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Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal
synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior.
While these were thought to be global brain states, recent research suggests otherwise. Using time-
frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized
model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex
within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process
and indicative of an “edge-of-synchronization” phase transition.
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Mammalian sleep has largely been depicted as consisting
of two basic states: nonrapid eye movement sleep (nREM),
and rapid eye movement (REM) sleep [1]. A characteristic
feature of nREM sleep is a high-amplitude electroencepha-
lography signalwith large low-frequency (delta band) power
[2], and is often referred to as slow-wave sleep. These large,
slow signals are understood to occur due to a roughly one
cycle per second synchronized oscillation of large popula-
tions of neurons [3]. Conversely, REM sleep is associated
with a low-amplitude, higher-frequency (theta band) power
[4,5]. Unlike delta rhythms, theta rhythms are commonly
seen in both sleeping and waking periods [2,5], and in the
cortex originate from neural desynchronization [1,4,6,7].
Both theta and delta rhythms have been observed in

various regions of the brain, suggesting diverse functional
purposes. For example, cortical and hippocampal theta
rhythms have been suggested to play a prominent role in
memory formation [8,9]. Despite this, the spatiotemporal
properties of these rhythms, and by extension that of
neuronal desynchronization and synchronization, are not
well understood, with many fundamental questions unan-
swered. Pertinent here, it was long believed that REM or
nREM constituted global brain states—that is, the brain as
a whole occupies one of these two states, notable excep-
tions aside (e.g., unihemispheric sleep [10,11]). Yet, new
research indicates that this global sleep hypothesis does not
hold for terrestrial mammals such as mice [1,12,13], and
even humans [14–16]. Nonglobal wave patterns of hippo-
campal theta activity has also been observed [5]. Indeed,
there is even evidence of regionally localized slow-wave
sleep during waking periods in both rodents and humans
[12,17]. All this indicates that both REM and nREM sleep
constitute local states, and their associated frequencies
constitute localized, propagating rhythms [18,19].

The challenge of studying spatial-temporal localization
of neural rhythms has largely been a technological one.
Measurement and bandwidth limitations enforce a trade-off
between spatial and temporal resolution. For example,
probes can sample local field potentials (LFP) in the
kilohertz range, but offer limited spatial resolution. Only
recently has the advent of faster computers, and new optical
imaging techniques using fast florescent dyes [20,21],
made these studies feasible. Here, we employ wavelet
transforms of voltage-sensitive dye (VSD) data, obtained
from wide-field imaging of the cortex of urethane-
anesthetized mice, which serves as a model of sleep
[22]. Our analysis of spatiotemporal clusters of frequencies
associated with desynchronization suggests desynchroni-
zation spreads heterogeneously in space and time with no
characteristic scale (i.e., scale-free), reminiscent of a critical
mean-field directed percolation (MFDP) spreading process.
This reframes REM-like dynamics as a scale-free pertur-
bation away from a synchronized state (nREM), providing
strong evidence for neural dynamics operating between a
totally synchronized and desynchronized phase—i.e., an
“edge-of-synchronization” phase transition—opening a
novel perspective on collective neural dynamics in the
form of desynchronization avalanches, and complementing
ongoing research into brain criticality and critical neuronal
avalanches [23,24].
Wide-field imaging of VSD [21] data from a single

