
Biorthogonal Dynamical Quantum Phase Transitions in Non-Hermitian Systems

Yecheng Jing, Jian-Jun Dong ,* Yu-Yu Zhang,† and Zi-Xiang Hu ‡

Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University,
Chongqing 401331, China

(Received 23 July 2023; accepted 29 April 2024; published 29 May 2024)

By utilizing biorthogonal bases, we develop a comprehensive framework for studying biorthogonal
dynamical quantum phase transitions in non-Hermitian systems. With the help of the previously
overlooked associated state, we define the automatically normalized biorthogonal Loschmidt echo. This
approach is capable of handling arbitrary non-Hermitian systems with complex eigenvalues and naturally
eliminates the negative value of Loschmidt rate obtained without the biorthogonal bases. Taking the non-
Hermitian Su-Schrieffer-Heeger model as a concrete example, a 1=2 change of dynamical topological order
parameter in biorthogonal bases is observed which is not shown in self-normal bases. Furthermore, we
discover that the periodicity of biorthogonal dynamical quantum phase transitions depends on whether the
two-level subsystem at the critical momentum oscillates or reaches a steady state.
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The past decades have witnessed the flourishing of non-
Hermitian physics in nonconservative systems as found in a
variety of physical realms including open quantum systems
[1], electronic systems with interactions [2–4], and classical
systems with gain or loss [5–7]. In these systems [8–23],
many novel physics and unprecedented phenomena have
been explored recently, such as the exceptional points
[24,25], the non-Hermitian skin effects [26,27], the bulk
Fermi arcs [28], and so on. In contrast to the Hermitian
systems with real eigenvalues and orthogonal eigenstates,
the eigenvalues and eigenstates in a general non-Hermitian
Hamiltonian are not necessarily real and orthogonal [29].
To be more precise, the orthogonality of eigenstates is
replaced by the notion of biorthogonality that defines the
relation between the Hilbert space of states and its dual
space, leading to the so-called “biorthogonal quantum
mechanics” [30–33]. A direct consequence of the biortho-
gonality is that the transition probability between one state
jϕi to its time-evolved state jϕðtÞi should be carefully
defined. The traditional viewpoint p ¼ jhϕðtÞjϕij2 used in
Hermitian systems cannot be applied to a general non-
Hermitian Hamiltonian. A schematic framework to deal
with this becomes an urgent topic due to the rapid
development of nonequilibrium studys in non-Hermitian
systems [34–45].
Dynamical quantum phase transition (DQPT) is arguably

one of the most important nonequilibrium phenomena in
modern many-body physics and has also been extensively
studied in past decades [46–50]. It was first introduced in
the Hermitian transverse field Ising model [46] and was
generalized to mixed state [51,52], finite temperature [53–
57], Floquet systems [58–61], and slow quench process
[62]. It was also observed experimentally with trapped
ions [63,64], Rydberg atoms [65], ultracold atoms [66],

superconducting qubits [67], nanomechanical and photonic
systems [68–70]. The key quantity characterizing DQPT
is the Loschmidt echo or dynamical fidelity, LðtÞ≡
jhΨð0ÞjΨðtÞij2, quantifying the time-dependent deviation
from an arbitrary initial state jΨð0Þi. In Hermitian systems,
DQPTs occur whenever the time-evolved state jΨðtÞi
becomes orthogonal to the initial state jΨð0Þi and the
critical time tc is defined as LðtcÞ ¼ 0. Efforts have been
made to generalize this concept to non-Hermitian systems,
leading to many interesting predictions such as the half-
integer jumps in dynamical topological order parameter
(DTOP) [71], but the special biorthogonality has been
ignored and an enforced normalized factor has been used
[71–74]. Very recently, it has been shown that the non-
Hermitian systems should be described by the biorthogonal
fidelity and the biorthogonal Loschmidt echo instead
of the conventional counterparts in Hermitian systems
[75,76], but it is limited to the parity-time symmetry cases
[77,78]. A natural treatment for a general non-Hermitian
Hamiltonian is still lacking, which severely limits our
exploration of the richness of DQPTs in these systems.
In this Letter, we address this issue by proposing a new

