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We propose a qubit basis composed of transverse spin helices with kinks. Unlike the usual computational
basis, this chiral basis is well-suited for describing quantum states with nontrivial topology. Choosing
appropriate parameters the operators of the transverse spin components, σxn and σ

y
n, become diagonal in the

chiral basis, which facilitates the study of problems focused on transverse spin components. As an
application, we study the temporal decay of the transverse polarization of a spin helix in the XX model that
has been measured in recent cold atom experiments. We obtain an explicit universal function describing the
relaxation of helices of arbitrary wavelength.
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Introduction.—A proper choice of basis often is the
crucial first step toward success. For example, the modes of
the harmonic oscillator are best described by the coherent
state basis. The use of wavelets is well-suited for describing
signals confined in space or time [1], while the Fourier
basis is natural for solving linear differential equations with
translational invariance.
For qubits, i.e., quantum systems with spin-1=2 local

degrees of freedom, the most widely used basis is the
computational basis, which is composed of tensor products
of the eigenstates ð1

0
Þ, ð0

1
Þ of the σz operator. The advantages

of the computational basis are its factorized structure,
orthonormality, and Uð1Þ-symmetry “friendliness.” The
computational basis is well-suited for calculating spectra
and correlation functions of local operators forHamiltonians
(like that of the XXZ model) that preserve the total
magnetization in z direction.
However, the computational basis appears poorly

equipped to describe states with nontrivial topology, such
as chiral states, current-carrying states, or states with wind-
ings. One prominent example is the spin-helix state in a one-
dimensional spin chain,

jΨðα0; ηÞi ¼ ⊗
n
jϕðα0 þ nηÞi; ð1Þ

where jϕðαÞi describes the state of a qubit, while þnη
represents the linear increase of the qubit phase along the
chain, parametrized in a proper model-dependent way.
Thanks to their factorizability, spin helices (1) are straight-
forward to prepare in experimental setups that allow for an
adjustable spin exchange, such as those involving cold
atoms [2–4]. These helices possess interesting properties
as evidenced by both experimental [2–4] and theoretical [5–
8] studies. It was suggested that quantum states with helicity

are even better protected from noise than the ground state,
and that the helical protection extends over intermediate
timescales [9].
Since the spin-helix state (1) is not an eigenstate of the

operator of the total magnetization, it is not confined to a
singleUð1Þ block, but is given by a sum over all the blocks,
with fine-tuned coefficients, as shown in (9) and (10), even
for spatially homogeneous spin helices [η ¼ 0 in (1)]. A
simple shift of the helix phase, α0 → α0 þ const in (1),
gives a linearly independent state with the same qualitative
properties (winding, current, etc.). However, to represent
such a shift in the standard computational basis, all the fine-
tuned expansion coefficients must be changed in a different
manner.
We shall introduce an alternative basis, all components

of which are chiral themselves and thus ideally tailored for
the description of chiral states. This chiral basis consists of
helices and helices with kinks (phase dislocations). It
provides a block hierarchy based on the number of kinks
(rather than on the number of down spins as in case of the
computational basis). Unlike the computational basis, the
chiral basis is intrinsically topological.
We diagonalize the XX Hamiltonian in the chiral basis

and apply the chiral eigenbasis to the problem of spin-helix
decay under XX dynamics. This is a problem of its own
relevance for experiment [2,4] and theory. Except for some
quench problems, only very few explicit examples [10–12]
of exact nonequilibrium dynamics of many-body quantum
systems are known. Those examples rely on the summation
of series of matrix elements and overlaps of initial states
with Bethe eigenstates. Although the latter are known in
our spin-helix case [13], their summation has remained a
problem. The chiral basis helps to circumvent this problem,
as we have other selection rules for the matrix elements and
obtain particularly convenient forms of the overlaps. Unlike
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previous works [8,14] that dealt with the simpler case of
spin helices modulated in the XZ plane, we deal with
transverse spin helices modulated in the XY plane.
Longitudinal and transverse spin helices behave rather
differently. In particular, transverse helices can exhibit
quantum scars [15] under XXZ dynamics.
Chiral multiqubit basis.—Our starting point is the

“winding number operator”

V ¼ 1

4

XN=2

k¼1

ðσx2k−1σy2k − σy2kσ
x
2kþ1Þ; ð2Þ

defined for an even number of qubits N. It has remarkably
simple factorized eigenstates. A state