cortical hemisphere was analyzed from 10 mice over 37
recordings (C57BL/6J mice RRID: IMSR_JAX:000664, 6
six months old, 4 twelve months old), anesthetized with
isoflurane (1.2%–1.5%) for induction, followed by urethane
for data collection (1.0–1.2 mg=kg, intraperitoneal injec-
tion). For in vivo VSD imaging (RH1691 dye, Optical
Imaging, New York), a CCD camera imaged VSD
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fluorescence in an 8.6 × 8.6 mm field of view, with
128 × 128 pixels in total, and a 1 mm depth of field. See
Supplemental Material section S1 for details on surgical
procedure [25]. Recordings were taken in 15 min epochs at
100 Hz. Hippocampal LFP from the pyramidal layer of
dorsal CA1 was simultaneously recorded (20 kHz) using
Teflon-coated stainless-steel wires (A-M Systems).
Protocols and procedures were approved by University of
Lethbridge’s Animal Welfare Committee and were in
accordance with guidelines set forth by the Canadian
Council for Animal Care. Hand-drawn masks were used
to remove pixels not corresponding to the cortical surface.
The remaining pixels were preprocessed (see Supplemental
Material section S1 [25]) to extract VSD fluorescence
changes, and filtered between 0.5 and 9 Hz.
While anesthesia can differ from natural sleep, urethane

was chosen as it has been reported to include nREM-REM
transitions [22,30]. Sleep states are traditionally classified
using the ratio of theta band (5–9 Hz) power density to delta
band (0.5–2 Hz) power density in LFP data [31]. Yet, there
is a strong correlation between cortical LFP and RH1691
signals such that one can use the latter as we do here [32].
High ratios indicate REM, whereas a low ratio corresponds

to nREM. As such, we refer to the ratio as the REM proxy.
As Fourier transforms cannot capture time-varying
frequencies, wavelet transforms (cwt in MATLAB), which
project onto temporally localized wave packets (here Morse
wavelets), are a more appropriate tool [Fig. 1(a)] [33].
Lastly, results were robust against various definitions of
theta and delta bands (see Supplemental Material section
S2 [25]). Movies showing VSD and REM proxy dynamics
on the cortical surface (among other metrics) are included
in the Supplemental Material.
First, we focus on desynchronization without spatial

information by averaging the VSD signal over all pixels,
then calculating the REM proxy signal. The signal at time t
is classified as desynchronized if the power density in the
theta band is ϕ times greater than the delta band, and is
classified synchronized otherwise. We place no condition
on the duration of either state [34]. For ϕ ¼ 3 we find on
average across all mice 2.2% (0.07%, 6.7% are 5th, 95th
percentiles) of the recording is classified as REM, which is
consistent with other mice studies [35]. This can vary with
age, but no statistically significant differences were found
between the 6 and 12 month old mice [36].
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FIG. 1. (a) Segment of the global VSD signal (blue line) averaged over all pixels, and the corresponding REM proxy (black line).
Example of avalanches at a threshold ϕ (dashed line) are gray shaded. Red curve shows the hippocampal LFP REM proxy.
(b) Avalanche sizes of the global VSD (blue line) and hippocampal LFP (red, dashed line) REM proxies (ϕ ¼ 3 here and remaining
panels). The inset shows avalanche durations. (c) Active sites within the semilocal neighborhood of radius r belong to the same
avalanche as the reference site (Ref). Loc denotes the special case of local adjacency. In both cases the yellow pixel belongs to a separate
avalanche, but may merge in the future. (d) Desynchronization avalanches (delineated by color) obtained using local adjacency.
(e) Partial correlation function of a single recording (solid line) with an exponential fit (dashed line) with correlation length ζ. Vertical
line at r� ¼ 12 represents the first zero crossing used for the semilocal analysis. (f) Avalanche size distributions obtained using semilocal
(blue, thick line) and local adjacency (red, thin line). The slope and the analysis domain are indicated by colored dashed lines. The black
dot-dashed curve corresponds to semilocal analysis of random cyclic permutation surrogates. (g) Same as (f) but for durations.
(h) Density plot of avalanche durations against sizes for the semilocal analysis. Red dots denote the mean duration for that size. The solid
line is γ and the dashed line is obtained using Eq. (1), and extends over the same domain as the blue dashed line in (f). (i) The semilocal
exponents obtained across multiple thresholds, averaged over all animals. Error bars represent one standard deviation across all animals.
Colored bars represent one standard deviation at ϕ ¼ 3.
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Desynchronization avalanches are defined as above-
threshold REM proxy periods. We measure avalanche
duration T and avalanche size S, which is the area under
the REM proxy relative to ϕ [37] [the gray shaded area in
Fig. 1(a)]. As no significant differences were observed in
avalanche statistics between mice (see Supplemental
Material section S2 [25]), avalanches were joined across
all animals for stronger statistics. Probability densities for S
and T, with ϕ ¼ 3, are shown in Fig. 1(b). No appreciable
domain over which scale-free statistics are plausible
could be established (i.e., Kolmogorov-Smirnov test
with p > 0.1 for at least 2 orders of magnitude; see
Supplemental Material section S3 [25]). These results were
consistent for a range of thresholds (ϕ ¼ 1;…; 5), also if
we use the REM proxy averaged over all individual pixels
(not shown). The hippocampal REM proxy is also shown in
Fig. 1(a) (red, shaded), and largely follows the cortical
proxy, suggesting the VSD analysis of REM-like sleep is
meaningful. Moreover, avalanche statistics of the two are
nearly identical; see Fig. 1(b).
Next, we focus on the spatiotemporal properties of

