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A deep understanding of quantum entanglement is vital for advancing quantum technologies. The
strength of entanglement can be quantified by counting the degrees of freedom that are entangled, which
results in a quantity called the Schmidt number. A particular challenge is to identify the strength of
entanglement in quantum states that remain positive under partial transpose (PPT), otherwise recognized as
undistillable states. Finding PPT states with high Schmidt numbers has become a mathematical and
computational challenge. In this Letter, we introduce efficient analytical tools for calculating the Schmidt
number for a class of bipartite states called grid states. Our methods improve the best-known bounds for PPT
states with high Schmidt numbers. Most notably, we construct a Schmidt number 3 PPT state in five-
dimensional systems and a family of states with a Schmidt number of ðdþ 1Þ=2 for odd d-dimensional
systems, representing the best-known scaling of the Schmidt number in a local dimension. Additionally,
these states possess intriguing geometrical properties, which we utilize to construct indecomposable
entanglement witnesses.
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Introduction.—Quantum entanglement is a fundamental
phenomenon of quantum theory on which the success of
the rapidly advancing field of quantum technologies relies.
However, in spite of the development of a complex
mathematical theory of entanglement, with the primary
goal to detect and quantify the entanglement present in a
physical system, many fundamental questions still need to
be answered. So far, no efficiently computable necessary
and sufficient criterion for separability of a composite
quantum state has been discovered. Generally, the problem
is known to be NP-hard [1–3], and it has only been solved
in qubit-qubit and qubit-qutrit cases using the famous
positive partial transpose (PPT) criterion [4,5]. In higher-
dimensional states, however, there is no general method to
investigate entanglement.
At the same time, in recent years, high-dimensional

entanglement has become experimentally feasible [6,7],
demonstrating a better noise resistance in a number of
applications, in comparison with low-dimensional imple-
mentations [8–11]. As a result, determining whether an
experiment successfully established high-dimensional
entanglement or if the experimental results can be explained
by assuming low-dimensional entanglement is critical. A
go-to measure that certifies that a bipartite state has been
entangled across at least r degrees of freedom is called a
“Schmidt number” [12], and is very challenging to estimate
due to its form (see below) for general states. One typical
way to determine this quantity is to construct a hermitian
operator, called a “Schmidt number witness,” a few exam-
ples of which can be found in the literature [13–15].
An additional challenge lies in constructing a Schmidt

number witness for states with PPT (PPT states), since

such Hermitian operators have to satisfy an extra math-
ematical property, known as being “indecomposable” [16].
Moreover, such states are known to be bound entangled,
as no pure state entanglement can be ever distilled from
them [17]. Because of this property, it was originally
believed that PPT states are weakly entangled and cannot
be used for quantum information processing tasks [18].
Yet, contrary to this perception, a family of PPT states with
logarithmically increasing Schmidt numbers in the local
dimension were found [19]. Later, along with discovering
the potentialities of bound entangled states in quantum
steering, nonlocality, and secure communication [20–22],
PPT states with the Schmidt number scaling of d=4 and d=2
were proposed in even-dimensional d × d systems [23,24].
At the same time, upper bounds have been derived on the
amount of entanglement in bound entangled states. For
example, in 3 × 3 no PPT state exists with Schmidt number
3 [25]. In sequences of works, high Schmidt number PPT
states have been extensively investigated [13,23,24,26–28]
and searched for. Despite these developments in the study of
bound entanglement, only few methods, like the acclaimed
Doherty-Parillo-Spedalieri (DPS) hierarchy [29] can be
applied systematically. Such methods typically have a high
computational cost, and do not result in an analytical
solution.
In this Letter, we address precisely this problem, and

for an elegant class of quantum states, so-called “grid
states” [30,31], we develop a set of efficient graphical tools
relying on a generalized range criterion to evaluate their
exact Schmidt number. Here, we provide examples of PPT
states that enjoy the highest known Schmidt number
concentration in given local dimensions. To start with,
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despite the efforts, the best minimal example of a PPT
bound entangled state with Schmidt number 3 was known
to be in local dimensions 6 × 6 [24]. Here, we find a
PPT state with Schmidt number 3 in 5 × 5 systems. We
also improve other previously known bounds and derive
a family of PPT states with Schmidt number scaling
ðdA þ 1Þ=2 in dA × dB dimensional systems, where dA
is odd and dA < dB. We find these states by resorting to
tools similar to entanglement distillation, but in this case,
with the goal to distill a high Schmidt number PPT state
from multiple copies of low Schmidt number ones. We call
this procedure Schmidt number “concentration.” Similar
tasks have been studied for quantum Fisher information
[32] and nonlocality [33]. As a last example, using the
Schmidt number concentration, we find a Schmidt number
3 state in 4 × 12 systems. Our findings leave as an open
problem whether there exist Schmidt number 3 states in
3 × d, and what the smallest local dimension is in 4 × d
systems to accommodate such states.
Finally, our new states are not only highly entangled, but

