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2Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy

3Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy
4The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy

5Institute for Quantum Studies, Chapman University, Orange, California, 92866, USA
6Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

7The Kennedy Chair in Physics, Chapman University, Orange, California 92866, USA
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An effective time-dependent Hamiltonian can be implemented by making a quantum system fly through
an inhomogeneous potential, realizing, for example, a quantum gate on its internal degrees of freedom.
However, flying systems have a spatial spread that will generically entangle the internal and spatial degrees
of freedom, leading to decoherence in the internal state dynamics, even in the absence of any external
reservoir. We provide formulas valid at all times for the dynamics, fidelity, and change of entropy for
ballistic particles with small spatial spreads, quantified by Δx. This non-Markovian decoherence can be
significant for ballistic flying qubits (scaling as Δx2) but usually not for flying qubits carried by a moving
potential well (scaling as Δx6). We also discuss a method to completely counteract this decoherence for a
ballistic qubit later measured.
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Flying qubits, such as flying Rydberg atoms [1–6],
flying spin qubits [7–10], or flying electrons [10–17], have
practical and fundamental significance. Practically, there is
great hope to use the internal state of flying qubits to
process and transport quantum information. This is a goal
of recent experiments on flying electrons in solid state
devices, with quantum information carried by the electron’s
spins [7–10], or its spatial distribution [10,11]. Similar
ideas have long been applied to flying Rydberg atoms
[1–5]. Fundamentally, they are the simplest examples of
how time-dependent Hamiltonians emerge from time-
independent ones, i.e., how nonautonomous dynamics
emerge from autonomous ones [18]. This is used for
measurement paradoxes [19–23], symmetries [24], quan-
tum optics [25–28], quantum collision models [29–32], and
quantum thermodynamics [6,29,31–34]. As a system flies
through a spatially varying potential, its internal state
experiences a time-dependent Hamiltonian. However, this
is only true if the flying system is pointlike [31]. Otherwise,
its internal degree of freedom (d.o.f.) also get entangled
with its spatial d.o.f., causing decoherence of the internal
d.o.f. This is a fundamental source of decoherence, intrinsic
to the flying nature of the system. We remark that the
internal d.o.f. does not have to be a qubit (i.e., a two-level
system); it can have arbitrary structure, the qubit being the
paradigmatic case.

In this Letter, we consider a quantum system that flies
ballistically, i.e., at approximately constant velocity, with a
small spatial spread, as drawn in Fig. 1. We analyze its
internal dynamics for arbitrary internal structure. The wave
packet’s spatial spread causes noisy dynamics for the
internal state, even in the absence of any external reservoirs.
Thus, we refer to its effect as reservoir-free decoherence
and we analytically characterize it. We quantify this in

FIG. 1. A ballistic quantum system is moving at constant
velocity to enter in and exit from an interaction region acting
on its internal state. During the interaction the internal state
associated with each position in the wave packet evolves differ-
ently due to the different time spent in the interaction region and
free evolution region. The green box shows a decomposition of
the internal state dynamics associated with the point x. This
decomposition is the one we used to obtain our results; see text
for details.
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terms of the internal state’s fidelity (compared to an ideal
pointlike system), and its entropy change. Then, we apply
our findings to flying qubits, and identify ways to reduce or
completely nullify the reservoir-free decoherence. Finally,
we estimate it for flying systems carried by a moving
potential well, and find that it is much weaker than for
ballistic flying systems.
Ballistic system’s dynamics.—Consider a quantum sys-

tem with arbitrary internal structure flying ballistically. We
want its internal dynamics to correspond to a desired
nonautonomous (i.e., time-dependent) dynamics given by
the evolution operator UNAðtÞ, resulting from the time-
dependent Hamiltonian HNAðtÞ. To do this, we let it fly
through a one-dimensional potential so that the total,
autonomous, Hamiltonian reads

