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We develop a framework for characterizing quantum temporal correlations in a general temporal scenario, in
which an initial quantum state is measured, sent through a quantum channel, and finally measured again. This
framework does not make any assumptions on the system nor on the measurements, namely, it is device
independent. It is versatile enough, however, to allow for the addition of further constraints in a semi-device-
independent setting. Our framework serves as a natural tool for quantum certification in a temporal scenario
when the quantum devices involved are uncharacterized or partially characterized. It can hence also be used for
characterizing quantum temporal correlations when one assumes an additional constraint of no-signalling
in time, there are upper bounds on the involved systems’ dimensions, rank constraints—for which we prove
genuine quantum separations over local hidden variable models—or further linear constraints. We present a
number of applications, including bounding the maximal violation of temporal Bell inequalities, quantifying
temporal steerability, and bounding themaximum successful probability in quantum randomness access codes.
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Bell’s theorem [1] limits correlations that classical local
hidden-variable models exhibit. This feature of quantum
mechanics, referred to as nonlocality [2], is not only the
defining feature that sets apart quantum from classical
mechanics, but is also exploited in technological-minded
applications. Notably, it can be used in new modes of
quantum certification not requiring any (possibly unwar-
ranted) assumptions on the states nor on the measurements.
In such device-independent (DI) quantum certification [2–5],
interestingly, data alone can be seen as being sufficient
to certify properties. Along this line of thought, randomness
certification [6], entanglement verification [7,8] and estima-
tion [9], quantum state certification [10], steerability
witnessing [11,12], and measurement incompatibility cer-
tification [13] have all been obtained through the observed
nonlocal correlations only and no assumption is made on
the shared quantum state nor the measurement involved. The
Navascués-Pironio-Acín hierarchy [9,14–16]—building on
earlier work [17,18]—has been a key tool in these efforts.
The framework of device independence is compelling, in
that one learns about properties of quantum systems without
making assumptions about the devices with which these
properties are being assessed.
That said, the original Bell scenario referring to spatial

correlations is by no means the only setting that certifies
quantum features beyond what local hidden-variable mod-
els can deliver. It has been extended to include temporal
correlations, making reference to non-macro-realistic tem-
poral correlations of single systems between two instances
in time [19,20]. Leggett and Garg [21] showed that, in

quantum theory, there exist non-macro-realistic temporal
correlations. The original Leggett-Garg scenario is as
follows: A quantum state is initially prepared and sent
through a quantum channel. During the dynamics, the same
measurement is performed at some, at least three, points
in time. This has then been generalized to an identical
preparation step, but followed by multiple choices of
measurements at each point of time [22,23]. Such a setting
is dubbed the temporal Bell scenario, since one may view it
as a temporal analogue of the standard Bell scenario.
Unlike the Leggett-Garg scenario, measurement outcomes
between two points of time are sufficient to observe non-
macro-realistic correlations. Like the situation in the Bell
scenario, researchers are searching for a practical way to
characterize quantum temporal correlations. The question
is, given observed statistics in a temporal scheme, do there
exist quantum states and measurements reproducing
such statistics? Steps have been taken to characterize
quantum temporal correlations in the standard Leggett-
Garg scenario [24]. Nevertheless, characterizing quantum
temporal correlations in the temporal Bell scenario remains
an open problem, again with implications for device
independence. Indeed, it is not even known whether such
an approach can be pursued at all. From the practical point
of view, temporal correlations play an essential role
in modern quantum technologies. Famous instances
include unitary evolution in quantum circuits and
Bennett-Brassard [25] type quantum key distribution.
Therefore, studying and characterizing temporal correla-
tions advances the implementation of these cutting-edge
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technologies. Moreover, since many of them involve the
issue of information security, providing a semi-device-
independent framework renders them more practical or
equips them with more stringent security promises.
In this Letter, we develop a framework called instrument