theoretical framework to deal with these nonequilibrium
phenomena in general non-Hermitian systems. Based on
biorthogonal quantum mechanics, we reformulate the tran-
sition probability between jΨð0Þi and jΨðtÞi with the
biorthogonal bases and the associated states. We introduce
the concept of biorthogonal dynamical quantum phase
transitions and compare it with its self-normal counterpart,
utilizing the non-Hermitian Su-Schrieffer-Heeger model as
a concrete example. We conduct a comprehensive inves-
tigation of the biorthogonal Loschmidt rate, biorthogonal
DTOP, Fisher zeros, and the transition probability in
momentum space during a sudden quench. Our calculations
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reveal a half-integer jump in the biorthogonal DTOP and
demonstrate that the periodicity of biorthogonal DQPTs
depends on whether the two-level subsystem at the critical
momentum undergoes oscillation or settles into a steady
state. Our theory establishes a general framework for
studying nonequilibriumDQPTs in non-Hermitian systems.
We first review some basic properties of biorthogonal

quantum mechanics in non-Hermitian systems and refor-
mulate the probability assignment rules between two states
with biorthogonal bases [30]. For a general non-Hermitian
Hamiltonian H ≠ H†, the eigenvalue equations of H and
H† are given by

Hjuni ¼ ϵnjuni; hunjH† ¼ ϵ�nhunj;
H†jũni ¼ ϵ�njũni; hũnjH ¼ ϵnhũnj; ð1Þ

where ϵn is the nth eigenvalue, and juni and jũni are the
right and left eigenstates that satisfy the completeness
relation

P
n jũnihunj ¼ 1 and the biorthonormal relation

hũmjuni¼δm;n. Note that under this condition hũnjuni ¼ 1,
eigenstates are no longer normalized. In particular, we have
hunjuni ≥ 1 and hunjumi ≠ 0 if n ≠ m. It challenges the
traditional probabilistic interpretation used in Hermitian
quantum mechanics. For instance, there cannot be a
“transition” from one eigenstate jumi to another eigenstate
juni due to the orthonormal relation hunjumi ¼ 0 if n ≠ m
in Hermitian systems. To reconcile these apparent contra-
dictions we need the introduction of the so-called asso-
ciated state and the redefinition of the inner product. For an
arbitrary state jψi, its associated state jψ̃i is defined
according to the following relation [30]:

jψi ¼
X
n

cnjuni ↔ jψ̃i ¼
X
n

cnjũni; ð2Þ

while the dual state hψ̃ j ¼ P
n c

�
nhũnj is given by the

Hermitian conjugate of jψ̃i. The inner product between
jψi and another state jϕi ¼ P

m dmjumi is thus defined as

hϕ;ψi≡ hϕ̃jψi ¼
X
m;n

hũmjd�mcnjuni ¼
X
n

d�ncn: ð3Þ

It is easy to show that the norm of a state jψi is ffiffiffiffiffiffiffiffiffiffiffiffihψ̃ jψip
.

With these new definitions, the transition probability
between jψi and jϕi for a biorthogonal system is given by

p ¼ hψ̃ jϕihϕ̃jψi
hψ̃ jψihϕ̃jϕi ; ð4Þ

where the denominator acts as a natural normalizing factor.
In this case, p is a real number ranging from 0 to 1, which
meets the requirements of probability interpretation satis-
factorily. If the Hamiltonian is HermitianH ¼ H†, we have
jũni ¼ juni and jψ̃i ¼ jψi. Then Eq. (4) reduces to
the conventional definition of the transition probability

in Hermitian quantum mechanics p ¼ hψ jϕihϕjψi=
ðhψ jψihϕjϕiÞ. Another important consequence of Eq. (4)
is that the projection from jψi ¼ P

n cnjuni to juni
becomes

pn ¼
hψ̃ junihũnjψi
hψ̃ jψihũnjuni

¼ c�ncnP
mc

�
mcm

; ð5Þ

satisfying the normalization condition
P

n pn ¼ 1.
By now the static aspects of non-Hermitian systems are

clear, but the dynamical problems remain controversial.
Although the time evolution of an arbitrary initial state jΨð0Þi
under a time-independent Hamiltonian H is given by the
well-known Schrödinger equation jΨðtÞi ¼ e−iHtjΨð0Þi, the
direct generalization jΨ̃ðtÞi ¼ e−iH