Ψ ¼ φ1 ⊗ ζ1 ⊗ φ2 ⊗ ζ2 ⊗ … ⊗ φN=2 ⊗ ζN=2 ð3Þ

is an eigenstate of V, if all odd (even) qubits are polarized in
positive or negative x (y) direction,

hφjj ¼
1ffiffiffi
2

p ð1;�1Þ; hζjj ¼
1ffiffiffi
2

p ð1;∓ iÞ: ð4Þ

In such states the qubit polarization at each link between n,
nþ 1 changes by an angle of þπ=2 or −π=2 in the XY
plane. Each anticlockwise or clockwise rotation by π=2
adds þ1 or −1 to the eigenvalue of 4V so that

VΨ ¼ 1

4
ðN − 2MÞΨ; ð5Þ

where M is the number of clockwise rotations, further
referred to as “kinks.” Clearly, every state Ψ in (3) is
uniquely characterized by the kink positions 1 ≤ n1 <
… < nM ≤ N (between qubits nk, nk þ 1), and the polari-
zation κ ¼ � of the first qubit φ1. We denote this state by

i
P

k
nk jκ;ni, where n ¼ ðn1;…; nMÞ. Then, by construc-

tion, the set of V eigenstates

fjκ;nijκ ¼ �; 1 ≤ n1 < … < nM ≤ Ng ð6Þ

is an orthonormal basis of N qubits that we call the chiral
basis. For compatibility with periodic boundary conditions
the winding number ðN − 2MÞ=4 must be an integer,
implying that M must be even (odd) if N=2 is even
(odd). We shall call such values of M admissible.
Remark 1.—The chiral basis vectors have a topological

nature; a single kink cannot be added to (removed from) a
periodic chain by the action of a local operator. In an open
chain this is only possible at the boundary.
Remark 2.—Applying σzn in a kink-free zone creates a

kink pair at the neighboring positions n − 1 and n.
Applying a string of operators σznσ

z
nþ1…σznþk in a kink-

free zone creates two kinks at a distance of kþ 1, e.g.,

jþ; 1; kþ 2i ¼ σz2σ
z
3…σzkþ2jþi; ð7Þ

where jþi is a perfect spin helix of type (1),

jþi ¼ j→ ↑ ← ↓ → ↑ ← ↓…i; ð8Þ

i.e., a spin helix with maximal winding number N=4. Here,
the arrows depict the polarization of the qubits in the XY
plane, e.g., ↑;↓ depict a qubit ζj (4) with polarization along
the y axis.
Remark 3.—The connection between the chiral basis and

the standard computational basis is nontrivial. For example,
the chiral vacuum state (8) is expanded in terms of the
computational basis as

jþi ¼ 2−
N
2

XN
n¼0

ð−iÞnξn; ð9Þ

ξn ¼
1

n!

XN
l1;…;ln¼1

il1þ���þlnσ−l1…σ−ln

�
1

0

�⊗N

; ð10Þ

see [5] for a proof.
In the following we will explore two applications of the

chiral basis that are related. First, we will use it to classify
the eigenstates of the XX model according to the number
of kinks.
Eigenstates of the XX model within the chiral sectors.—

The crucial observation is that V commutes with the
Hamiltonian of the XX model,

H ¼
XN
n¼1

σxnσ
x
nþ1 þ σynσ

y
nþ1; σ⃗Nþ1 ≡ σ⃗1: ð11Þ

Consequently, H is block diagonal in the chiral basis with
each block corresponding to a fixed number of kinks M.
For one-kink states M ¼ 1 we obtain

Hjκ; ni ¼ 2jκ;n − 1i þ 2jκ; nþ 1i; n ≠ 1; N;

Hjκ; 1i ¼ −2j−κ;Ni þ 2jκ; 2i;
Hjκ;Ni ¼ −2j−κ; 1i þ 2jκ;N − 1i:

The 2N eigenstates of H belonging to the one-kink sub-
space are given by the ansatz

jμ1ðpÞi ¼
1ffiffiffiffiffiffiffi
2N

p
XN
n¼1

eipnðjþ; ni − eipN j−; niÞ; ð12Þ

eipN ¼ �1; ð13Þ

where p is a chiral analog of the quasimomentum. The
diagonalization of H within a subspace with an arbitrary
number of kinks can be performed by the coordinate Bethe
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ansatz (see [16]), which gives a complete set of eigenvec-
tors in the chiral basis.
Theorem.—The states

jμMðpÞi ¼
X

1≤n1<…<nM≤N
χnðpÞfj1;ni − eip1N j − 1;nig;

χnðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2NM

p det
j;k¼1;…;M

feipjnkg;

ju;ni ¼ ð−iÞ
P

M
j¼1

nj ⊗
n1

k¼1
ψkðuÞ ⊗

n2

k¼n1þ1
ψkðuþ 2Þ

� � � ⊗
N

k¼nMþ1
ψkðuþ 2MÞ;

ψkðuÞ ¼
1ffiffiffi
2

p
�

1

e
iπ
2
ðk−uÞ

�
; ð14Þ

where M is admissible and where the chiral quasimomenta
p ¼ ðp1; p2;…; pMÞ satisfy either eipjN ¼ 1 or eipjN ¼ −1
for all pj, form an orthonormal basis of eigenstates
of Hamiltonian (11), hμMðpÞjμM0 ðp0Þi¼δp;p0δM;M0 . The
corresponding energy eigenvalues are Ep¼

P
M
j¼1εpj

,
εp¼4cosðpÞ.
Some clarifications might be appropriate here. First, the

states (14) are a generalization of those in (6) by an addi-
tional rotation of all qubits by the same angle πð1 − uÞ=2 in
the XY plane. Setting u ¼ 1 yields (6). The extra degree
of freedom originates from the Uð1Þ symmetry of the
XX model.
Second, the XX eigenstates in the chiral basis formally

resemble those in the usual computational basis [18], where
the number of spins up plays the role of the number of
kinks. In particular, the wave functions χnðpÞ have the
familiar form of Slater determinants.
Spin-helix decay in the XX model.—Next, we apply our

chiral basis to study the time evolution of a transverse spin-
helix magnetization profile, measured in [2]. We are able to
obtain an exact and explicit answer, when the time
evolution of the local spin σ⃗nðtÞ ¼ eiHtσ⃗ne−iHt is driven
by the XX Hamiltonian (11). The initial spin helix in the
XY plane is described by the state

jΨQi ¼
1ffiffiffiffiffiffi
2N

p ⊗
N

n¼1

�
e−

inQ
2

e
inQ
2

�
; ð15Þ

where the wave vector Q satisfies the commensurability
condition QN ¼ 0 mod 2π. Setting Φ ¼ P

N
n¼1 Qnσzn and

jΩi ¼ jΨ0i we see that jΨQi ¼ e−ðiΦ=2ÞjΩi. The operator
e−ðiΦ=2Þ induces a rotation of qubits at site n about the z axis
by an angle Qn. Thus,

hΨQjσ⃗njΨQi ¼ hΩjeiΦ
2 σ⃗ne−

iΦ
2 jΩi ¼

0
B@

cosðQnÞ
sinðQnÞ

0

1
CA; ð16Þ

which is precisely a spin helix in the XY plane. In order to
obtain its time evolution we have to replace σ⃗n by σ⃗nðtÞ in
(16) and commute eðiΦ=2Þ through H. The details of this
calculation can be found in [16,19]. We finally obtain a
remarkably simple structure:

hΨQjσ⃗nðtÞjΨQi ¼ SN
�
cosðQÞt�

0
B@

cosðQnÞ
sinðQnÞ

0

1
CA; ð17Þ

SNðtÞ ¼ hΩjσx1ðtÞjΩi: ð18Þ

The shape of the magnetization profile is not changing
with time. The profile fades away with an amplitude

FIG. 1. Universal relaxation function of the spin-helix ampli-
tude (18) for different system sizes, in usual scale (top panel) and
in logarithmic scale (bottom panel). Top panel: green, red, and
black dots correspond to S6ðtÞ; S8ðtÞ; S10ðtÞ, respectively, while
the continuous curve shows SðtÞ (24). The blue line is to be
compared with Fig. 2(a) in [2]. Bottom panel: SNðtÞ for
N ¼ 10; 20;…; 50, from (23), shows the exponential decay for
large times, given by the black dashed line, (33). Colored dashed
curves show Sðr; tÞ with r ¼ ½N=4� from (29). Curves with the
same color code correspond to the same N. Deviations from the
straight line at large t are due to finite size effects.
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SN(cosðQÞt), which depends on the wave vectorQ in a self-
similar way.
The remaining universal function SNðtÞ is still a non-

equilibrium one-point function and therefore hard to calcu-
late. Free fermion techniques involving a Jordan-Wigner
transformation do not seem to sufficiently simplify the
problem because the density matrix associated with jΩi is
not an exponential of bilinear expressions in Fermi operators
cj; c