desynchronization. The REM proxy is computed for all
pixels individually, and a global threshold ϕ delineates
desynchronization and synchronization states, as before.
A global threshold is chosen to avoid homogenization of
any underlying spatial structure (see Supplemental Material
section S6A [25]), though avalanche statistics did not
change when using a per-pixel threshold (Supplemental
Material section S2). A spatiotemporal analysis requires a
notion of spatial adjacency to be established. To account for
longer-ranged connections we define a semilocal adjacency
—two above threshold pixels belong to the same avalanche
if they are separated by at most one time step, and within a
given distance r� of one another [Fig. 1(c)]. The avalanche
size is the number of constituent pixels across space and
time, divided by the number of total pixels N [average
5.7ð8Þ × 103 pixels]. A new feature is the coexistence and
potential merging of multiple avalanches [Fig. 1(d)]. If
concurrent avalanches merge, the sizes are added and the
duration is counted from the earliest avalanche [38]. We
estimate r� using the partial correlation function (PCF)
[Fig. 1(e)]. The partial correlation between two pixels
controls for the activity of all others, measuring direct
linear interactions (see Supplemental Material section S4
[25]). We chose the first zero crossing of the PCF at r� ¼
12 as the radius for the semilocal analysis, which was found
to be consistent across all animals, and avalanche statistics
were consistent down to r ¼ 7 (Supplemental Material
section S4 [25]). We also consider local adjacency using the
8 neighboring pixels to establish the role of longer-ranged
connections on avalanche statistics.
Figures 1(f) and 1(g) show avalanche size and duration

distributions obtained using the semilocal and local analy-
sis, and follow the power-law form PðSÞ ∝ S−τ and
PðTÞ ∝ T−α. Semilocal analysis of random cyclic

permutation surrogates does not yield power laws
[Fig. 1(f)], suggesting temporal coherence is an important
factor. Exponents (and uncertainties representing 95% con-
fidence intervals) were obtained using maximum likelihood
estimation (mle in MATLAB), and scale-free statistics
validated via alternate hypothesis testing (as in Ref. [39],
see Supplemental Material section S3 for details [25]). In
the semilocal case, τ ¼ 1.44ð2Þ and α ¼ 2.0ð1Þ, which are
close to the critical MFDP expectations (τ ¼ 1.5, α ¼ 2)
[40]. Conversely, the critical exponents of the local analysis
[τL ¼ 1.73ð4Þ and αL ¼ 3.2ð2Þ] do not appear to match any
well-known universality class. The exponent γ ¼ 0.44ð4Þ,
obtained by fitting to hTiðSÞ ∝ Sγ , is also close to the
MFDP value of 0.5 [Fig. 1(h)]. At criticality the following
scaling relation is expected to hold [41]:

1

γ
¼ α − 1

τ − 1
: ð1Þ

Figure 1(h) confirms this with γðα; τÞ ¼ 0.44ð5Þ.
Avalanches also follow a symmetric universal temporal
profile [42,43] regardless of duration (see Supplemental
Material section S5 [25]). Importantly, estimated exponents
are robust with respect to the threshold ϕ [Fig. 1(i)].
We now focus on the spatial features of desynchroniza-

tion. Figure 2(a) shows (by representative example, all mice
in S6) desynchronization avalanche initiations are detected
heterogeneously across the cortical surface. We also find

FIG. 2. Density maps for a single mouse [colors are log scale,
except (d)]. (a) Average number of times a pixel initiated an
avalanche (ϕ ¼ 3). The somatosensory (S), retrosplenial (RS),
and parietal (PC) cortex are denoted. “None” indicates no events
occurred for that pixel. (b) Number of times a pixel participated in
an avalanche (ϕ ¼ 3), averaged over the total recording time.
(c) Unthresholded REM proxy map averaged over the total
recording time. (d) Cortical REM proxy correlation with the
hippocampal REM proxy.
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that the parietal cortex exhibits the highest rate of avalanch-
ing [Fig. 2(b)], whereas the retrosplenial cortex (RSC)
consistently had less avalanching. We hypothesize that the
abundance of avalanching in the parietal cortex is related to
its structural and functional hub nature, which has been
established in rodents and humans under anesthesia [44–
46]. While the RSC is also understood to be a structural hub
[47], Fig. 2(c) shows this region has a low REM proxy
relative to the rest of the cortex. Despite this, Fig. 2(d)
shows this region has higher correlations with the hippo-
campus, even within the theta band (see Fig. S5 [25]). The
co-occurrence of high correlations and low REM proxy is
possible since correlation analysis by definition standard-
izes signals and is, thus, amplitude independent, whereas
avalanche analysis with a global ϕ is not (see, e.g., Fig. S8
[25]). When using a per-pixel threshold ϕi instead leaving
correlations unaltered, many of the spatial features of the
avalanches can no longer be detected by construction (see
Supplemental Material section S6A [25]).
To establish whether a critical spreading process can

capture the observed desynchronization dynamics given the
connectivity structure within the cortex and its finite extent,
we study a spreading process on a two-dimensional (2D)
lattice—with the same extent as the experimental field of
view—with varying spatial connectivity [38,48]. This is
realized by initiating spreading from a randomly chosen
single pixel i and propagating the activity to sites j with
probability pij ¼ σWij, which in turn propagate the
activity further. The parameter σ tunes the dynamics to
criticality and

Wij ¼ expð−rij=r0Þ: ð2Þ

Here, rij is the (pixel) distance, and r0 > 0 controls the
spreading distance. Once the spreading has ended (see
Supplemental Material section S7 [25]), a new spreading
event or avalanche is initiated from another randomly
selected single pixel. The critical point separating quiescent
and exponentially growing dynamics σc closely follows
random graph expectations σrgðr0Þ ¼ NðPij WijÞ−1 (see
Supplemental Material section S7 [25]) [49]. As r0 goes
from large to small values, we observe a transition from
MFDP to that of directed percolation on a 2D lattice
[Figs. 3(a) and 3(b)] [40]. Figures 3(a) and 3(b) also show
that our semilocal analysis can recover the true underlying
dynamics. A local analysis agrees only for r0 ≪ 1. This is
due to the nonlocality of the dynamics for larger r0, which
allows for propagation farther than neighboring pixels,
“breaking up” avalanches which generates larger effective
exponents, explaining the observations in Figs. 1(f) and 1(g).
More importantly, for r0 ¼ 0.85 we find the correlation

length of the exponential fit, ζ ¼ 3.7ð1Þ [Fig. 3(c)], to
be consistent with the experimental value ζ ¼ 3.5ð3Þ
[Fig. 1(b)]. The MLE estimated semilocal and local
exponents were found to be τ ¼ 1.43ð4Þ, α ¼ 1.73ð9Þ,