†tjΨ̃ð0Þi [78] may lead to
unreasonable complex probabilities if there is no parity-time
symmetry [79]. To establish a general framework for non-
HermitianHamiltonianwith complex eigenvalues, we use the
associated state jΨ̃ðtÞi ¼ P

n cnjũni where cn ¼ hũnjΨðtÞi
to deal with the dynamical problem. The overlap between
jΨð0Þi and jΨðtÞi is characterized by the biorthogonal
Loschmidt echo,

LðtÞ ¼ hΨ̃ð0ÞjΨðtÞihΨ̃ðtÞjΨð0Þi
hΨ̃ðtÞjΨðtÞihΨ̃ð0ÞjΨð0Þi : ð6Þ

As in the Hermitian case, the biorthogonal DQPTs can be
defined as LðtcÞ ¼ 0 with the critical time tc.
We may examine the biorthogonal DQPT by considering

a general non-Hermitian Hamiltonian H ¼ P
k ψ

†
kHkψk

withHk ¼ dk · σ. Here, σ is the vector of the Pauli matrices,
dk ¼ ðxk; yk; zkÞ represents the vector of expansion coef-
ficients, and at least one component of dk is complex in
non-Hermitian systems. The eigenenergies of Hk are given

by �ϵk ¼ �
ffiffiffiffiffi
d2k

q
, and the corresponding eigenstates are

juk�i. Considering a quench process where the model
Hamiltonian changes from dik at time t ¼ 0− to dfk at time
t ¼ 0þ, the initial state jΨð0Þi ¼⊗k juik−i which is defined
as the tensor product of all juik−i is evolved under the
postquench Hamiltonian dfk . The biorthogonal Loschmidt
echo can be expressed as LðtÞ ¼ Q

k gkðtÞ with [79]

gkðtÞ ¼
j cosðϵfktÞ − i sinðϵfktÞhũik−j H

f
k

ϵfk
juik−ij2

hũik−ðtÞjuik−ðtÞi
; ð7Þ

where juik−ðtÞi ¼ e−iH
f
k tjuik−i. To obtain a nonzero and

well-defined quantity in the thermodynamic limit it is
useful to consider the biorthogonal Loschmidt rate

LRðtÞ ¼ − lim
N→∞

1

N
lnLðtÞ; ð8Þ

where N is the system size. Zeros in LðtÞ at critical times tc
correspond to nonanalyticities (cusps or divergencies) in
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LRðtÞ. If there is at least one pair of critical parameters kc
and tc such that gkcðtcÞ ¼ 0, then LðtcÞ ¼ 0. The solution
of gkcðtcÞ ¼ 0 is

tc ¼
π

2ϵfkc
ð2nþ 1Þ − i

ϵfkc
tanh−1hũikc−j

Hf
kc

ϵfkc
juikc−i; ð9Þ

where n is an integer. If we can obtain a positive real
solution tc, the system will undergo a biorthogonal DQPT.
In general, it is difficult to access kc in a finite-size system
because momentum takes quantized values. Thus the
divergence of LRðtÞ in the thermodynamic limit becomes
a cusp in a finite-size system except for some fine-tuned
quench parameters or twist boundary conditions [50]. For
the same reason, it is also difficult to obtain a positive real
solution tc in a finite system. To address this issue, we can
solve the equation LðtÞ ¼ 0 inversely and study the
distribution of the roots in the complex time plane. The
solution of LðtcÞ ¼ 0 depends on the system size N. If for
all ϵ > 0, there exists a natural number N0 such that
Im½tcðNÞ� < ϵ holds for all N > N0, a real solution
limN→∞ Im½tcðNÞ� ¼ 0 can be obtained, indicating a bio-
rthogonal DQPT.
Furthermore, similar to the DTOP in Hermitian systems

[80], we can introduce a biorthogonal DTOP to describe
biorthogonal DQPT. The biorthogonal DTOP is defined as

νðtÞ ¼ 1

2π

Z
2π

0

dk∂kϕG
k ðtÞ; ð10Þ

where the biorthogonal geometrical phase is
ϕG
k ðtÞ ¼ ϕkðtÞ − ϕdyn

k ðtÞ, with ϕkðtÞ being the phase of

gkðtÞ, and the biorthogonal dynamical phase is given
by [79]