†
j ; see [20]. As previously seen in other examples

[18,21] an appropriately adapted Bethe ansatz technique,
in the present case based on the chiral basis, turns out to be
more efficient.
A key simplification in calculating SNðtÞ by means of the

chiral basis consists in the fact that, with u ¼ 1 in (14), the
operator σx1 becomes diagonal in the chiral basis

σx1j�;ni ¼ �j�;ni ð19Þ

for all admissible M, leading to

hμM0 ðqÞjσx1jμMðpÞi ¼ 0; if M ≠ M0: ð20Þ

Inserting I ¼ P
p;M jμMðpÞihμMðpÞj in (18) and using

(20) we obtain

SNðtÞ ¼
X
p;q;M

eiðEp−EqÞt

× hΩjμMðpÞihμMðpÞjσx1jμMðqÞihμMðqÞjΩi: ð21Þ

We also find that hΩjμMðpÞi ¼ 0 unless M ¼ N=2. After
an explicit evaluation of the matrix elements and the
overlaps and after performing the necessary summations
(see [16]) we eventually obtain

SNðtÞ ¼ Re

�
det

m;n¼1;…;N=2
ϕðNÞ
m;nðtÞ

�
; ð22Þ

ϕðNÞ
m;nðtÞ¼

X
p∈Bþ
q∈B−

ð1þe−ipÞð1þeiqÞei½2ðmp−nqÞþtðεp−εqÞ�

N2ðeiðp−qÞ−1Þ ; ð23Þ

where B� are the sets of p∈ ½−π; πÞ satisfying eipN ¼ �1.
Equation (22) describes the relaxation of the helix ampli-
tude for finite periodic systems. Explicit expressions for
SNðtÞ for N ¼ 4, 6 are given in [16].
Analyzing the Taylor expansion of SNðtÞ ¼

P
n C

ðNÞ
n tn

at t ¼ 0 we observe that the Taylor coefficients CðNÞ
n

stabilize for fixed n and large N. More precisely, CðNþ2Þ
n ¼

CðNÞ
n for n ¼ 0; 1;…; 2N − 4. Consequently, the stable

pattern gives the exact Taylor expansion about t ¼ 0 of
the decay of the spin-helix amplitude in the thermodynamic
limit

SðtÞ ¼ lim
N→∞

SNðtÞ; ð24Þ

SðtÞ ¼ 1 − 4t2 þ 25

3
t4 −

26

3
t6 þ 29

15
t8 −

211

45
t10

þ 212 × 179

14 175
t12 −

216 × 11

14 175
t14 þ 216 × 2987

4 465 125
t16

−
220 × 143

4 465 125
t18 þ…; ð25Þ

obtainable also by direct operatorial methods.
Reduction to Bessel functions.—For large N the sums in

(23) can be replaced by integrals. Then, after some algebra,

we find (see [16]) that the matrix entries ϕðNÞ
m;nðtÞ converge to

ð−1Þm−nϕm;nðtÞ ¼ δm;n þ Km;nðtÞ; ð26Þ

Km;nðtÞ ¼
t

m−n

�
J2mð4tÞJ2n−1ð4tÞ−J2nð4tÞJ2m−1ð4tÞ

�þ t
m−n

�
J2m−1ð4tÞJ2n−2ð4tÞ−J2n−1ð4tÞJ2m−2ð4tÞ

�

þ it
m−n−1=2

�
J2m−2ð4tÞJ2nð4tÞ−J2n−1ð4tÞJ2m−1ð4tÞ

�
−

it
m−nþ1=2

�
J2m−1ð4tÞJ2n−1ð4tÞ−J2n−2ð4tÞJ2mð4tÞ

�
;

Kn;nðtÞ ¼−
�
J0ð4tÞ

�
2þ �

J2n−1ð4tÞ
�
2þ2

X2n−2
j¼0

�
Jjð4tÞ

�
2; ð27Þ

where the JkðxÞ are Bessel functions. After further manip-
ulations (see [16]) and taking into account the symmetries
of Kn;m we finally obtain

