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Biological tissues transform between solid- and liquidlike states in many fundamental physiological
events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these
solid-liquid transformations can happen via intermediate states akin to the intermediate hexatic phases
observed in equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range
(power-law) orientational order but no translational order, thus endowing some structure to an otherwise
structureless fluid. While it has been shown that hexatic order in tissue models can be induced by motility
and thermal fluctuations, the role of cell division and apoptosis (birth and death) has remained poorly
understood, despite its fundamental biological role. Here we study the effect of cell division and apoptosis
on global hexatic order within the framework of the self-propelled Voronoi model of tissue. Although cell
division naively destroys order and active motility facilitates deformations, we show that their combined
action drives a liquid-hexatic-liquid transformation as the motility increases. The hexatic phase is accessed
by the delicate balance of dislocation defect generation from cell division and the active binding of
disclination-antidisclination pairs from motility. We formulate a mean-field model to elucidate this
competition between cell division and motility and the consequent development of hexatic order.
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Organ surfaces are often covered with 2D confluent
monolayers of epithelial or endothelial cells, which provide
functional separation from the surrounding environment.
During development these cells grow, divide, and move,
dynamically reorganizing the entire tissue. Regulated by a
complex set of chemical and mechanical signaling path-
ways [1–4], tissue frequently undergoes a transition from a
structureless fluidlike state to a state capable of supporting
a variety of stresses, most notably elastic stresses [5–11].
Such transformations have recently been analyzed as a
crossover from a liquid to an amorphous solid [12,13]. In
two-dimensional (2D) systems in equilibrium, however,
liquids can develop rigidity via two consecutive transitions,
the first corresponding to the development of orientational
order without translational order and the second adding
translational order to the existing orientational order
[14,15]. The intermediate phase with (quasi-long-range)
orientational order but translational disorder is known as
the hexatic phase and has been shown to occur in a very
wide variety of physical systems [16–29]. The hexatic is a
particular type of structured fluid since it flows like a fluid
but has orientational rigidity.
Previous theoretical and computational models of dense

tissues have studied the emergence of hexatic order, with
focus on the effects of thermal fluctuations [30–32] and
motility [33–36]. Modeling typically studies the inverse
process of disordering by melting from the crystalline state.

Realistic tissues, however, are very rarely crystalline with a
few exceptions [37,38]. Cell division and apoptosis almost
always destroy the crystalline state [39] and yet there has
been no direct observation of the hexatic phase in in vitro
biological tissues, including those undergoing a solid-
liquid transition [5,6,8,40]. Recent studies have observed
pronounced orientational order associated with cell divi-
sion during the development of Drosophila embryos
[41,42]. The underlying mechanism driving the emergence
of such orientational order, however, remains elusive.
Here we analyze whether biological systems can exhibit

this rather subtle phase by studying numerically and
analytically the self-propelled Voronoi (SPV) model [13]
of a tissue, including cell division and death. Our study
demonstrates that the interaction between cell division and
apoptosis and cell motility is key to initiating a hexatic
phase. Without cell division, the model transitions from
crystal to hexatic and then to liquid. Introducing cell
division and motility, we observe complex liquid-hexatic
and hexatic-liquid transitions, resulting in a reentrant phase
diagram. This indicates that, contrary to traditional views,
cell motility, in conjunction with cell division, promotes the
hexatic state. We examine the role the relevant topological
defects (dislocations and disclinations) play in establishing
orientational order and develop a mean-field theory that
accurately describes the emergence of hexatic order from
the interplay of cell division and motility. This theory
closely matches our simulations, with no fitting parameters,
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and sheds light on the key mechanisms that lead to a
hexatic phase.
Model.—We model a 2D cell layer using the SPV [13]

version of the vertex model [40,43–48]. The cell shapes and
the cellular network are determined based on the Voronoi
tessellation [49,50] of the cell centers frig. Here mechani-
cal interactions in the tissue are controlled by the energy
functional E ¼ P

N
i¼1½KAðAi − A0Þ2 þ KPðPi − P0Þ2�. The

first term, quadratic in the cell areas fAig, originates from
the incompressibility of cell volume, giving rise to a 2D
area elasticity constant KA and preferred area A0 [43,51].
The second term, quadratic in the cell perimeters fPig,
arises from the contractility of the cell cortex, with an
elastic constantKP [43]. Here P0 is the target cell perimeter
[12], representing the interfacial tension set by the com-
petition between the cortical tension and the adhesion
between adjacent cells [51]. The target shape index p0 ¼
P0=

ffiffiffiffiffi
A0

p
effectively characterizes the competition between

cell-cell adhesion and cortical tension, acting as a signature
for the solid-liquid phase transition [12,47]. Apart from the
effective mechanical interaction force Fi ¼ −∇iE, cells are
self-propelled. A self-propulsion force is exerted along
the cell polarity direction n̂i ¼ ðcos θi; sin θiÞ, where θi is
the polarity angle. The self-propulsion has a constant
magnitude v0=μ, with μ the inverse of a frictional drag.
The equation of motion for each cell is given by