ϕdyn
k ðtÞ ¼ −

Z
t

0

ds
hũik−ðsÞjHf

k juik−ðsÞi
hũik−ðsÞjuik−ðsÞi

þ i
2
lnhũik−ðtÞjuik−ðtÞi: ð11Þ

To demonstrate the efficacy of our novel theoretical
framework in dealing with non-Hermitian Hamiltonians
featuring complex eigenvalues, we present a comprehen-
sive examination of the non-Hermitian Su-Schrieffer-
Heeger model as outlined below. The Hamiltonian is

H ¼
X
j

��
1þ ηþ γ

2

�
c†j;bcj;a þ

�
1þ η −

γ

2

�
c†j;acj;b

þð1 − ηÞc†j;acjþ1;b þ ð1 − ηÞc†jþ1;bcj;a

�
; ð12Þ

where η determines the strength of intracell and intercell
hopping and γ controls the degree of non-Hermiticity,
as shown in Fig. 1(a). For the periodic boundary condition,
the bulk Hamiltonian gets the standard bilinear form
H ¼ P

k ψ
†
kðdk · σÞψk in momentum space, where ψ†

k ¼
ðc†k;a; c†k;bÞ and

dk ¼
�
ð1þ ηÞþ ð1− ηÞcosk; ð1− ηÞ sink− i

γ

2
;0

�
: ð13Þ

The dispersion is�ϵk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
. It becomes gapless at

the exceptional points. Thus the solution of ϵk ¼ 0 deter-
mines the phase boundary, i.e., kc ¼ 0; γ ¼ �4 and
kc ¼ π; γ ¼ �4η. Combining with the winding number
w ¼ ð1=2πÞ R 2π

0 dk∂k
�
arctanðyk=xkÞ

�
[81], we present the

phase diagram in Fig. 1(b) for convenience, where we only
consider the case γ > 0 due to the symmetry of the phase
diagram with respect to γ.
For comparison, we also calculate the traditional DQPT

based on self-normal Loschmidt echoLðtÞ¼jhΨð0ÞjΨðtÞij2,

FIG. 1. (a) The sketch of non-Hermitian Su-Schrieffer-Heeger
model. The box indicates the unit cell. (b) The γ − η phase
diagram. Each region filled with a different color corresponds to a
phase with a topological winding number w. The boundaries
between the regions are determined using ϵk ¼ 0. The black
points represent different parameters (η, γ) which will be used
below. Specifically, the points A to G represent (−2, 5), (−0.2, 5),
(0.2, 5), (2, 5), (−2, 1), (−0.2, 1), and (0.2, 1), respectively.

FIG. 2. (a) The Loschmidt rate and (b) the DTOP with self-
normal and biorthogonal bases for a typical quench process (from
G to F).
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with an enforcednormalized factor to avoid thenegativevalue
of Loschmidt rate [72]. Figure 2(a) presents the self-normal
and biorthogonal Loschmidt rate from the same quenching
process. The first feature is that the critical time at which the
cusp appears is different from each other. A similar phe-
nomenon has been observed in equilibrium quantum phase
transitions, where the biorthogonal and self-normal fidelity
predict different quantum critical points [77]. It turns out that
the biorthogonal fidelity captures the correct critical point due
to the special biorthoganality in non-Hermitian systems [77].
Similarly, the nonequilibrium quantum phase transitions
should be described by the biorthogonal time-dependent
version of the fidelity, i.e., biorthogonal Loschmidt echo.
The second feature is that there is an additional critical time
tc ≈ 0.74 in biorthogonal bases. This can be seenmore clearly
in theDTOPas shown inFig. 2(b).Ahalf-integer jumpof νðtÞ
can be observed in the biorthogonal bases while there is no
such change in the self-normal bases.
To show that the half-integer jump of νðtÞ is not a fine-tune

result [82], we study different quenching processes by
changing η but with γ fixed. Figures 3(a) and 3(b) present
five typical behaviors of the biorthogonal Loschmidt rate
LRðtÞ and biorthogonal DTOP νðtÞ, respectively. And more
detailed information can be found in the Supplemental
Material [79]. The half-integer jump of νðtÞ can appear alone,
periodically, or accompanied by an integer jump, exhibiting