τL ¼ 1.91ð2Þ, and αL ¼ 2.8ð2Þ. The slight differences
between model and experiment are likely due to the
simplifying assumptions of our model (e.g., homogeneous
and isotropic spatial kernel, separation of timescales for
avalanche occurrences), which are amplified in a finite
system. Other spatial kernels give qualitatively identical
results (see Supplemental Material section S7 [25]), such as
steeper local exponents and near MFDP semilocal expo-
nents, suggesting a critical spreading process is indeed able
to replicate the main features we observe in the exper-
imental data, including the deviations away from true
MFDP exponents.
Our analyses of cortical desynchronization on global and

localized levels show that incorporating spatial information
reveals desynchronization avalanches exhibiting robust
scale-free behavior. This reframes REM- and nREM-like
dynamics as an absorbing global synchronous state punc-
tuated by localized episodes of desynchronization with no
characteristic size or duration. Thus, desynchronization can
exist within large clusters of synchronization, but might be
obscured without spatial information. The case for locali-
zation of REM episodes is further supported by our
spreading model. Desynchronization or synchronization
localization may also explain observations of slow-wave
sleep during wake periods [17]. Overall, our findings
connect synchronization and directed percolation, one of
the most paradigmatic models of nonequilibrium critical

FIG. 3. (a) Estimated size (left) and duration (right) exponents
at σc against the locality factor r0 in Eq. (2), with uncertainties
from MLE. A transition is observed from mean-field (MF) to 2D
directed percolation statistics (dashed lines). Vertical line denotes
r0 ¼ 0.85, which best agrees with the experiments. (b) Avalanche
size distributions. True avalanche distribution (dashed blue line),
avalanches from the semilocal with r� ¼ 12 (red), and local
analyses (yellow, subscript L) are shown. (c) Partial correlation
function obtained using r0 ¼ 0.85 with the observed correlation
length ζ indicated.

PHYSICAL REVIEW LETTERS 132, 218403 (2024)

218403-4



phenomena, for the first time in a biological system. This
opens up new avenues of theoretical investigations of sleep
(like) states by way of closely related mathematical theories
such as synchronization transitions in spatially extended
systems and Reggeon field theories [50,51], as well as
chimera states, which have been proposed as a mechanism
for neural information processing [52–56].
Because of the similarity of REM dynamics in natural

sleep and urethane anesthesia [22], it is worth considering
what role REM localization could play regarding hippo-
campal-cortical coupling and memory consolidation during
natural sleep [57–61]. A recent study demonstrated
increased interaction between the hippocampus and the
RSC during REM periods inferred from hippocampal LFP
[62]. This aligns with the viewpoint that the RSC is a
structural hub between the hippocampus [30] and important
cortical areas (primary sensory, prefrontal cortices, etc.).
Yet, while we observe high correlations between retro-
splenial and hippocampus REM proxies [Fig. 2(d)],
desynchronization avalanches were rare here, and more
readily occurred in the motor and somatosensory cortex.
These regions overlap with areas activated around hippo-
campal sharp wave ripple complexes [30], and negatively
correlate with the default mode network of the mouse brain
[63], with some deviations in older mice. This suggests
the mechanism generating large theta-to-delta ratios in the
cortex under urethane anesthesia is different from the one
that generates high cortical-hippocampal coupling, moti-
vating future investigations.
Finally, our findings need to be discussed in the context

of the critical brain hypothesis (CBH). The CBH posits a
self-tuned critical point for brain dynamics that promotes
information processing [64], with deviations away from
criticality reflecting the underlying state of the subject, such
as sleep-wake transitions, behavior, or drug-induced
changes [65–72]. This has been motivated at least in part
by scale-free statistics in coordinated clusters of causally
related neuronal firing events dubbed neuronal avalanches
across species and spatial scales [38,73]. Yet, how critical
neuronal avalanches are related to neural oscillations is
an open question, and indeed the two initially seem
contradictory [74–76]. Theoretical models suggest critical
neuronal avalanches require an edge-of-synchronization
phase transition [24]. Our findings provide a comple-
mentary view, where criticality is directly associated with
(de)synchronization. Desynchronization spreads in a scale-
free manner across the otherwise synchronized cortex, indi-
cative of a critical spreading process and markedly different
from neuronal VSD avalanches (see Supplemental Material
section S8 [25]). Whether and how these complementary
views are connected remains a challenge for the future.

