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Classical shadow tomography provides a randomized scheme for approximating the quantum state and
its properties at reduced computational cost with applications in quantum computing. In this Letter we
present an algorithm for realizing fewer measurements in the shadow tomography of many-body systems.
Accelerated tomography of the two-body reduced density matrix (2-RDM) is achieved by combining
classical shadows with necessary constraints for the 2-RDM to represent an N-body system, known as
N-representability conditions. We compute the ground-state energies and 2-RDMs of hydrogen chains and
the N2 dissociation curve. The results demonstrate a significant reduction in the number of measurements
with important applications to quantum many-body simulations on near-term quantum devices.
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Introduction.—Shadow tomography [1–19] has recently
emerged as a critical technique in quantum information
theory, offering an efficient implementation of random
sampling for characterizing complicated quantum systems.
Built around the principle of using minimal measurements
to image a quantum state [20,21], this approach stands at
the forefront of recent advances in tomography [22–32] that
aim to address outstanding challenges in quantum comput-
ing [33] and quantum state verification [34]. Despite its
promise and generality, however, shadow tomography
has limitations, including its scalability for measuring
large quantum states and its robustness with noisy data
as generated by near-term intermediate-scale quantum
(NISQ) devices. These limitations can be particularly
challenging for many-body quantum systems whose com-
plexity increases dramatically with system size [35–38].
In this Letter, we present a substantial acceleration

of the shadow tomography of two-particle reduced density
matrices (2-RDM) of many-body systems by imposing
N-representability constraints [39–48]. Conventional shadow
tomography neglects the fact that a 2-RDMmust obey signi-
ficant, nontrivial constraints, known as N-representability
conditions [39,40], to ensure that it derives from the integra-
tion of at least one valid N-particle density matrix. Here, we
introduce a classical algorithm that reconstructs the 2-RDM
from a set of classical shadows while enforcing necessaryN-
representability conditions. In particular, we consider a
hierarchy of N-representability conditions on the 2-RDM
that arises from constraining (pþ 1) p-particle metric
matrices to be positive semidefinite, known as the
p-positivity conditions [45–48]. Both the positivity condi-
tions and the shadow constraints can be imposed on the
2-RDM through a special family of convex optimization,
known as semidefinite programming [49–51]. We can
also view the approach as adding the shadow constraints
obtained from measuring a wave function (e.g., a wave

function prepared on a quantum computer) to the variational
calculation of the 2-RDM subject to N-representability
conditions [50,52–65]—a classical-computing method
that has been successfully applied to strongly correlated
many-electron systems from spin systems to molecules and
materials [66–70].
After we develop the theory for N-representability-

enhanced shadow tomography, we demonstrate its advan-
tages by computing the ground-state energies and 2-RDMs
of hydrogen chains and the N2 dissociation curve. The
results reveal a significant reduction in the number of
measurements for 2-RDM tomography, even in the pres-
ence of noise, with applications to many-body simulations
on noisy intermediate-scale quantum devices.
Theory.—We consider an N-electron system whose

2-RDM elements arise from the integration of theN-particle
density matrix over all particles except two and can be
expressed as

2Dij
kl ¼ hΨjâ†i â†j âlâkjΨi; ð1Þ

where â†i creates a particle in orbital i and âi annihilates a
particle in orbital i. The protocol developed by Huang et al.
[2], previously introduced by Aaronson [1], illustrates a
method for creating a classical shadow of a quantum state
jΨi by first applying a unitary transformation on the state
such that jΨi ↦ ÛjΨi where Û is a random matrix from an
ensemble U and then measuring the state in the computa-
tional basis. After passing jΨi through a unitary trans-
formation, i.e., a quantum circuit, the classical shadow
description of the 2-RDM is expressible as

Spqn ¼ hΨjÛ†
nâ

†
pâ

†
qâqâpÛnjΨi; ð2Þ
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where Ûn ¼ expðPuv A
uv
n â†uâvÞ in which the indices

denote spin orbitals, An is a one-body anti-Hermitian
matrix, and n is the index for the shadow. The nth shadow
corresponds to the measurement of all diagonal elements of
the 2-RDM after application of the nth one-body unitary
transformation Ûn to the wave function. Each one-body
unitary transformation, generated by random sampling with
the Haar measure [71], has the effect of rotating the orbitals
into a new basis. From Eq. (2), the collection of shadows
can be written in terms of the elements of the 2-RDM as