rich behavior in a single non-HermitianHamiltonian.We also
find that the half-integer jumpphenomenonoccurs if andonly
if the prequench phases are in themiddle of the phase diagram
with 0 or 1=2 winding number.
To better understand the biorthogonal DQPTs, we study

the dynamical counterpart of Fisher zeros [83–87] in the
complex time plane znðkÞ ¼ itnðkÞ. The lines znðkÞ cross the
imaginary time axis at a critical momentum kc and yield a
critical time tc;n, as shown in Figs. 4(a) and 4(b). The
discontinuity of the dynamical Fisher zeros over the imagi-
nary axis is associated with the half-integer jump of νðtÞ
[71]. Figures 4(a) and 4(b) also represent two typical types of
biorthogonal DQPTs, depending on whether the lines znðkÞ
cut the time axis periodically or nonperiodically. In order to
further study these two types of biorthogonal DQPTs, we
also investigate the transition probability pðk; tÞ between the
time-evolved state juik−ðtÞi ¼ e−iH

f
ktjuik−i and another initial

eigenstate juikþi. By expanding juik−ðtÞi as juik−ðtÞi ¼
c1juik−i þ c2juikþi, we have pðk; tÞ ¼ c�2c2=ðc�1c1 þ c�2c2Þ
from Eq. (5). If there exists pðk; tÞ ¼ 1, the time-evolved
state juik−ðtÞi is biorthogonal with juik−i. Then the bio-
rthogonal Loschmidt echo equals to zero because we can
rewrite LðtÞ as

LðtÞ ¼
Y
k

hũik−juik−ðtÞihũik−ðtÞjuik−i
hũik−ðtÞjuik−ðtÞi

: ð14Þ

FIG. 3. Five different types of quenching processes showing a 1
2

change in the biorthogonal DTOP. (a) and (b) illustrate the
biorthogonal Loschmidt rate and biorthogonal DTOP, respec-
tively. The 1

2
change in the biorthogonal DTOP appears if and

only if the prequench phases are in the middle of the phase
diagram, with winding numbers of 1

2
or 0.

FIG. 4. (a),(b) The dynamical Fisher zeros in the complex plane
znðkÞ ¼ itnðkÞ with k lies in the first Brillouin zone for two
typical quench processes. (c),(d) The corresponding transition
probability pðkc; tÞ between juikc−ðtÞi and juikcþi at the critical
momentum kc.
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As shown in Figs. 4(c) and 4(d), the two types of bio-
rthogonal DQPTs exhibit two distinct behaviors of pðk; tÞ.
For the periodic biorthogonal DQPTs, pðkc; tÞ oscillate
periodically between 0 and 1 for fixed critical momenta
kc. In this situation, the two-level systems of kc dominate.
Thus the periodicity of biorthogonalDQPTsmaybe related to
the oscillations of the two-level system [88,89]. On the other
hand, pðkc; tÞ exhibit very interesting behavior when the
biorthogonal DQPTs are no longer periodic. There are many
critical momenta kc, and each kc corresponds to only one tc;n.
Before tc;n ¼ −iznðkcÞ, there are n local maximum in
pðkc; tÞ, while for t ≫ tc;n, pðkc; tÞ tends to a fixed value,
indicating a steady state in contrast to the oscillation behavior.
In summary, we propose a new theoretical framework to

study the biorthogonal DQPTs in non-Hermitian systems
based on the biorthogonal quantum mechanics. We reformu-
late the transition probability between one state jΨð0Þi and its
time-evolved state jΨðtÞi with the concept of the associated
state. Our scheme can handle a general non-Hermitian
Hamiltonian with complex eigenvalues, and the normaliza-
tion factors can be introduced naturally. To demonstrate our
approach, we use the non-Hermitian Su-Schrieffer-Heeger
model as a concrete example.Comparingwith the self-normal
cases, we observe a clear 1=2 change in the biorthogonal
DTOP. Furthermore, our results show that the periodicity of
biorthogonal DQPTs depends on whether the two-level
subsystem at the critical momentum oscillates or reaches a
steady state. Our Letter opens up avenues for exploring the
rich biorthogonal DQPTs in non-Hermitian systems. An
interesting topic for further investigation would be the study
of the mechanism behind the 1=2 change in the biorthogo-
nal DTOP.
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