ṙi ¼ μFi þ v0n̂i: ð1Þ

The polarity angle obeys rotational diffusion:dθi=dt ¼ ηiðtÞ,
where ηiðtÞ is white noise [hηiðtÞηjðt0Þi ¼ 2Drδðt − t0Þδij],
with Dr the rotational diffusion rate.
In addition to self-propulsion, cell division and apoptosis

serve as additional sources of active force in living tissues
[39,52–54]. Here, every cell has an equal division rate γ0.
For each division, a daughter cell is introduced by ran-
domly seeding a point at a distance of d ¼ 0.1 (in units of
the average cell diameter) near the mother cell [55]. In order
to study the density-independent effects of cell division, we
fix the number density of the tissue by implementing
apoptosis at the same rate as division. Apoptosis is then
performed on randomly chosen cells, removing cells from
the tissue. This simulation scheme mimics the maintenance
of homeostatic balance in a tissue [56–58].
The model is nondimensionalized by expressing all

lengths in units of
ffiffiffiffi
A

p
, where Ā is the average cell area,

and time in units of 1=ðμKAĀÞ. Three independent param-
eters remain: the cell division and apoptosis rate γ0, the
magnitude of motility v0, and the cell shape index p0.
Throughout the simulations, we choose Dr ¼ 1, without
loss of generality. Tissue with N cells is simulated in a
square box with size

ffiffiffiffi
N

p
×

ffiffiffiffi
N

p
under periodic boundary

conditions. We numerically simulate the model using the
open-source cellGPU [59]. The simulations start with a
crystalline initial state in which cell centers form a

triangular lattice. Equation (1) is numerically integrated
for 2 × 106 steps at step size Δt ¼ 0.05. Here our analysis
is based on the steady-state regime of the simulations (final
5 × 105 steps). In Supplemental Material Fig. S1 [60], we
show that our results are the same for two distinct initial
conditions (amorphous vs crystalline) as well as two diffe-
rent simulation protocols (heating vs cooling). Finally, we
use p0 ¼ 3.6 in our simulations, except if otherwise stated.
Signature for the emergence of hexatic order.—

Translational and orientational symmetries distinguish
the three phases: crystalline, hexatic, and liquid. A 2D
crystalline phase has quasi-long-range translational order
and long-range orientational order, whereas the liquid
phase has no long-range order of either kind. These two
symmetries are related but not concomitant. The system in
the hexatic phase has no long-range translational order but
exhibits quasi-long-range orientational order [14,15].
Translational order at the cell level is measured by
ψTðrjÞ ¼ exp ðiGr · rjÞ, whereGr represents the reciprocal
vector of the triangular lattice. The orientational order is
measured by ψ6ðrjÞ ¼

�
1=

Pzj
i¼1 lij

�Pzj
i¼1 lij exp ði6θjiÞ

[53,62–64], where the sum runs over the n neighbors of
the cell and is weighted by their shared edge length [65]. θji
is the angle of the neighboring joint vector ðri − rjÞ to a
reference axis. In Fig. 1, we plot the tissue-level
order parameters, capturing only the magnitude, Ψ6 ¼�
�ð1=NÞPN

j¼1 ψ6ðrjÞ
�
� and ΨT ¼ �

�ð1=NÞPN
j¼1 ψTðrjÞ

�
� as

a function of v0. In the absence of cell division (black
lines), the tissue is a crystal at low v0 where both ΨT

FIG. 1. (a) The translational order parameter ΨT and (b) the
orientational order parameter Ψ6 as a function of the cell motility
v0 at various division rates γ0. The error bar represents the
standard deviation over the ensemble of random simulations.
Inset of (a) shows a magnified view of (a). (c) Representative
snapshots and the structure factor SðqÞ for various v0 at γ0 ¼
2 × 10−5 corresponding to liquid, hexatic, and liquid states (from
left to right). Colored cells correspond to disclinations of charge
q ¼ þ1 (blue), −1 (red), and −2 (dark red). The state at v0 ¼
0.35 is in the hexatic phase: it has dislocations, but no isolated
disclinations.
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and Ψ6 are close to 1. The order parameters decrease
monotonically with increasing v0. For 0.35≲ v0 ≲ 0.45,
the tissue lacks translational order but retains orientational
order, suggesting the existence of a hexatic phase before
melting into a liquid phase at higher v0. This result is
consistent with the “crystal-hexatic-liquid” melting sce-
nario in a previous study using a similar model [33].
When cells divide [colored lines in Figs. 1(a) and 1(b)],