SðtÞ ¼ lim
r→∞

Sðr; tÞ; ð28Þ

Sðr; tÞ ¼
				 det
m;n¼1;…;r

Am;nðtÞ
				
2

; ð29Þ

Am;nðtÞ ¼ δm;n þ Km;nðtÞ þ Km;1−nðtÞ: ð30Þ

These formulas represent SðtÞ as a product of two infinite
determinants. Infinite determinants [22] may define func-
tions in very much the sameway as series or integrals. As in
the present case, they may be extremely efficient in
computations [23]. With a few lines of Mathematica code
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we obtain, e.g., Sðt ¼ 50Þ ¼ 7.644 83 × 10−56 within a few
seconds on a laptop computer. Unlike the Taylor series
(25), the determinant representation determines SðtÞ for all
times. The function SðtÞ shown in Fig. 1 is directly
comparable with the experimental data, Fig. 2(a) in [2].
Even though the true thermodynamic limit is given by

r → ∞ in (28), already for r ¼ 1, when the matrix A is a
scalar, the function

Sð1; tÞ ¼ g20 þ 4t2
�
g0 þ

g1
3

�
2

; gn ¼ J2nð4tÞ þ J2nþ1ð4tÞ

ð31Þ
approximates SðtÞ for 0 ≤ t ≤ 0.5 (data not shown), and
also reproduces the asymptotic Taylor expansion (25) up to
the order t7.
Choosing r ¼ 4 in (29) reproduces SðtÞ with accuracy

jSð4; tÞ − SðtÞj < 10−5, for t < 2, which is enough for any
practical purpose. Indeed at t ¼ tmax ¼ 2, the amplitude
SðtÞ drops by 2 orders of magnitude with respect to the
initial value, SðtmaxÞ ≈ 0.0093 < Sð0Þ=100. For larger t,
SðtÞ is well-approximated by the asymptotics (33).
In addition, our numerics suggests a simple asymptotics

for detAðtÞ, namely

detAðtÞ → a0e2ite−
4
πt; t ≫ 1;

a0 ¼ 1.2295� 2 × 10−5: ð32Þ

The data were obtained by analyzing detAðtÞ for r ≤ 170,
and for times t < tmðrÞ ¼ r=2.2 − 0.19, data shown in
[16]. Equation (32) corresponds to the SðtÞ asymptotics

lim
t→∞

SðtÞ ≈ 1.5117e−
8
πt: ð33Þ

Using that SðtÞ is even [19] we readily get the spin-helix
state decay rate from the asymptotics (33) and the self-
similarity (17)

γðQÞ ¼ − lim
t→∞

ðt−1loghσxnðtÞiQÞ ¼
8

π
j cosðQÞj ð34Þ

shown in Fig. 2 and directly comparable with the experi-
mental result, Fig. 3(c) of [2].
Conclusions.—In this Letter we propose a chiral qubit

basis that possesses topological properties while retaining a
simple factorized structure and orthonormality. The chiral
basis at every site is represented by a pair of mutually
orthogonal qubit states and can be implemented with usual
binary code registers. We demonstrate the effectiveness of
the chiral basis by applying it to an experimentally relevant
physical problem. Our results in Figs. 1 and 2 are compa-
rable to the experimental data.
We discovered a universal function SðtÞ that governs the

relaxation of transversal spin helices with arbitrary wave-
lengths in an infinite system under XX dynamics. We
obtained the explicit determinantal form (28) of SðtÞ and
calculated its Taylor expansion (25) and its large-t asymp-
totics (33). The possibility to express correlation functions
in determinantal form is typical of integrable systems; see,
e.g., [18,21,24–27]. We also obtained explicit expressions
for the spin-helix state relaxation of finite systems of qubits
(22) that may be useful to interpret future experiments with
ring-shaped atom arrays [28], where periodic boundary
conditions can be realized.
The chiral basis can be used to diagonalize any other

Hamiltonian that commutes with the winding number
operator V, Eq. (2). An important example is the aniso-
tropic XY Hamiltonian for which we expect to be able to
obtain efficient formulas for the overlaps and, most likely,
also for the relaxation of spin helices. As for the con-
struction of the chiral basis, a generalization to the XYZ
case has been put forward in parallel to this work by three
of the authors and was recently published in [29].
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