H ¼ p̂2

2m
þH0 þ Vðx̂Þ; ð1Þ

where m is the system’s mass, x̂ and p̂ are its position and
momentum operators, H0 is the x̂-independent part of the
internal Hamiltonian and Vðx̂Þ the x̂-dependent part.
In the ideal case of a particle with classical spatial d.o.f.,

we can assign to it a definite position xclðtÞ and momentum
at any time. Then, the interaction term acts on the internal
d.o.f. as V(xclðtÞ). Assuming that the particle’s momentum
is constant, hence it moves at constant velocity v0, its
position is xclðtÞ ¼ x0 þ v0t, where x0 is the particle’s
initial position. It follows that the internal state evolves as
governed by the HamiltonianHNAðtÞ≡H0 þ Vðx0 þ v0tÞ.
In the following, we consider what happens if the particle is
not pointlike, i.e., is described by a wave packet of finite
size initially centered at x0. Then, Vðx̂Þ may also transfer
energy between the particle’s internal and spatial d.o.f.,
while entangling them.
Approximations.—Solving Eq. (1) can be involved, even

for wave packets without internal d.o.f. hitting simple
barriers [35,36]. The regime we are interested in is defined
by two approximations. First, the kinetic energy changes
induced by Vðx̂Þ are supposed to be negligible at all times
with respect to the mean initial kinetic energy. Introducing
p0 the particle’s initial average momentum and q̂ ¼
p̂ − p0, it yields hq̂i ≪ p0 and hq̂2i ≪ p2

0. This leads to
the so-called quantum clock dynamics [19–21,37,38],
which corresponds to linearizing the kinetic energy in
solid-state physics (used for flying qubits in [11]).
Equation (1) becomes

H ≃ v0q̂þH0 þ Vðx̂Þ; ð2Þ

where we drop the constant p2
0=ð2mÞ, with no effect on the

dynamics, and the approximation involves dropping
q̂2=ð2mÞ. This means that the wave packet propagates
without dispersion and at a constant group velocity (further
simply dubbed velocity) v0 ¼ p0=m.

Second, the particle should remain sufficiently localized
at all times, such that its internal states typically accumulate
a small phase difference over the entire wave packet.
Introducing Δx the typical width of the wave packet and
E0 the typical energy scale of the internal Hamiltonian
H0 þ VðxÞ, this condition means

ε≡ ΔxE0

ℏv0
≪ 1; ð3Þ

where the parameter ε plays a major role in our calcu-
lations, as we show below. For Gaussian wave packets,
Heisenberg inequality is saturated (ΔxΔp¼ℏ=2), and ε≪1
can be written as p0Δp=m ≫ E0. It means that the spread
of kinetic energy induced by the wave packet localization
largely overcomes the internal energy scale: hence, the
different spatial states resulting from the evolution of
different internal states remain almost indistinguishable
—in other words, the spatial d.o.f. carries a small amount of
which path information on the internal d.o.f.
Starting from Eq. (2), the dynamics can be solved

exactly, as shown in Sec. I of Supplemental Material
(SM) [39]. We consider the particle to be completely
outside of the interaction region at t ¼ 0, as shown in
Fig. 1. It then makes sense to consider spatial and internal
d.o.f. to be initially uncorrelated. The internal state at time t
is given by

ρIðtÞ ¼
Z þ∞

−∞
A0ðx; xÞŨxðtÞρ0Ũ†

xðtÞdx; ð4Þ

with A0ðx; xÞ the initial probability density of finding the
particle at point x, ρ0 the initial internal state, and

ŨxðtÞ ¼ T exp

�
−
i
ℏ

Z
t

0

dsHNA

�
sþ x − x0

v0

��
; ð5Þ

where T is the time-ordering operator. ŨxðtÞ is the
evolution operator for the internal state associated with
position x in the wave packet. Hence, different parts of the
wave packet (i.e., different x) have different dynamics, even
though each part of the wave packet goes through the same
potential Vðx̂Þ during its flight. This is the origin of the
entanglement between the spatial and internal d.o.f., lead-
ing to the reservoir-free decoherence.
For a time tf such that the wave packet has completely

gone through the potential region, the reservoir-free
decoherence can be intuitively explained as follows. For
each initial position x of the particle within the wave packet,
the internal state evolves according to the ideal dynamics
one would have starting from x instead of x0. This
dynamics splits into three parts: before, during, and after
the interaction region. The interaction region acts in the
same way for each starting position x, but the respective
durations of the free evolution steps depend on x. If the

PHYSICAL REVIEW LETTERS 132, 220403 (2024)