ΨT is always close to zero for any value of v0. This clearly
illustrates that activity due to cell cycling (division and
death) always destroys the translational order and therefore
forbids the formation of permanently frozen structures [39].
Remarkably, while an actively dividing tissue lacks trans-
lational order, it retains orientational order for a large range
of v0 values. This suggests the emergence of a hexatic
phase at intermediate v0 values. A transition from liquid to
hexatic to liquid is visualized by the structure factor SðqÞ
for various v0 at a fixed division rate [Fig. 1(c)].
To determine the location of the transitions between

the phases, we next compute the spatial correlation func-
tions, given by gαðrÞ ¼ hψ�

αðrÞψαð0Þi, where α ¼ 6, T
corresponds to orientational and translational order, respec-
tively. The peaks of correlations are fitted by a power-law
decay gαðrÞ ∼ r−ηα (indicating quasi-long-range order) or
an exponential decay gαðrÞ ∼ e−r=ξ6 (indicating short-range
order).
The correlations are drawn and compared with the

reference exponents from the Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory [14,15,66–68]
(ηT ¼ 1=3 at the crystal-hexatic transition and η6 ¼ 1=4 at
the hexatic-liquid transition) in Fig. 2 and Supplemental
Material Fig. S2 [60]. Melting (without cell division)
allows quasi-long-range translational order at low v0,
decaying as a power law with ηT ≤ 1=3. The translational
order with cell division decays faster. Cell division also
promotes the decay of bond-orientational correlations, but
low γ0 still allows for quasi-long-range g6ðrÞwith η6 ≤ 1=4

at intermediate v0 values. A broken translational symmetry
without broken orientational symmetry characterizes the
emergence of a hexatic state. Exponential decay fits the
orientational order better in both low- and high-v0 liquid
phases.
The fitted exponents η6 and ξ6 at fixed division rate γ0 ¼

2 × 10−5 and γ0 ¼ 0 (no division) are shown in Fig. 3 and
in Supplemental Material Fig. S3 [60], respectively. These
results confirm the emergence of two distinct liquid-hexatic
and hexatic-liquid transitions when there is cell division.
The correlations in the hexatic indeed display quasi-long-
range order, well fitted by power-law decays, g6ðrÞ ∼ r−η6 ,
while outside the hexatic region correlations are short range
and well fitted by exponential decays g6ðrÞ ∼ e−r=ξ6 . As the
hexatic phase is approached from either side, ξ6 grows
rapidly, consistent with a diverging correlation length.
Despite excellent agreement with the KTHNY model,

the correlation functions and the associated quantities (ξ6,
η6) near the onset of the hexatic suffer from large sample-
to-sample variations, as shown in Figs. 3(a) and 3(b). We
have confirmed that this is not due to finite-size effects
since, even at large system sizes, the behavior of g6ðrÞ can
range from exponential decay to a power-law decay
(Supplemental Material Fig. S4 [60]). Consequently, (ξ6,
η6) cannot be used to pinpoint the precise location of the
liquid-hexatic and hexatic-liquid transitions. We therefore
take advantage of the large fluctuations that arise near
critical points by using the order parameter susceptibility to
pinpoint the transitions. The susceptibility is given by χα ¼
NðhΨα

2i − hΨαi2Þ, which characterizes the fluctuations in

(a) (c)

(b) (d)

FIG. 2. The (a) translational and (b) orientational correlation
functions at intermediate cell motility v0 ¼ 0.35 and varying γ0
values. The (c) translational and (d) bond-orientational correla-
tion functions at low cell division rate γ0 ¼ 2 × 10−5 and varying
v0 values.

FIG. 3. (a) The orientational correlation length ξ6 and (b) the
power-law decay exponent η6 of the orientational correlation
function are shown as functions of v0 at constant γ0 ¼ 2 × 10−5.
The solid lines represent the mean values derived from the
ensemble of simulations (indicated by circles). (c) The orienta-
tional susceptibility χ6 vs v0 at constant γ0 ¼ 2 × 10−5. (d) A
phase diagram as a function of cell division rate γ0 and motility
v0. Here the color indicates the magnitude of the orientational
order parameter. Black dots mark the peaks of χ6, which
correspond to the hexatic-liquid transition. The blue dashed lines
indicate the liquid-hexatic and hexatic-crystal transition points in
the absence of cell division. The white triangles and solid line
indicate when the rate of cell division balances the rate of cell-cell
rearrangements, or hŻi=8 ¼ γ0, where hŻi is the intrinsic rate of
cell-cell rearrangement attributed solely to motility.
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the translational (χT) and orientational (χ6) order param-
eters. Since χα is essentially an integral of the correlation
function, it is expected to be more robust to finite-size or
finite-time effects [20,31].
In the melting process without cell division