they all enjoy a striking property of being extremal in a PPT
set, that is, they cannot be decomposed as a convex mixture
of other PPT states. We utilize this property to obtain
indecomposable entanglement witnesses for high Schmidt
number states and numerically obtain such witnesses for all
such states. While our findings are specifically tailored to
grid states, the methods developed in this Letter can be
extended to a broader range of quantum systems. This
paves the way for exploring new signatures of high-
dimensional entanglement and bound entanglement.
Preliminaries.—Given a finite-dimensional bipartite

quantum state ρAB defined over Hilbert space HA ⊗ HB,
and the transposition map T on one of the subsystems, we
say that the state is positive under partial transposition, or is
PPT, if

ρTB
AB ≥ 0; where ρTB

AB ≔ 1A ⊗ TBðρABÞ: ð1Þ
Any state that is negative under the partial transposition map
is entangled and can be detected via a Hermitian operatorW
of the form W ¼ PþQTB , with some P;Q ≥ 0. Such
witnesses are called “decomposable” [34,35], and, clearly,
they cannot detect PPT entanglement. Instead one needs to
construct an indecomposable witness.
An important measure of mixed state entanglement,

which we focus on in this Letter, is called the “Schmidt
number” (SN) of a state ρAB, and is defined as follows [12],

SNðρABÞ ≔ min k;

s:t:
X
i

pijψ iihψ ij ¼ ρAB;

SRðjψ iiÞ ≤ k; pi ≥ 0; ∀ i: ð2Þ

Here, the abbreviation SR means “Schmidt rank” of a pure
state, and corresponds to the number of nonzero Schmidt

coefficients of this state. Several SN witnesses have been
derived in the literature [13–15], but determining the SN
remains a difficult task, in particular for PPT states.
One method to determine the SN is through a gen-

eralized range criterion [13], which we use here. The range
of ρAB is defined as the image of ρAB, RðρABÞ ≔
fρABjψijjψi∈CA ⊗ CBg. Next, we define the Schmidt
rank restricted range RkðρABÞ ≔ fSRðjψiÞ ≤ kjjψi∈
RðρABÞg, and give a generalized range criterion for SN:
all SN k states must have a complete basis in k-restricted
range RkðρABÞ to span RðρABÞ. Then, if there is a vector
jti∈RðρABÞ, which is orthogonal to the k-restricted range,
jti⊥RkðρABÞ, then SNðρABÞ > k.
Grid states and Schmidt number criterion.—Grid states

are mixed quantum states with elegant graphical represen-
tation. We explain their construction generalizing the
original definition in Refs. [30,31]. We first define a
two-dimensional grid in terms of its sites enumerated by
two indices,GAB¼fðvA;vBÞj0≤vA<dA;0≤vB<dBg. To
each site in the grid, we associate a computational basis
state of the bipartite Hilbert space HA ⊗ HB in the
following manner ðvA; vBÞ ↦ jvAvBi∈CdA ⊗ CdB. Once
we have a grid, we can define a grid state over it using a
hypergraphH ¼ ðV; EÞ. Here, E is as a collection of edges,
e, containing a subset of sites of a grid, and V ⊆ GAB is a
set of vertices given by the union of all edges. If an edge e
contains k site, we call it a k edge. To ∀ e∈Ewe associate
the unnormalized superposition

jei ¼
X
v∈ e

jvi ¼
X

ðvA;vBÞ∈ e

jvAvBi ð3Þ

and call it edge representation. An unnormalized grid state
ρH corresponding to a hypergraph H is then defined as the
equal mixture of its edge representations:

ρH ¼
X
e∈E

jeihej: ð4Þ

See Fig. 1 for an example. Since the normalization 1=trðρHÞ
only contributes a global factor, for simplicity, it will be
omitted, unless stated otherwise. Finally, a site v∈GAB is
called “isolated,” if v ∉ V. It corresponds to a product state
in the kernel of ρH, playing an important role later.
We are ready to give a sufficient PPT criterion for grid

states. Given ρH, split its density matrix into the diag-
onal part D and off-diagonal part A. Consider A as an
adjacency matrix defining a new graph GH. The action
of the partial transposition on ρH corresponds to flip-
ping every edge fðv1A; v1BÞ; ðv2A; v2BÞg in the graph GH to
fðv1A; v2BÞ; ðv2A; v1BÞg. The graph formed by these flipped
edges is denoted as GTB

H (See examples of taking a partial
transposition in Figs. 1 and 2). Now, suppose GTB

H is
two-colorable. Then, we show in Supplemental Material
(SM) [36] that ρH is PPT if and only if the degree of every
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vertex ðvA; vBÞ in GTB
H is not higher than the number

hvAvBjDjvAvBi.
Next, we calculate the SN of grid state ρH. Any pure state

in the range of ρH, jψi∈RðρHÞ can be expressed as an
arbitrary linear combination of edge representations,
jψi ¼ P

e∈E cejei. Then according to the generalized
range criterion, SRðjψiÞ ≤ k if and only if the correspond-
ing coefficient matrix Ψ has all of its size (kþ 1) minors
equal to zero [41,42], where fΨgij ≔ hijjψi, and fjiigdA−1i¼0

and fjjigdB−1j¼0 are the computational bases.
As an example, we apply this criterion to the 3 × 3

crosshatch state ρCH in Fig. 1. First, we give an explicit
parametrization of the range of ρCH,

ΨCH ≔

0
B@

c00 c01 c10
c10 0 c20
c20 c00 c01

1
CA∈RðρCHÞ; ð5Þ

and show that there are no product vectors contained in its
range. To that end, we first determine the one-restricted
range R1ðρCHÞ by demanding that all the 2 × 2 minors of
ΨCH vanish. Four conditions of the 2 × 2 vanishing minors
have a particularly simple form,

c01c10 ¼ c01c20 ¼ c00c10 ¼ c00c20 ¼ 0; ð6Þ

admitting two nontrivial solutions, either c10 ¼ c20 ¼ 0 or
c00 ¼ c01 ¼ 0. These cases are equivalent under rela-
beling, and assuming c10 ¼ c20 ¼ 0, we obtain another
set of 2 × 2 minor equations c200 ¼ c201 ¼ 0, implying that
c00 ¼ c01 ¼ 0, and, hence, ΨCH ¼ 03×3. Thus, there is no
nonzero vector in the one-restricted range of ρCH, proving
that the state must have SNðρCHÞ ¼ 2.
The form of the generalized range criterion we used here

relies on having isolated sites of a grid state, as this
construction translates to the powerful vanishing minor
conditions in Eq. (6). In the same way, when testing a
generalized range criterion for k-restricted range, if we
want to keep the conditions simple, we consider states that

result in the ðkþ 1Þ × ðkþ 1Þ minor vanishing conditions
having the following form,

Q
k
i¼0 cei ¼ 0. In this case, one

of the (kþ 1) coefficients shall be zero, leading to possible
solution branches. We represent each branch as a grid state,
with the respective edge ei erased from the hypergraph.
This procedure is repeated on all the branches and their
subbranches, until no more edges can be erased in this
manner. If an edge e∈E, with SRðjeiÞ ¼ ðkþ 1Þ, can be
erased in all solution branches, then jei⊥RkðρHÞ, imply-
ing SNðρHÞ > k.
We now state the first result using the construction given

above and the generalized range criterion.
Result 1: A Schmidt number 3 PPT bound entangled

state exists in the local dimension 5 × 5.
The smallest Schmidt number 3 state was believed to be

in the local dimension 6 × 6 [24]. See Fig. 2 for the
Schmidt number 3 PPT state ρ5;5 we found using our PPT
construction and see the proof in SM [36] applying the
generalized range criterion.
High Schmidt number concentration.—It is well known

that no entanglement can be distilled from the PPT
entangled states. Instead, here we use the tools from
distillation protocols to achieve Schmidt number concen-
tration in bound entanglement. The idea is to use different
low Schmidt number PPT states (relative to the local
dimension), act on them with local filtering operations, and
obtain a single PPT state with high relative Schmidt
number for the resulting local dimension. Clearly, it is
important to tailor the concentration protocol to particular
PPT states to ensure efficiency in calculating SN in the
resulting distilled state. In what follows, we describe the
procedure.
Let ρA1B1