moment matrices (IMMs) to characterize quantum tempo-
ral correlations in a temporal Bell scenario. The IMMs are
matrices of expectation values of the postmeasurement
states, where measurements are described by instruments.
By construction, if the initial state and the measurements
follow quantum theory, the IMMs are positive semidefinite.
As such, quantum temporal correlations can be character-
ized by semidefinite programming [26]. Besides, the
characterization will be more accurate when the size
of the IMMs becomes larger (see Refs. [14,15] for the
original idea behind such a hierarchical characterization
and [9,11–13,27–30] for some variants). Our characteriza-
tion is implemented both in a fully DI and semi-DI fashion
that incorporates partial knowledge about the devices:
We generalize the reading of semi-DI settings of Ref. [31]
and advocate—complementing similarly motivated
steps closer to the setting of fully specified devices of
“semi-device-dependent” characterization [32]—that this
intermediate regime is highly reasonable and important.
By DI we mean that the results are based on the observed
temporal correlations only, but no measurements and
channels have to be specified a priori. In the temporal
scenario, there is no way to rule out the possibility of
sending information from an earlier time; therefore, we
assume there are no side channels in our setting. However,
since the space of temporal correlations is so abundant
that temporal quantum correlations can, in general, be
realized by classical ones [33,34], we have to add addi-
tional constraints to reveal quantum advantages. For this
reason, we further consider (1) the constraint of no
signaling in time, (2) the constraint on the system’s
dimension, and (3) the constraint on the system’s rank.
We show that IMMs allow us to characterize several
quantum resources and tasks in DI and semi-DI scenarios.
These include computing the maximal quantum violation
of temporal Bell inequalities, estimating the degree
of temporal steerability, computing the successful prob-
abilities in scenarios of quantum randomness access
codes, and identifying quantum state preparation. For
including the rank constraint, to the best of our knowl-
edge, this is the first work to enforce additional constraint
apart from the dimensional constraint into a device-
independent scenario [35].
The scenario.—First, we introduce the notion of an

instrument. An instrument fJ A1→A2
a g is a set of completely

positive and trace nonincreasing maps mapping a quantum
state ρA1 to a postmeasurement state J A1→A2

a ðρA1Þ where
a∈A ¼ f0; 1; 2;…g can be treated as the assigned out-
come associated with the state J A1→A2

a ðρA1Þ. The proba-
bility of obtaining the outcome a, denoted by PðaÞ, can be

computed via PðaÞ ¼ tr½J A1→A2
a ðρA1Þ�, therefore, one has

tr
P

a J
A1→A2
a ðρA1Þ ¼ trðρA1Þ due to the normalization.

In our scenario, we can choose different instruments to
measure the state. We use the notation fJ A1→A2

ajx g to denote
the collection of instruments, where x∈X ¼ f0; 1; 2;…g
labels the choice of measurement settings (see Fig. 1). The
postmeasurement state J A1→A2

ajx ðρA1Þ is then submitted into

a quantum channel ΛA2→B1 . Finally, the evolved state is
measured by another measurement. At this stage, we only
care about the outcome, and hence the measurements
can be described by positive operator-valued measures
(POVMs) fEB1

bjyg that are positive semidefinite EB1

bjy ≽ 0

and normalized as
P

b E
B1

bjy ¼ 1, where b∈B and y∈Y
denote the measurement outcome and setting, respectively.
By repeating the above experiment, we observe a set
of probabilities fPða; bjx; yÞ ≔ Pðbja; x; yÞPðajxÞg,
termed temporal correlations, which can be obtained by
the Born rule

Pða; bjx; yÞ ¼ tr
n
EB1

bjy
h
ΛA2→B1

�
J A1→A2

ajx ðρA1Þ
�io

¼ tr
h
EB1

bjyI
A1→B1

ajx ðρA1Þ
i

ð1Þ

where fIA1→B1

ajx ≔ ΛA2→B1∘J A1→A2

ajx ga is a valid instrument

for each x.
The instrument moment matrices and their DI

formulation.—The IMMs are constructed by applying
complete-positive maps E on the postmeasurement
states IA1→B1

ajx ðρA1Þ, i.e., E½IA1→B1

ajx ðρA1Þ� ¼
P

n Kn½IA1→B1

ajx ðρA1Þ�K†
n with Kn ≔

P
i jiiB̄1B1

hnjSi being
the Kraus operators. Here, fjiiB̄1

g and fjjiB1
g are ortho-

normal bases for the output space and input space,
respectively. Following Ref. [9], given a level l we choose
fSig as 1 ∪ Sð1Þ ∪ Sð2Þ ∪ … ∪ SðlÞ, where SðlÞ is com-
posed of the lth order products of the operators in the set

fEB1

bjygy¼1;…;jYj
b¼1;…;jBj−1. The lth-level IMMs can be defined as

χðlÞajx ≔ E½IajxðρA1Þ� ¼
X

i;j

jiihjjtr
h
IajxðρA1ÞS†jSi

i
: ð2Þ

Therefore, the entry of the ith row and jth column of χðlÞajx
can be treated as the “expectation value” of the product of

FIG. 1. The scenario considered in this Letter.
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S†j and Si given the state IA1→B1

ajx ðρA1Þ. In the Supplemental
Material, Appendix C [37], we explicitly provide an
example of IMMs. Note that the IMMs are positive semi-
definite whenever Iajx, ρ, E