220403-2



dynamics in the interaction region does not commute with
the free one, then each x gives rise to a different total
evolution, hence entangling the spatial and internal d.o.f.
Otherwise, the evolution is the same for each starting point
and there is no reservoir-free decoherence. This can
happen, for example, if ½Vðx̂Þ; H0� ¼ 0 or if HNAðtÞ
changes adiabatically.
Approximate dynamics.—We now solve the internal

d.o.f. dynamics in the regime of localized wave packet
defined by ε ≪ 1. Let the flying particle’s initial wave
packet be localized in space, centered at x0 with a spread
Δx ¼ ½hx̂2i − hx̂i2�1=2, see Fig. 1. The wave packet moves
from left to right at constant velocity v0, so it is centered at
x0 þ v0t at time t. The part of the wave function initially at
x0 has internal evolution UNAðtÞ≡ Ũx0ðtÞ. For other initial
x, we can decompose their evolution as shown in the
green box of Fig. 1; evolving from x to x0 using
Ũ†

x0(ðx − x0Þ=v0), from x0 to x0 þ v0t using UNAðtÞ,
and from x0 þ v0t to xþ v0t using Ũx0þv0tððx − x0Þ=v0Þ.
Then, assuming ε ≪ 1, we can expand Ũ†

x0(ðx − x0Þ=v0)
and Ũx0þv0t(ðx − x0Þ=v0) by means of Taylor expansions
(see Secs. II and III of SM [39]). This gives simple
expressions for the dynamics and quantities of interest,
in the regime in which the internal state ideal dynamics is
only weakly perturbed by the spatial spread of the wave
packet.
In this regime, the internal state’s reduced density matrix

at time t, after tracing over the spatial wave function (see
Sec. III of SM [39]), is

ρIðtÞ ≃ ρNAðtÞ þ ε2CðtÞ; ð6Þ

where ρNAðtÞ ¼ UNAðtÞρ0U†
NAðtÞ is the nonautonomous

ideal dynamics (that of the wave packet’s center), and

CðtÞ ¼ f½HNA; U½H0; ρ0�U†� − iℏ
2
½∂tHNA; Uρ0U†�

þ UDH0
ðρ0ÞU† þDHNA

ðUρ0U†Þg=E2
0; ð7Þ

is the correction term, with DXðρÞ ¼ XρX†−
ð1=2ÞfX†X; ρg, and U (respectively HNA) being shorthand
for UNAðtÞ [respectively, HNAðtÞ]. Importantly, Eqs. (6)
and (7) reveal that the deviation from ideal dynamics scales
as Δx2 but its form [encoded in CðtÞ] is independent of Δx.
Moreover, at a practical level, Eqs. (6) and (7) are easy to
solve: unlike Eq. (1), they do not involve the large Hilbert
space of the spatial d.o.f., and standard perturbation theory
can be applied to find UNAðtÞ (see, e.g., Ref. [43]). Below
we exploit these analytic expressions to quantify the impact
of the reservoir-free decoherence.
Fidelity and entropy.—We consider two ways of

characterizing how close the internal dynamics are to
ideal [44,45]: (i) the fidelity between real and ideal
internal state, and (ii) the von Neumann entropy change

of the real internal state. In Sec. IV of SM [39], we derive
both from Eqs. (6) and (7), using a method from
Ref. [46]. When the initial internal state is pure, we
define the ideal evolution as jψNAðtÞihψNAðtÞj. Then, the
fidelity FðtÞ≡ hψNAðtÞjρIðtÞjψNAðtÞi, and the von
Neumann entropy SðtÞ≡ −TrfρIðtÞ ln ρIðtÞg are

FðtÞ ≃ 1 − ε2
��hψNAðtÞjCðtÞjψNAðtÞi

��; ð8Þ

SðtÞ ≃ ε2TrfC⊥ðtÞ − C⊥ðtÞ ln ½ε2C⊥ðtÞ�g; ð9Þ

where C⊥ðtÞ ¼ ð1− jψNAðtÞihψNAðtÞjÞCðtÞð1− jψNAðtÞi×
hψNAðtÞjÞ is the part of CðtÞ orthogonal to jψNAðtÞi. The
case of a mixed initial internal state is discussed in
Sec. IV of SM [39]. Equations (6)–(9) are the main results
of this Letter.
Equations (6)–(9) are valid at all times during the

dynamics, giving, for example, a qubit’s fidelity and
entropy as its wave packet flies through the interaction
region, as is done in Fig. 2, which shows that FðtÞ and SðtÞ
are both nonmonotonic functions of time. Equation (4)
implies that if ρ0 ∝ I then ρIðtÞ ∝ I at any time t, i.e., the
dynamics is unital. This implies that the reservoir-free
decoherence is non-Markovian [47]. A short but rigorous
proof of this statement is given in Sec. IV of SM [39].
Notice that, in general, FðtÞ < 1 and SðtÞ > 0 while the

particle is inside the interaction region even if the gate is
perfectly implemented, such as the PHASE and CPHASE

gates discussed below.