Spqn ¼
X

ijkl

Upi
n U

pj
n

2Dij
klU

ql
n U

qk
n ; ð3Þ

whereUn ¼ expðAnÞ. Because a sufficiently large set of the
above shadows defines a system of equations that deter-
mines the 2-RDM, the technique can be used to predict the
2-RDM—or any one- or two-body expectation value—of
the original state. Nonetheless, since the output state is
constructed from the measurements of only classical parts of
the 2-RDM, which are commutable and, hence, measurable
in parallel, the tomography cost is significantly reduced.
Here, we use necessary N-representability conditions

in combination with the linear constraints arising from
the classical shadows to determine the 2-RDM. The
N-representability conditions define a convex set N

2 P̃ of
approximately N-representable 2-RDMs that contains the
set N2P of exactly N-representable 2-RDMs [47]. Likewise,
a collection of m classical shadow constraints define a
convex set S̃m of 2-RDMs that approximate the 2-RDM of
the quantum state. As the number m of randomly sampled
classical shadows increases, the set S̃m decreases until at
some limiting m� the set contains only the state’s 2-RDM.
However, to maximize the efficiency of the tomography, we
want to obtain a good approximation of the 2-RDM for
m ≪ m�. Importantly, we can significantly accelerate the
convergence of the classical shadows to the correct
2-RDM by considering the intersection of the m-shadow
set of 2-RDMs S̃m with the set N

2 P̃ of approximately
N-representable 2-RDMs. Because the intersection set
S̃þm is a convex subset of S̃m

S̃þm ¼ S̃m ∩ N
2 P̃ ⊂ S̃m; ð4Þ

the approximations of the quantum state’s 2-RDM in S̃þm
converge much faster with m toward the correct 2-RDM
than the 2-RDM approximations in the set S̃m using only
conventional shadow tomography. The difference in the
sets and, hence, the degree of convergence acceleration is
especially pronounced for our target range of m ≪ m�.
To obtain a unique 2-RDM for a finite value of m, we

score the 2-RDMs in the convex set S̃þm by a merit function.
To obtain a convex optimization problem, we can select the
merit function to be any convex function of the 2-RDM.

Potential merit functions include the nuclear norm or the
Frobenius norm, as in matrix completion theory [72,73].
Here, we choose the merit function to be the expectation
value of the energy, which, for a quantum many-body
system with at most pairwise interactions, is expressible as
a linear functional of the 2-RDM, F½2D�. We have the
following convex optimization problem:

min
2D∈ N

2
P̃
F½2D� ð5Þ

such that Snpq ¼ ½ðU ⊗ UÞ2DðU ⊗ UÞT �pqpq; ð6Þ

for n∈ ½0; m� where the 2-RDM is approximately N
representable. The optimization converges to the 2-RDM,
subject to both the N-representability conditions and
the shadow constraints, that minimizes the energy. The
choice of the energy for the merit function is particularly
attractive because, in the absence of the shadow constraints
(i.e., m ¼ 0), the optimization becomes a variational
2-RDM calculation in which the energy is minimized over
the approximately N-representable set N

2 P̃ of 2-RDMs.
From this perspective, the classical shadow constraints can
be viewed as state-specific conditions that improve the
performance of variational 2-RDM theory.
In practice, the set N2 P̃ can be described by a systematic

hierarchy of N-representability conditions known as the
p-positivity conditions [45–48]. The p-positivity condi-
tions constrain (pþ 1) metric matrices, which interrelate
by linear mappings and contract to the 2-RDM, to be
positive semidefinite. The convex optimization becomes a
semidefinite program (SDP) [49–51]. If we consider only
the 2-positivity conditions, we obtain the following SDP:

min
2D

E½2D� ð7Þ

such that 2D⪰ 0 ð8Þ
2Q⪰ 0 ð9Þ

2G⪰ 0 ð10Þ

Trð2DÞ ¼ NðN − 1Þ ð11Þ
2Q ¼ fQð2DÞ ð12Þ

2G ¼ fGð2DÞ ð13Þ

Spqn ¼ ½ðU ⊗ UÞ2DðU ⊗ UÞT �pqpq; ð14Þ

where E½2D� is the energy-specific functional of the 2-RDM
and 2Q and 2G are the hole-hole and particle-hole metric
matrices whose elements are given by
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2Qkl
ij ¼ hΨjâkâlâ†j â†i jΨi ð15Þ