This work was supported by the Natural Sciences and
Engineering Research Council of Canada [DG Grants
No. 40352 (M. H. M.) and No. 05221 (J. D.)], Alberta
Innovates-Technology Futures, and the Killam Trusts
(D. C.).

*dcuric@ucalgary.ca
†Present address: Jackson Laboratory, Bar Harbor, Maine
04609, USA.

[1] C. M. Funk, S. Honjoh, A. V. Rodriguez, C. Cirelli, and G.
Tononi, Curr. Biol. 26, 396 (2016).

[2] G. Buzsáki, Rhythms of the Brain (Oxford University Press,
New York, 2006).

[3] D. Levenstein, G. Buzsáki, and J. Rinzel, Nat. Commun. 10,
2478 (2019).

[4] J. Peever and P. M. Fuller, Curr. Biol. 27, R1237 (2017).
[5] E. V. Lubenov and A. G. Siapas, Nature (London) 459, 534

(2009).
[6] R. W. McCarley, Sleep Med. 8, 302 (2007).
[7] A. Nuñez and W. Buño, Front. Cellular Neurosci. 15,

649262 (2021).
[8] K. Diba and G. Buzsáki, Nat. Neurosci. 10, 1241

(2007).
[9] C. D. Schwindel and B. L. McNaughton, Prog. Brain Res.

193, 163 (2011).
[10] G. G. Mascetti, Nat. Sci. Sleep 8, 221 (2016).
[11] N. C. Rattenborg, J. Van der Meij, G. J. Beckers, and J. A.

Lesku, Front. Neurosci. 13, 567 (2019).
[12] M. H. Mohajerani, D. A. McVea, M. Fingas, and T. H.

Murphy, J. Neurosci. 30, 3745 (2010).
[13] M. Nazari, J. K. Abadchi, M. Naghizadeh, E. J. Bermudez-

Contreras, B. L. McNaughton, M. Tatsuno, and M. H.
Mohajerani, Cell Rep. 42, 112450 (2023).

[14] Y. Nir, R. J. Staba, T. Andrillon, V. V. Vyazovskiy, C.
Cirelli, I. Fried, and G. Tononi, Neuron 70, 153 (2011).

[15] G. Bernardi, M. Betta, E. Ricciardi, P. Pietrini, G. Tononi,
and F. Siclari, J. Neurosci. 39, 2686 (2019).

[16] J. J. Langille, J. Neurosci. 39, 5244 (2019).
[17] G. Bernardi, F. Siclari, X. Yu, C. Zennig, M. Bellesi, E.

Ricciardi, C. Cirelli, M. F. Ghilardi, P. Pietrini, and G.
Tononi, J. Neurosci. 35, 4487 (2015).

[18] H. Zhang and J. Jacobs, J. Neurosci. 35, 12477 (2015).
[19] L. Muller, F. Chavane, J. Reynolds, and T. J. Sejnowski,

Nat. Rev. Neurosci. 19, 255 (2018).
[20] J. Lecoq, N. Orlova, and B. F. Grewe, J. Neurosci. 39, 9042

(2019).
[21] A. Grinvald and R. Hildesheim, Nat. Rev. Neurosci. 5, 874

(2004).
[22] E. A. Clement, A. Richard, M. Thwaites, J. Ailon, S. Peters,

and C. T. Dickson, PLoS One 3, e2004 (2008).
[23] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167

(2003).
[24] S. Di Santo, P. Villegas, R. Burioni, and M. A. Muñoz, Proc.