¼ pσ þ ð1 − pÞjtihtj, be a bipartite Schmidt
number k state, 0 < p < 1, and let jαβi be a product state
and jti a pure state fulfilling the following conditions:
jti; jαβi⊥RðσÞ; jti⊥Rk−1ðρÞ; jti=⊥jαβi, then there exists a
PPT preserving map Θ with its action on a bipartite state
ρA1B1

defined as follows:

FIG. 2. Left: the smallest known Schmidt number 3 bound
entangled state in 5 × 5, ρ5;5, with the multiset of edges
E ¼ ffð0; 0Þg, fð0; 1Þg, fð1; 0Þg, fð2; 3Þg, fð2; 3Þg, fð3; 2Þg,
fð3; 2Þg, fð1; 4Þg, fð4; 1Þg, fð2; 1Þ; ð4; 3Þg, fð2; 2Þ; ð3; 3Þg,
fð1; 2Þ; ð3; 4Þg, fð0; 2Þ; ð1; 1Þ; ð2; 0Þgg. Right: the grid state
corresponding to a partial transposition of ρ5;5 has Schmidt
number 2.

FIG. 1. Left: the crosshatch state, ρCH [30], a bound entan-
gled grid state in 3 × 3. The sites in the grid are labeled as
fð0;0Þ; ð0;1Þ; ð0;2Þ; ð1;0Þ; ð1;1Þ; ð1;2Þ; ð2;0Þ; ð2;1Þ; ð2;2Þg. The
crosshatch state has edges E ¼ ffð0; 0Þ; ð2; 1Þg; fð0; 1Þ; ð2; 2Þg,
fð1; 0Þ; ð0; 2Þg; fð2; 0Þ; ð1; 2Þgg. Right: partial transpose of the
crosshatch state, which is also a grid state.
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ΘðρA1B1
Þ ¼ ðA ⊗ BÞρA1B1

⊗ ρCHA2B2
ðA† ⊗ B†Þ; ð7Þ

where A and B are local filtering operators acting on the
corresponding local Hilbert spaces. The resulting state
is a bound entangled state, ρ̃AB, with the same properties
as ρAB but with the Schmidt number increased by 1,
SNðρ̃ABÞ ¼ ðkþ 1Þ, and

ρ̃AB ¼ p̃ σ̃þð1 − p̃Þjt̃iht̃j: ð8Þ

In SM [36], we define operations A, B, and prove that if the
original state ρAB has local dimension dA × dB, and SN k,
the map Θ changes those quantities to

ðdA; dB; kÞ ↦ ðdA þ 2; d0B; kþ 1Þ; ð9Þ

where d0B ¼ dB þ rankððhαjA ⊗ 1BÞρABðjαiA ⊗ 1BÞÞ þ 1.
Since the resulting state shares the same properties as the
starting one, we can repeatedly apply the map ΘnðρA1;B1

Þ,
and study the Schmidt number concentration for increasing
n. The exact values for scaled local dimensions and Schmidt
numbers are derived in SM [36]. If we apply the concen-
tration protocol to the crosshatch state ρCH, we transform n
copies of 3 × 3 crosshatch states each with Schmidt number
2 into a bound entangled grid state ρðnÞ ¼ Θðn−1ÞðρCHA1B1

Þ
with properties ð2nþ 1; ðnþ 1Þðnþ 2Þ=2; nþ 1Þ, giving
our second result.
Result 2: For odd values of d, Schmidt number

ðdþ 1Þ=2 PPT states exist in the local dimension
d × ½ðdþ 1Þðdþ 3Þ=8�.
The Schmidt number scaling present in Result 2

improves on the best-known construction in even-
dimensional systems with the Schmidt number scaling
as d=2 [24]. See SM [36] for the construction and proof of
the protocol, and Fig. 3 for ρðnÞ, n ≤ 3.
Our SN concentration technique is not limited to grid

states only. To show this, we design a SN concentration
protocol for a Horodecki state ρHor in 2 × 4, the lowest
dimensional bound entangled state in inhomogeneous local
dimensions [40], and obtain a Schmidt number 3 bound
entangled state in 4 × 12,

ρ4;12 ¼ ðΠA ⊗ 1BÞρHorA1B1
⊗ ρCHA2B2

ðΠA ⊗ 1BÞ†; ð10Þ

where ΠA ≔ 1A1A2
− j1ih1jA1

⊗ ðj0ih0j þ j2ih2jÞA2
. See

SM [36] for proof techniques and the explicit form of
the states ρHor [40] and ρ4;12.
Extremal PPT states and indecomposable witnesses.—

