the
nonlocal-in-time contribution to the deflection angle, and
removed it from the total conservative value in [11,12], thus
yielding the local in time counterpart. We then derived the
radial action, center-of-mass (isotropic-gauge) momentum
and Hamiltonian, as well as the total logarithmic-dependent
part(s), all applicable to generic motion. Upon adapting the
(nonlogarithmic) nonlocal in time effects for ellipticlike
orbits computed in the PN expansion [63], the combined
total Hamiltonian becomes the most accurate description of
gravitationally bound binary systems obtained from PN or
PM data to date, readily applicable to waveform modeling.
Studies assessing the implications of our results towards

constructing high-precision GW templates, as well as the
derivation of a PM version of nonlocal in time effects for
bound orbits, are underway.
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