B1

bjy are quantum realizable: The

constraints of positive semidefiniteness χðlÞajx ≽ 0 serve as a

natural characterization of the quantum set of temporal
correlations fPða; bjx; yÞg. The characterization is
improved when the level l increases. When the improve-

ment is hard to be observed from a level lc, we say χðlcÞajx
provides a proper approximation of the quantum set of
temporal correlations. We will from now on use the

notation χajx to simply denote χðlÞajx.
When focusing on temporal correlations, quantum sys-

tems do not “outperform” classical systems in that a
classical system with a sufficiently high dimension carries
information allowing observers at later time to obtain. The
simplest scheme is that an observer at earlier time can just
send all the information about the measurement settings
and outcomes to an observer at later time, then the
correlation space will be filled by such a strategy. To let
quantum systems demonstrate their superior performance,
a constraint is to limit their dimension. By doing so,
it has been shown that quantum systems outperform
classical systems with the same dimension [43]. If we
require that the entire system is embedded in dimension at
most d, we have Pða;bjx;yÞ¼ trfEB1

bjy½IA1→B1

ajx ðρA1Þ�g, with
ρA1∈LðHA1

d Þ, IA1→B1

ajx ∶ LðHA1

d Þ → LðHB1

d Þ, and EB1

bjy ∈

DðHB1

d Þ. Following the idea of Ref. [36], the set of
probabilities Pða; bjx; yÞ generated by d-dimensional sys-
tems can be characterized by embedding IMMs into
dimension-restricted IMMs, namely, fχajxga;x ∈Gd

where Gd is the set of IMMs composed of d-dimensional
quantum systems.
The second kind of constraint we would like to impose is

an upper bound on the rank of Bob’s measurements. To this
end, when generating Bob’s d-dimensional POVMs EB1

bjy,

we generate EB1

bjy with rank k only, namely, RkðEB1

bjyÞ ¼ k,

where Rkð·Þ denotes the rank. We denote with Gk
d the set of

IMMs with such a construction, i.e., fχajxga;x ∈Gk
d. In our

method, the rank constraint cannot be considered alone
without the dimensional constraint. The reason is that
when generating the POVM elements EB1

bjy, the dimension

of them is automatically defined. In the same sense, in
the typical dimension-constraint scenario, one implicitly
sets the upper bound on the rank of measurements to be
full rank. The final constraint we would like to consider
is the so-called no signaling in time (NSIT). Such a
constraint states that the observer at earlier time cannot
transmit information by changing the measurement set-
tings, i.e.,

P
a Pða; bjx; yÞ ¼

P
a Pða; bjx0; yÞ, yielding

P
a χajx ¼

P
a χajx0 ∀ x ≠ x0. Since no information is trans-

mitted between two observers at different points of time,
the NSIT constraint in the temporal scenario is in general
the same as the typical (i.e., spatial) Bell scenario.
Now we have four types of constraints used for character-

izing quantum sets of temporal correlations: the device-
independent (DI), DIþ dimensional, DIþ rank, and NSIT
constraints. They are respectively denoted as (1) DI:
χajx ≽ 0; (2) DIþ dim: χajx ≽ 0, fχajxga;x ∈Gd;
(3) DIþ dimþrank: χajx ≽ 0, fχajxga;x ∈Gk

d; (4) NSIT:
χajx ≽ 0,

P
a χajx ¼

P
a χajx0 ∀ x ≠ x0.

Quantum upper bounds on temporal Bell inequalities.—
To demonstrate that the IMMs provide a proper charac-
terization, we first show that the IMMs can be used to
compute an upper bound on the maximal quantum viola-
tion of a temporal Bell inequality. This result is also crucial
from the practical point of view since we have to make
sure that the temporal Bell inequality used for certifying
nonclassicality (i.e., a non-macro-realistic dynamics [19])
provides different bounds for quantum and classical
models. To simplify the problem, we consider the
temporal Clauser-Horne-Shimony-Holt (CHSH) scenario
[22,23,44,45], i.e., the scenario with binary settings and
outcomes. The generalization to arbitrary scenarios can be
straightforwardly obtained. The temporal CHSH inequality
is written as