FIG. 2. A qubit flying through an inhomogeneous potential.
The qubit bare Hamiltonian is H0 ¼ ð1=2Þℏωqσz while the
interaction term is Vðx̂Þ ¼ 1

2
ℏχ0σx exp½−πx2=L2�, sketched as

the dotted gray curve. Since HNA does not commute with itself at
different times even the ideal dynamics are nontrivial, so we
obtain both ρNA and ρI numerically by adapting a method from
Ref. [48]. The initial state is a Gaussian wave packet with spatial
spread Δx centered at x0 and mean wave vector k0, with internal
state ðj0i þ j1iÞ= ffiffiffi

2
p

. The continuous blue line represents the
fidelity in Eq. (8) as the qubit flies. The dot-dashed green line is
the fidelity of the approximate state Eq. (6) relative to an exact
evolution of Eq. (1); it is close to one, showing that the
approximation is very good. Finally, the red dashed line repre-
sents the internal state’s von Neumann entropy (in bits) in Eq. (9).
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Example with ballistic qubits.—Let H0 ¼ 1
2
ℏωqσz,

where σz is the usual Pauli operator, and ωq is the qubit
frequency. We consider that the wave packet entirely passes
through an interaction region whose ideal dynamics per-
form a desired gate operation at final time tf, where we
recall that HNAðtfÞ ¼ H0 and the typical energy scale is
E0 ¼ ℏωq. We then evaluate the effect of the reservoir-free
decoherence caused by the wave packet’s spatial spread.
Notice that there is an infinite number of possible potentials
Vðx̂Þ which would ideally implement a specific gate
at final time. However, neither the final correction term,
nor the final fidelity and entropy depend on this specific
choice.
As the first example, let us consider a NOT gate, with

ideal dynamics given by UNAðtfÞ ¼ −iσx, acting on an
initial state ρ0 ¼ jψ Ið0Þihψ Ið0Þj, with jψ Ið0Þi ¼ ffiffiffiffiffi

a0
p j0iþ

eiθ
ffiffiffiffiffi
a1

p j1i, in the eigenbasis of H0. Then, CðtfÞ ¼
−2½eiθ ffiffiffiffiffiffiffiffiffiffi

a0a1
p j0ih1j þ H:c:�, and

FðtfÞ ¼ 1−KðtfÞ; SðtfÞ ¼KðtfÞf1− ln½KðtfÞ�g; ð10Þ

where KðtfÞ≡ 4a0a1ðωqΔx=v0Þ2. As expected, the wave
packet’s spatial spread reduces the gate fidelity, while
increasing the qubit’s entropy, for any initial state except
eigenstates of H0.
As second example, let us consider a PHASE gate, whose

ideal dynamics are UNAðtfÞ ¼ exp½−iðϕ=2Þσz�. Then
½UNAðtfÞ; H0� ¼ 0, which implies FðtfÞ ¼ 1 and SðtfÞ ¼
0 for all choices of ρ0. Although entanglement is built
during the interaction, the internal state associated with
each position in the wave packet undergoes the same
dynamics once the wave packet has completely passed
through the interaction region. In other words, ŨxðtfÞ ¼
UNAðtfÞ, ∀ x [cf. Eq. (5)].
More generally, an arbitrary gate operation has fidelity

and entropy of the form given in Eq. (10), but the quantity
K will be given by ðωqΔx=v0Þ2 multiplied by a prefactor
which will depend on the gate operation (given by UNA) as
well as the initial state ρ0.
Two-qubit gate example.—Our Eqs. (1)–(9) can also

describe the dynamics of two flying systems when their
interaction only depends on their distance and we neglect
the center of mass dynamics; see also Sec. V of SM [39].
Therefore, we can consider two flying qubits (1 and 2)
traveling at different velocities along parallel 1D tracks. As
one qubit flies past the other, their interaction Vðjx̂1 − x̂2jÞ
performs a desired gate operation between them. A CPHASE

gate is unaffected by the reservoir-free decoherence,
because the proper evolution of each qubit (under H1

and H2) commutes with the gate operation, so CðtfÞ ¼ 0.
However, the CNOT gate is affected by noise scaling as
pðΔx21 þ Δx22Þ=½ℏ2ðv1 − v2Þ2� (see Sec. V of SM [39])
where p is the population of the control qubit and we