2Gil
kj ¼ hΨjâ†i âlâ†j âkjΨi: ð16Þ

M ⪰ 0 indicates that the matrix M is constrained to be
positive semidefinite, Trð2DÞ denotes the trace of the 2-RDM
that is set toNðN − 1Þ, and the functionsfQ and fG represent
the linear mappings between 2Q and 2D and 2G and 2D,
respectively, that are obtained from rearranging the creation
and annihilation operators in Eqs. (15) and (16). Physically,
the D, Q, and G conditions [39,41,42] constrain the
probability distributions of two electrons, two holes, and
an electron-hole pair to be non-negative.
Within the SDP protocol, we can replace the equality in

Eq. (14) with inequalities to offer flexibility in handling
statistical error in the 2-RDM, e.g., in the presence of
quantum noise on quantum devices

Spqn − ϵpqn ≤ Xpq
n ≤ Spqn þ ϵpqn ; ð17Þ

where

Xpq
n ¼ ½ðUn ⊗ UnÞ2DðUn ⊗ UnÞT �pqn ð18Þ

and each ϵpqn is a non-negative parameter that reflects the
maximum error expected in an element of the nth shadow.
In this formulation we observe that the N-representability
conditions serve not only to accelerate the convergence of
the shadow tomography but also to mitigate errors in the
shadows that potentially arise from the noise on a quantum
device. The use of N-representability conditions for error
mitigation in shadow tomography extends and generalizes
earlier work in which N-representability conditions are
applied postmeasurement for error mitigation [74–78].
In the described program, the 2-positivity (DQG) con-

ditions have a computational scaling of r4 and r6 in
memory and floating-point operations, respectively [51],
where r is the number of orbitals; therefore, the N-
representability-enhanced tomography retains a polyno-
mial scaling. Additionally, since the N-representability
conditions are independent of a reference wave function,
the described program applies to a wide range of strongly
correlated systems. The number of measurements needed to
perform the full 2-RDM tomography on a quantum device
would be approximately r4. The number of measurements
with our technique would be approximately nsr2, where ns
is the number of shadows with ns typically obeying ns ≪
r2 for a targeted accuracy, ϵ. The feasibility of performing
these measurements on a NISQ device will depend on the
circuit requirements of the quantum algorithm and the size
of ϵ. For example, some algorithms may not require
measuring the full 2-RDM but just a part of it, in which
case the scaling would be further reduced.

Results.—To implement shadow tomography with N-
representability conditions, we solve the SDP in Eqs. (7)–
(14) by adding the shadow constraints to the variational
2-RDM method (v2RDM) [50,79] in the Maple Quantum
Chemistry Package [80,81]. We refer to the resulting
algorithm as the shadow v2RDM (sv2RDM) method.
The SDP is solved using the boundary-point algorithm
in Ref. [51]. We generate the classical shadows from
full configuration interaction (FCI) wave functions. The
enhanced shadow tomography is applied to the dissociation
of the nitrogen dimer and the ground-state energies of
strongly correlated hydrogen chains [82] with up to eight
equally spaced atoms. The hydrogen atoms are represented
in the minimal Slater-type-orbital (STO-3G) basis set [83]
while nitrogen is represented in the correlation-consistent
polarized valence double-zeta basis set in a ten-electrons-
in-eight-orbitals [10,8] active space [84].
Total energies for N2 from the sv2RDM method with

2-positivity (DQG) conditions converge quickly with the
number of shadows to those from FCI as shown in Fig. 1.
Note that for the FCI of N2, when symmetry is neglected, the
total number of configuration state functions is 1176 [85].
With 18 shadows, the Frobenius norm of the difference
between the sv2RDM and FCI 2-RDMs is on the order of
10−4. Hence, significantly fewer thand2 shadows,whered is
the dimension of the 2-RDM describing the system, are
needed for convergence to FCI energies and 2-RDMs,which
is consistent with previouswork on shadow tomography [2].
For N2 at 1.75 Å, Fig. 2 demonstrates that the number

of measurements required by the shadow tomography
depends critically upon the number of N-representability
conditions. The energy and 2-RDM errors with only three
shadows and either the DQ or the DQG conditions are
more accurate than those with as many as 14 shadows and
just the D condition. Moreover, the addition of the D
condition is still better than shadow tomography without
any positivity conditions. For nearly all numbers of