KCHSH ≔ hA0B0i þ hA0B1i þ hA1B0i − hA1B1i ≤ 2; ð3Þ

where hAxByi ≔ Pða ¼ bjx; yÞ − Pða ≠ bjx; yÞ. The
bound with the value of 2 is obtained from the so-called
macrorealistic model [19,20]. As has been known, the
inequality can be violated since quantum physics does not
admit a macrorealistic model. An quantum upper bound
on the inequality can be computed via semidefinite
programming [26]

maxfKCHSHjχajx ≽ 0; ∀ a; xg: ð4Þ

The solution gives us the value of 4, the maximal algebraic
value. This coincides with one of the results in [46], which
states that any correlation admitting the arrow of time can
always be realized by quantum theory [47]. Even when we
consider the dimensional constraint, i.e., the DIþ dim
constraint with d ¼ 2, the tight quantum upper bound on
KCHSH is still 4. The bound is tight since there exists a
quantum realization to achieve the bound. It is interesting to
note that if we further restrict Bob’s POVMs to be rank 1,
i.e., the DIþ dimþrank constraint with ðd; kÞ ¼ ð2; 1Þ,
the upper bound on KCHSH will be within the numerical
precision with 2

ffiffiffi
2

p
, same with the Tsirelson bound [48]

in the spatial CHSH scenario. Finally, if we consider the
NSIT constraint, the scenario will be the same as that of
the spatial CHSH; that is, two-way communication is
forbidden. The upper bound on KCHSH we obtain is within
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the numerical precision with the Tsirelson bound [48],
2

ffiffiffi
2

p
. The different quantum bounds for the latter two with

the former two schemes provide an important application:
Exceeding the value of 2

ffiffiffi
2

p
sufficiently identifies at least

one of the following three facts: (1) the underlying qubit
measurements are not one rank (i.e., full rank), (2) the
dimension of the system is beyond qubit, and (3) there
exists one-way communication.
Bounding the degree of temporal steerability.—The idea

of temporal steerability was first proposed in Ref. [49]. The
works of Refs. [50–52] have reformulated the classical
model in [49] by introducing the hidden-state model [53].
In our formulation, the hidden-state model is described by
(see also Ref. [54]) IajxðρÞ ¼

P
λ PðλÞPðajx; λÞσλ, where

PðλÞ, Pðajx; λÞ are probabilities and σλ are quantum states.
The equation above tells us that the postmeasurement states
IajxðρÞ are simply a classical postprocessing of the set of
fixed states σλ. In quantum theory, there exist instruments
Iajx such that the postmeasurement states IajxðρÞ do not
admit a hidden-state model. The incompatibility with a
hidden-state model is called temporal steering. Here, we
show that by observing the statistics Pða; bjx; yÞ, we are
still capable of bounding the degree of temporal steer-
ability in DI and semi-DI scenarios. See Appendix D [37]
for the detailed derivation and computational results.
Very recently, it has been shown that temporal steerability
has a physical meaning: it is equivalent to the time a
thermodynamic bath requires to bring the states IajxðρÞ to
the thermal state [55]. Therefore, our method can also be
used for device-independently estimating the thermal-
ization time.
Characterization of quantum randomness access

codes.—In the n → 1 random access code (RAC) scenario,
an observer (Alice) has n bits of information, denoted by
x⃗ ¼ ðx0; x1;…xy;…; xn−1Þ with xi ∈ f0; 1g. She then enc-
odes them into a single bit and sends it to the other observer
(Bob) who is queried for guessing Alice’s yth bit. Their
goal is to maximize Bob’s guessing probability, i.e.,
Pðb ¼ xyjx⃗; yÞ, where b is Bob’s guess (see Fig. 2). We
denote with PC

n→1 the maximum average (over all xy and y)
successful probability by a classical strategy. It has been
shown that PC

2→1 ¼ PC
3→1 ¼ 3=4. In quantum theory,

Alice’s n bits of information are encoded in the way of

quantum state preparation, i.e., for each given x⃗, she sends
the associated quantum state ρx⃗ to Bob. Bob then performs
his yth quantum measurement, described by a POVM
fEbjygb, on the state. The quantum realization of the
guessing probability will be Pðb ¼ xyjx⃗; yÞ ¼ trðEbjyρx⃗Þ.
Denoting PQ

n→1 as the maximum average successful prob-
ability by a quantum strategy, it has been shown that
PQ