(Supplemental Material Fig. S5 [60]), there is a sharp peak
of χT at v0 ¼ 0.35, indicating a crystal-hexatic transition.
On the other hand, χ6 exhibits a sharp peak at v0 ¼
0.46� 0.01, corresponding to the hexatic-liquid transition.
By analyzing system sizes ranging from N ¼ 2430 to
38880, we show that the divergences of the susceptibilities
are robust to finite-size effects [60].
In contrast, in the presence of cell division (i.e., a

constant γ0 ¼ 2 × 10−5), χ6 exhibits two clear peaks at
v0 ¼ 0.25� 0.01 and at v0 ¼ 0.45� 0.01 [Fig. 3(c)].
Whereas the latter point is a vestige of the hexatic-liquid
transition that occurs in the absence of cell division, the first
transition point arises solely from the interplay of motility
and cell division. Here, a state that would be crystalline in
the absence of cell division becomes hexatic when cells
divide. By analyzing susceptibilities to characterize the
distinct phases, we systematically construct a phase dia-
gram in the v0 − γ0 plane [Fig. 3(d)]. Here, for a fixed cell
division rate, the tissue exhibits a reentrant transition from
liquid to hexatic and back to liquid with increasing v0.
Notably, the transition boundaries—both lower and upper
—converge and eventually vanish for sufficiently high γ0.
We also checked the p0 dependence of the phase diagram in
Supplemental Material Fig. S6 [60] and find qualitatively
the same behavior as in [33], although the precise values of
the transition line appear to be different.
Disclinations and dislocations.—According to the

KTHNY theory [14,15,66–68], the distinct phases crystal-
line, hexatic, and liquid are characterized by the distribu-
tions of the basic topological defects known as disclinations
and dislocations. Whereas the pure crystalline phase is
defect-free—or, equivalently, all defects are tightly bound
in defect-antidefect pairs—the hexatic phase has a non-
vanishing density of free dislocations and the liquid phase
has a nonvanishing density of free disclinations. We can
define a charge qi ¼ 6 − zi [69] associated with disclina-
tions, where zi is the coordination number (number of
neighbors) of the ith cell. Hexagonal cells are thus
“neutral,” pentagonal cells have charge þ1, heptagonal
cells charge −1, and so on. Dislocations, the defects that
disrupt translational order but preserve orientational order,
correspond to tightly bound 5–7 pairs. They are neutral as
disclinations, but possess a net vectorial charge, the
Burgers vector. We approximate the Burgers vector by
the displacement vector separating the five and the con-
nected seven. In general, there will be clusters of connected
defects and one must measure the associated disclination
and dislocation charges of the entire cluster. The density
of disclinations and dislocations are calculated by their
volume fraction averaged over time. Representative

simulation snapshots in Fig. 1(c) and Supplemental
Material Video S1 [60] show the evolution of dislocations
and disclinations at various values of cell motility at a fixed
division rate.
As shown in Fig. 4(a), cell division creates dislocations

at a rate dependent on motility. Division tends to disorder,
favoring a liquid. What about motility? At low motility,
division disordering wins. At high motility, both processes
generate disorder, leading again to a liquid. But for a
significant range of intermediate motilities, we see that the
number density of free disclinations falls to zero, whereas
the free dislocation density is finite. How is this possible?
In this intermediate region we hypothesize that disclina-
tions are able to explore sufficient configuration space to
access local free energy minima at which all disclinations
find their antidisclinations and bind into dislocations, thus
leading to a hexatic. Figure 4(b) further shows the defect-
density dependence on cell division rate at a fixed motility
in the hexatic regime, showing that sufficiently high
division rates lead to a nonzero density of free disclinations,
thus melting the hexatic to a liquid.
Taken together, it becomes evident that cell divisions not

only introduce disclinations, but also that motility plays an
essential role in generating cell-cell rearrangements that
“heal” these defects, hence preserving orientational order.
To analyze this within our simulations, we determine the
intrinsic rate of cell-cell rearrangement attributed solely to
motility by tracking how frequently a cell alters its
neighbors, represented as Ż (see detailed method in
Supplemental Material [60]). It is important to note that
a cell can alter neighbors without undergoing uncaging,
and, within the hexatic phase, it is this “rattling” behavior
that serves as the primary means for stress relaxation, as
opposed to α relaxation [70]. Remarkably, our findings
indicate that when the rate of cell division (γ0) surpasses the
mean rate of neighbor changes (hŻi), there is a proliferation
of disclination defects within the tissue, leading to a liquid
state. Conversely, when the rate driven by γ0 is less than
hŻi, the tissue manifests global hexatic order. Figure 3(d)
illustrates that the demarcation between liquid and hexatic
states aligns precisely with the condition hŻi=8 ¼ γ0
(details given in [60]).