assumed the two qubit spatial states to be initially uncorre-
lated. The CðtfÞ term has the same form as for the NOT gate
[see above Eq. (10)] when the control qubit is in state h1j
and is zero otherwise. The fidelity is then given by F ¼
1 − pK where K is defined as before but now refers to the
qubit on which the NOT part of the gate acts. The entropy is
easily computed, but its formula is more involved and not
given here.
Experimental consequences.—Ballistic electrons can

be injected into quantum Hall edge states on demand
(Levitons, etc.), and made to interact [49–52]. They
typically have Δx=v0 ∼ 10−10 s [50,51]. If the electron’s
spin were used as a qubit, one would have ωq ∼ 10−10 s−1,
since the B fields ≳1 T. Then, the reservoir-free
decoherence would be strong, ωqΔx=v0 ∼ 1, giving fidel-
ities much too small for quantum gate operations.
Achieving higher fidelities would require lower mag-

netic fields to get smaller ωq. This might be experimen-
tally realizable with electrons flying ballistically in a
waveguide similar to [11] with B fields of mT, allowing
ωq ∼ 10−13 s−1. If the injection into this waveguide could
be done with a similar Δx as the injection into an
edgestate, extremely high fidelities could be attained,
with 1 − F ∼ ðωqΔx=v0Þ2 ∼ 10−6.
Avoiding reservoir-free decoherence.—The reservoir-

free decoherence depends on the fact that, for each spatial
point in the traveling wave function, the internal state
experiences a different dynamics. However, if the initial
internal state is an eigenstate of the bare Hamiltonian, H0

(such as the ground state) it does not evolve prior to
entering the interaction region and, once out of it, its
evolution does not change the populations of states in the
eigenbasis of H0. Thus, the final internal state may be
decohered in this energy eigenbasis, but the eigenstate’s
populations are the same as for the ideal dynamics.
This implies that reservoir-free decoherence plays no

role whenever the system starts in an eigenstate of H0, and
it flies through potentials that (i) rotate the internal state to
the desired superposition, (ii) perform a series of gate
operations, and (iii) prepare the final state for an energy
eigenbasis measurement [53]. This is the case in experi-
ments on flying Rydberg atoms [6], or flying electrons in
waveguides [11], explaining their negligible decoherence
despite their wave packets’ large spatial spreads.

FIG. 3. A flying quantum system that is trapped in a potential
well that moves at constant velocity, carrying the quantum system
through the interaction region.

PHYSICAL REVIEW LETTERS 132, 220403 (2024)

220403-4



Qubits carried by a moving potential.—Finally, we
consider qubits that fly by being trapped in a moving
harmonic potential well [54], as in Fig. (3), sometimes
called flying qubits and sometimes called surfing or
shuttling qubits [7–10]. Section IV of SM [39] shows that
the quantization of the wave function in the moving
harmonic potential vastly reduces the reservoir-free
decoherence compared to the ballistic qubits that are the
principle subject of this Letter. Intuitively, this can be
understood semiclassically: the particle undergoes a har-
monic motion around the center of the moving trap,
effectively averaging out the differences in internal dynam-
ics in different parts of the wave packet. Therefore, all parts
of the wave packet have internal dynamics closer to the
wave packet’s center than in the ballistic case. As a result,
the order δx2 term in Eq. (6) is replaced by a term which we
estimate to be smaller than 36ðm2=ℏ2v20τ

4ÞΔx6, where τ is
the time needed to apply the desired gate [55]. This term is
of order 10−8 or smaller in most experiments (see Sec. VI-C
of SM [39]), which is small enough to completely neglect.
Hence, reservoir-free decoherence can be effectively
removed by switching from ballistic qubits to qubits carried
by a moving harmonic potential wells.
Conclusions.—We considered flying quantum systems

as bipartite systems divided into spatial and internal d.o.f.,
focusing on the case of ballistic particles with a narrow
spatial distribution. We analytically investigated the effects
of the wave packet’s spatial spread on the internal state
dynamics, which experiences reservoir-free decoherence
(decoherence without an external reservoir) due to the
entanglement between spatial and internal d.o.f. We derived
the internal state full dynamics, which is necessary in
quantum thermodynamics, if one wants to go beyond our
calculations of entropy, and quantify generalized work and
heat using definitions like in Refs. [56,57]. Finally, we
estimated this effect to be practically negligible for surfing
or shuttling qubits. In the future, it would be interesting to
explore how tuning the shape of the potential can reduce
even more the reservoir-free decoherence, which funda-
mentally affects every flying quantum system.
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