2→1 ¼ 1
2
ð1þ 1=

ffiffiffi
2

p Þ ≈ 0.8536 andPQ
3→1¼ 1

2
ð1þ1=

ffiffiffi
3

p Þ≈
0.7887. In Appendix E [37], we show how to use IMMs to
recover these quantum bounds.
Self-testing quantum states in a prepare-and-measure

scenario.—Finally, we show that the IMMs can be used to
verify a set of quantum states in a semi-DI way. More
explicitly, we consider the QRAC scenario in the last
section and uniquely (up to some isometries) identify the
underlying set of states ρx⃗ by the observed probabilities
Pðbjx⃗; yÞ only. Such identification, called self-testing in a
prepare-and-measure scenario, has been proposed in
Refs. [56–58]. We here provide an alternative approach
to achieve the task. A robust self-testing can be defined as
follows [56,59]). Given an upper bound d on the dimension
of the systems involved, we say that the observed corre-
lation P⃗ ≔ fPðbjx⃗; yÞgb;x⃗;y robustly self-tests, in a prepare-
and-measure scenario, the reference set of states ρ⃗ref ≔
fρrefx⃗ gx⃗ at least with a fidelity f if for each set of states

ρ⃗ ≔ fρx⃗ ∈Hdgx⃗ compatible with P⃗ there exists a com-
pletely positive and trace-preserving map Λ, such that
F½ρ⃗ref ;Λðρ⃗Þ� ≥ f. Here, Λðρ⃗Þ represents Λðρx⃗Þ for all x⃗ and
Fðρ⃗; σ⃗Þ is the fidelity between two sets of states ρ⃗ and σ⃗.
To compute F½ρ⃗ref ;Λðρ⃗Þ� in a DI way, we use a method

similar to that of Ref. [60]. The fidelity can then be written
as a polynomial where each monomial is of the form
trðρx⃗S†jSiÞ with Si being Bob’s observables or their prod-
ucts (see Appendix F [37]). Given the observed correlation
P⃗, a DI bound on F½ρ⃗ref ;Λðρ⃗Þ�, denoted as FDI, can be
computed as

minfFDI½ρ⃗ref ;Λðρ⃗Þ�jχx⃗ ≽ 0; χx⃗ ∈Gk
dg: ð5Þ

We consider the example of a 2 → 1 scenario, where the
reference preparation is chosen as a unitary equivalent to
fj0i; j1i; jþi; j−ig, implying d ¼ 2. We assume the meas-
urement to be projective (as most works do), so that k ¼ 1.
The result is presented by the blue solid line in Fig. 3.
The observed correlation P⃗ is represented by the average
successful probability P2→1≔ 1

8

P
x0;x1;yPðb¼xyjx0;x1;yÞ.

Given the maximal quantum value of P2→1 ¼ PQ
2→1, we

perfectly self-test the reference set of states with fidelity
equal to 1. When P2→1 is below around 0.8232, we no
longer have a self-testing statement, since the fidelity is
below the classical fidelity 0.8536 (see Appendix G [37])
We also compare our result with the optimal bounds
proposed by Tavakoli et al. [56].FIG. 2. The n → 1 quantum randomness access codes (QRACs).
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Generalization to multiple-time and many-body scenar-
ios.—Our method can be straightforwardly generalized to
two scenarios. The first is considering multiple measure-
ments acting on a single system at different time. For the
second scenario, if we are interested in the time evolution
of a many-body system, we can go back to our original
setting depicted in Fig. 1 and replace the initial state with
a many-body state. For both generalizations, the math-
ematical constructions of the IMMs are similar to the
standard one (see Appendix H [37] for details). The
difference is that the Hilbert spaces involved are much
larger, yielding large-size IMMs. To reduce the con-
sumption of computational resources, one may introduce
techniques used in some previous works [61]. The
comprehensive investigation is beyond the scope of this
Letter, and we leave the deeper exploration of these issues
as future research.
Summary and discussion.—In this Letter, we have

established a general temporal scenario and develop a
method, dubbed as instrument moment matrices (IMMs),
to characterize quantum temporal correlations generated by
such a scenario. The method of IMMs can be implemented
in a fully DI scenario, but we can also include additional
constraints (such as the dimension and rank of the system)
when this information is accessible. Along the side, we
contribute to advocating to explore the “room in the
middle” between the (precise, but very restrictive) DI
and device-specific scenarios: In contrast to Ref. [32]
which is close to device dependence and is hence dubbed
semidevice dependent, we are here close to the DI regime,
in the semi-device-independent setting. We explicitly
provide several DI and semi-DI examples.
Regarding implementing our protocol experimentally,

there may be some loopholes we have to take care of. For
instance, if the detection efficiency of the detectors is too
low, there exists a classical model which can be used for
reproducing the observed data [2]. Besides, if the tem-
poral scenario is set for testing local realism (i.e., the
Leggett-Garg test), one may meet the clumsiness loop-
hole [19] issue. In that case, one can use other types
of temporal Bell inequalities, such as those proposed
in Ref. [64].
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