Natl. Acad. Sci. U.S.A. 115, E1356 (2018).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.132.218403, which in-
cludes Refs. [26–29], for additional information about
preprocessing methods.

[26] P. Mitra, Observed Brain Dynamics (Oxford University
Press, New York, 2007).

[27] M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue,
R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers,
and T. H. Murphy, Nat. Neurosci. 16, 1426 (2013).

[28] N. Marshall, N. M. Timme, N. Bennett, M. Ripp, E.
Lautzenhiser, and J. M. Beggs, Front. Physiol. 7, 250
(2016).

PHYSICAL REVIEW LETTERS 132, 218403 (2024)

218403-5

https://doi.org/10.1016/j.cub.2015.11.062
https://doi.org/10.1038/s41467-019-10327-5
https://doi.org/10.1038/s41467-019-10327-5
https://doi.org/10.1016/j.cub.2017.10.026
https://doi.org/10.1038/nature08010
https://doi.org/10.1038/nature08010
https://doi.org/10.1016/j.sleep.2007.03.005
https://doi.org/10.3389/fncel.2021.649262
https://doi.org/10.3389/fncel.2021.649262
https://doi.org/10.1038/nn1961
https://doi.org/10.1038/nn1961
https://doi.org/10.1016/B978-0-444-53839-0.00011-9
https://doi.org/10.1016/B978-0-444-53839-0.00011-9
https://doi.org/10.2147/NSS.S122160
https://doi.org/10.3389/fnins.2019.00567
https://doi.org/10.1523/JNEUROSCI.6437-09.2010
https://doi.org/10.1016/j.celrep.2023.112450
https://doi.org/10.1016/j.neuron.2011.02.043
https://doi.org/10.1523/JNEUROSCI.2298-18.2019
https://doi.org/10.1523/JNEUROSCI.0480-19.2019
https://doi.org/10.1523/JNEUROSCI.4567-14.2015
https://doi.org/10.1523/JNEUROSCI.5102-14.2015
https://doi.org/10.1038/nrn.2018.20
https://doi.org/10.1523/JNEUROSCI.1527-18.2019
https://doi.org/10.1523/JNEUROSCI.1527-18.2019
https://doi.org/10.1038/nrn1536
https://doi.org/10.1038/nrn1536
https://doi.org/10.1371/journal.pone.0002004
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1073/pnas.1712989115
https://doi.org/10.1073/pnas.1712989115
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218403
https://doi.org/10.1038/nn.3499
https://doi.org/10.3389/fphys.2016.00250
https://doi.org/10.3389/fphys.2016.00250


[29] A. T. Sornborger and P. Mitra, Optical Imaging Analysis for
Neural Signal Processing: A Tutorial in: Neural Signal
Processing: Quantitative Analysis of Neural Activity
(Society for Neuroscience, 2008).

[30] J. K. Abadchi, M. Nazari-Ahangarkolaee, S. Gattas, E.
Bermudez-Contreras, A. Luczak, B. L. McNaughton, and
M. H. Mohajerani, eLife 9, e51972 (2020).

[31] A. D. Grosmark, K. Mizuseki, E. Pastalkova, K. Diba, and
G. Buzsáki, Neuron 75, 1001 (2012).

[32] E. Bermudez-Contreras, S. Chekhov, J. Sun, J. Tarnowsky,
B. L. McNaughton, and M. H. Mohajerani, Neurophotonics
5, 025005 (2018).

[33] A. E. Hramov, A. A. Koronovskii, V. A. Makarov, A. N.
Pavlov, and E. Sitnikova, Wavelets in Neuroscience
(Springer, New York, 2015).

[34] H. Koch, P. Jennum, and J. A. Christensen, J. Sleep Res. 28,
e12780 (2019).

[35] B. B. McShane, R. J. Galante, M. Biber, S. T. Jensen, A. J.
Wyner, and A. I. Pack, Sleep 35, 433 (2012).

[36] S. Soltani, S. Chauvette, O. Bukhtiyarova, J.-M. Lina, J.
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