FIG. 4. (a) The volume densities of dislocations and disclina-
tions are plotted as functions of v0 at constant cell division rate
γ0 ¼ 2 × 10−5. (b) The same quantities are plotted at a constant
v0 ¼ 0.35 and varying γ0.

PHYSICAL REVIEW LETTERS 132, 218402 (2024)

218402-4



Mean-field model.—Motivated by the dynamics of
defects, we develop a simple mean-field (MF) model to
better understand the emergence of hexatic order through
cell division (Fig. 5). We simplify the state of a small cell
cluster (∼4 cells) using a mean-field approximation that
allows three states: (a) crystalline solid state (“ordered”),
(b) an isolated single dislocation, and (c) an isolated single
disinclination. Transitions between states arise from fluc-
tuations over the energy barriers Δεi, as illustrated in
Fig. 5(a). Fluctuations arise from both Brownian motility
forces and cell division, leading, in the low temperature
limit, to an equal density distribution of states rather
than only the ordered state [60]. In the steady-state limit
[Fig. 5(b)], the asymmetric boundary of the hexatic region
(determined by the threshold of ρH and ρD) is remarkably
similar to our simulations and the phase diagram shows a
reentrant liquid-hexatic-liquid transition with changing
motility, as in Fig. 3(d). The MF model predicts a unique
behavior for ultralow division rates (γ0=R ≪ 10−10),
where tissues undergo a complex temperature-dependent
transition sequence, following a liquid-hexatic-crystal-
hexatic-liquid path at constant γ0=R [Fig. 5(b)]. As γ0=R
decreases further, the temperature range for the crystalline
phase expands and ultimately converges with the crystal-
line phase present at γ0=R ¼ 0 (see [60] for a detailed
discussion). The behavior at ðγ0 ¼ 0; T ¼ 0Þ exhibits an
interesting path dependence (i.e., taking the limit of
γ0 → 0 while T ¼ 0 vs taking the limit of T → 0 while
γ0 ¼ 0), as shown in Fig. S10 [60]. Remarkably, our phase
diagram closely mirrors that of 2D melting on a random
substrate [71]. In both models, temperature drives phase
transitions, and in our case, cell division plays a role
analogous to substrate disorder, introducing persistent,
random spatial distortions.
Discussion.—The subtle balance required to establish

hexatic order in equilibrium means that it is often confined
to a rather narrow region of the relevant parameter space.

Our findings suggest that cell division provides a new way
of exploring the configuration space of physical systems, as
noted above. In particular, the dynamics of dislocation
defects generated by cell division, both self-propelled and
relaxational, promote fluctuations over barriers separating
the hexatic phase from crystalline or liquid phases. This
phenomenon, which we may call defect-driven structure
development, may well have implications beyond biologi-
cal systems. In terms of the configuration space explored by
the vertex model, cell division and apoptosis correspond to
adding T2 moves (interstitial insertion and deletion) to the
allowed lattice updates—this yields a more efficient explo-
ration of the space of all Voronoi tessellations and thus
better routes to local hexatic minima [72–74]. It is
remarkable that the early work of Swope and Andersen
[75] found the hexatic phase by employing a grand
canonical ensemble in which particles are added and
removed. The mechanism we find here is very different
from that found in colloids [20] and models of active
particles [76], where packing density plays a crucial role.
Our Letter provides a clear framing of the essential

criteria for hexatic order within proliferating tissues. We
claim that hexatic order can be maintained when the rate of
cell-cell rearrangements, induced by motility, surpasses the
rate of cell division and apoptosis. This hypothesis presents
a clear pathway for experimental validation and should be
testable in both developing [53,77] and in vitro tissue
models [10,11].
We have assumed isotropic cell division, but including

oriented divisions could enhance hexatic order. Recent
work [53] demonstrated that oriented divisions induce
fourfold orientational order in vivo via active defect climb,
where defects in the emerging lattice from cell divisions are
corrected by further divisions along a global polarity axis.
The impact of oriented divisions on hexatic order warrants
future investigation.
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