FIG. 1. Potential energy surfaces of N2 from FCI, v2RDM
(DQG), and sv2RDM (DQG) are shown. Total energies of
sv2RDM with 18 shadows are in exact agreement with those
calculated using FCI.
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shadows in the range 0–17, the energy errors from theDQG
conditions are approximately 2 orders of magnitude better
than those from just theD condition. Moreover, the 2-RDM
errors from the DQG conditions are approximately 3 orders
of magnitude better than those from the D condition.
While the D curve in both panels of Fig. 2 decreases

gradually in most of its domain, the DQ curve shows a
steeper convergence pattern with respect to the number of
shadows measured. This behavior indicates a nontrivial
synergistic relationship between the classical shadows and
the 2-RDM N-representability conditions that enhances the
accuracy of the sampling. Overall, the total energy signifi-
cantly relies on the positivity conditions, but as the energies
and 2-RDMs of DQ approach those of DQG, the con-
vergence slows and becomes more reliant on the shadow
behavior. Therefore, considering N-representability con-
ditions is crucial to achieving accurate electronic structure
results and reliable convergence with the fewest number of
shadows.
The total energy as a function of the number of shadows

for each hydrogen chain studied shows a logarithmic

convergence pattern (Fig. 3), with the Q and G conditions
significantly improving the accuracy of the calculated values
compared to the D condition alone (Table I). With just nine
shadows, the sv2RDM total energy converges to the FCI
energy of the H4 chain in Fig. 3(a). Additional numerical
results on the hydrogen chains are available in Fig. S1 and
Tables S1–S4 in the Supplemental Material [86].
Finally, we consider the performance of sv2RDM in the

noisy setting where the measured 2-RDM contains errors
introduced by a Gaussian noise matrix. The shadow
constraints are replaced by the inequalities in Eqs. (17)
and (18) that allow for errors ϵpqn . We choose ϵpqn ¼ σ,
where σ is the standard deviation in the Gaussian noise
model. Figure 3(b) shows the sv2RDM convergence
outcomes for various noise levels. Though the algorithmic
performance is the best in low-noise environments,
the example with even ϵ ≤ 10−4 shows the energy
approaching that of the FCI. This result indicates that
the N-representability conditions can help mitigate the
errors introduced by noise and thereby retain chemical
accuracy at a reduced measurement cost even in the

FIG. 2. For N2 at 1.75 Å, the number of measurements required
by the shadow tomography depends critically upon the number of
N-representability conditions. The (a) energy and (b) 2-RDM
(normalized to 1) errors with only three shadows and the DQ and
theDQG conditions are more accurate than those with as many as
14 shadows and just the D condition.

FIG. 3. Total ground-state energy of H4 with equally spaced H
atoms is shown as a function of the number of shadows,
(a) without and (b) with the presence of Gaussian noise. The
sv2RDM energy converges exactly to the FCI energy within ten
shadows in the noiseless environment and approximately in the
noisy environments.
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presence of noise, which has potentially important appli-
cations on NISQ devices.
Discussion and conclusions.—Shadow tomography has

recently emerged as an important technique for character-
izing quantum states, and yet despite its promise, it has
potential limitations in its scalability for treating large
quantum states and its sensitivity for dealing with quantum
noise. We have demonstrated a method based on the
theory of classical shadows that utilizes N-representability
conditions to achieve the accuracy of target observables
from the 2-RDM with fewer measurements than possible
without these constraints. Our enhanced shadow tomog-
raphy addresses the issue of exponential scaling of full
quantum tomography by combining classical shadows
for a succinct description of quantum states with the
2-RDM N-representability conditions, which allow for
even fewer measurements with reliable convergence. The
N-representability conditions are shown to decrease sig-
nificantly the number of measurements needed to con-
verge the 2-RDM for strongly correlated many-electron
systems in both ideal and noisy settings, promising future
advancements in many-body quantum tomography from
reduced information. While the numerical calculations
demonstrate exact agreement with electronic FCI wave
functions, the presented theory is general and applicable to
performing tomography of any exact or approximate
many-body wave function. Future work will explore the
ability of the algorithm to deal with different types of
noise and its application to the quantum simulation of
many-body problems on current quantum platforms.
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