We call a PPT state ρ “extremal” if it cannot be decomposed
into a convex mixture of a pair of distinct PPT states. This
means that subtracting any PPT state with a Schmidt
number less than SNðρÞ results in a matrix with negative
partial transpose, a property that we use to construct SN
witnesses for such states, specifically making use of the

ranges RðρÞ, RðρTBÞ. It is worth mentioning that all PPT
entangled extremal states belong to the intersection of faces
of the positive semidefinite set and its partial transpose, but
are not extremal states of both intersected sets. Moreover,
such a PPT entangled extremal state is the unique state
supported on the ranges RðρÞ and RðρTBÞ [43]. We can
directly use this result to obtain SN PPT entanglement
witnesses.
Take the projectors P and Q associated to the subspaces

RðρÞ and RðρTBÞ, and add them in the following manner
Wρ ≔ PþQTB . Then trðWρσÞ ≤ 2, for all PPT σ, with
equality holding for σ ¼ ρ only. Then for every PPT
extremal ρ with SNðρÞ ¼ kþ 1, we can find μk such that
μk ≔ maxσk trðWρσkÞ < 2 for PPT σk with the Schmidt
number k. Then Wind;ρ ≔ ðμk1 −WρÞ is a valid witness for
Schmidt number (kþ 1) PPT states on the PPT set. It can
be easily confirmed that Wind;ρ is indeed an indecompos-
able witness as long as μk < 2. More details about this
construction can be found in SM [36].
We can use this technique to construct indecomposable

entanglement witnesses on the PPT set, as all new nor-
malized states ρi depicted in this Letter (in Figs. 1–3, and 5
in SM [36]) are extremal PPT states. For those states, we
determine lower bounds on the corresponding μi1 using
local optimization [44] and upper bounds utilizing the DPS
hierarchy [29]. We report our numerical results and con-
fidence intervals in Table I and further details in SM [36].
Discussion.—Increasing attention has been directed

toward high-dimensional entanglement, primarily due to
its potential advantages in robust quantum information
processing. In this Letter, we explore novel classes of
highly entangled bound entangled states, yielding several

FIG. 3. Examples of ρðnÞ, for n < 4. Observe the nested
structure of the examples, as indicated by the dotted rectangles.
The unique Schmidt rank > 2 component is indicated as shaded
shape, Schmidt rank 2 as lines, and separable as circles. The
innermost rectangle contains the crosshatch state, the next one
contains the first example of a SN 3 state in local dimension
5 × 6, while the whole figure shows SN 4 in 7 × 10.
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technical and conceptual advancements that open a few
natural research directions.
First, on the application side, interestingly nearly all our

PPT Schmidt number k states enjoy the property that they
can be expressed as convex mixture of a SR k maximally
entangled state and its orthonormal SN 2 states. This
particular property renders our states intriguing contenders
as potential counterexamples to the PPT2 conjecture.
The family of states presented in this Letter constitute

extremal points of the PPT set. It is interesting to explore
geometrical undertones for this connection, and use the
states to construct indecomposable witnesses for high
Schmidt number detection. To this end, a separate study
needs to be done to characterize and investigate the rich
structure of PPT grid states.
Next, the graphical language we developed to study the

concentration protocol can be used to work with multiple
copies of mixed states in an efficient manner. This tool
could help compute sub- or superadditive entanglement
properties of quantum states under tensor product operation.
Finally, the concentration protocol could be used to

study multipartite bound entangled states, states which are
PPT for any bipartite grouping of its subsystems but are
genuine multipartite entangled. Only a few examples of
such states exist in literature [37,38,45], and, remarkably, a
tripartite grid state in the original formulation, constitutes
one of the elegant representatives [30]. The grid states and
the graphical concentration protocol can be used to dis-
cover more multipartite bound entangled states and inves-
tigate their entanglement properties in increasing local
dimensions.
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[21] Tamás Vértesi and Nicolas Brunner, Disproving the peres
conjecture by showing bell nonlocality from bound entan-
glement, Nat. Commun. 5, 5297 (2014).

[22] Karol Horodecki, Michał Horodecki, Paweł Horodecki, and
Jonathan Oppenheim, Secure key from bound entangle-
ment, Phys. Rev. Lett. 94, 160502 (2005).

[23] Marcus Huber, Ludovico Lami, Cécilia Lancien, and
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