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Objective Eulerian coherent structures (OECSs) and instantaneous Lyapunov exponents (iLEs) govern
short-term material transport in fluid flows as Lagrangian coherent structures and the finite-time Lyapunov
exponent do over longer times. Attracting OECSs and iLEs reveal short-time attractors and are computable
from the Eulerian rate-of-strain tensor. Here, we devise for the first time an optimal control strategy to
create short-time attractors in compressible, viscosity-dominated active nematic flows. By modulating the
active stress intensity, our framework achieves a target profile of the minimum eigenvalue of the rate-of-
strain tensor, controlling the location and shape of short-time attractors. We show that our optimal control
strategy effectively achieves desired short-time attractors while rejecting disturbances. Combining optimal
control and coherent structures, our work offers a new perspective to steer material transport in
compressible active nematics, with applications to morphogenesis and synthetic active matter.
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Large-scale coherent dynamics where global collective
behaviors arise from local interactions, individual anisot-
ropies, and activity are ubiquitous. Bird flocks, bacterial
swarms or ensembles of cells exhibit macroscopic patterns
whose length scale is orders of magnitude larger than the
individual size [1–6]. The macroscopic dynamics of these
systems of active individuals—or active matter—exhibit
nonstandard physical properties such as self-organization,
symmetry breaking, and nonreciprocity [2,7–10]. There are
several descriptions of active matter [11], including agent-
based models, coarse-grained continuum models, and
data-driven models [12]. Besides studying the emergent
properties of active matter, it is natural to ask how to control
such systems.
The main possibilities rely on distributed or boundary

control techniques [13]. Experimentally, Ross et al. [14]
generated desired persistent fluid flows by regulating light
patterns on a mixture of optogenetically modified motor
proteins and microtubule filaments. Also controlling light,
Lemma et al. [15] achieved spatiotemporal patterning of
extensile active stresses in microtubule-based active fluids.
By controlling an external electric field affecting cellular
signaling networks, Cohen et al. [16] steered the collective
motion of MDCK-II epithelial cells. From a theoretical
perspective, Shankar et al. [17] propose a new framework
to steer topological defects—the localized singularities in
the orientation of the active building blocks [2]—by
controlling activity stress patterns. Norton et al. [18]
devised an optimal control problem (OCP) to achieve a
target nematic director field by controlling either an
applied vorticity field or the active stress magnitude in

incompressible active nematics. Alternative control strate-
gies use surface anchoring at the boundaries and substrate
drag to rectify the coherent flow of an active polar fluid in a
2D channel [19].
Existing theoretical methods target a desired configura-

tion of the nematic director field, topological defects, or
fluid velocities. While defects’ dynamics drive large-scale
chaotic flow [20–22], they may not be enough to predict
spatiotemporal material transport. For instance, Serra et al.
[23] show in experimental and numerical active nematics
that the director field alone cannot predict if different
domain regions will mix over a desired time interval or
remain separated by a transport barrier, as well as predict
where transport barriers are. In fact, even the knowledge of
the velocity field and typical streamline or vorticity plots
are suboptimal to studying material transport in unsteady
flows, as shown in experimental and simulated velocities
[24–26] and Fig. 1.
A natural framework to quantify material transport is the

concept of coherent structures (CSs), see, e.g., [24,25,38],
which serve as the robust frame-invariant skeletons shaping
complex trajectory patterns. CSs such as attractors, their
domain of attraction, and repellers are widespread in embry-
onic development across species [39–41] and active nematics
[23]. Here, we devise for the first time an optimal control
strategy to create short-time attractors in compressible,
viscosity-dominated active nematic flows [40,42]. While
most theory literature on active matter control assumes
incompressible flows, in gastrulation and morphogenesis,
flows are highly compressible, accounting for the internali-
zation of cells to start organogenesis.
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Material transport.—Long-term material transport is a
Lagrangian phenomenon, originally studied by tracking the
redistribution of individual trajectories. In that setting, the
finite time Lyapunov exponent (FTLE) and Lagrangian
coherent structures (LCSs) successfully predicted material
transport [23,24,38,39,43,44]. An alternative to Lagrangian
approaches is to find their instantaneous limits purely from
Eulerian observations, avoiding the pitfalls of trajectory
integration. Additionally, LCSs are impractical to control—
no literature exists—because they are defined as nonlinear
functions of fluid trajectories, which are integrals of the
Eulerian velocity v.
Short-time attractors—originally defined as attracting

objective Eulerian coherent structures (OECSs) [25]—
govern material transport in fluid flows over short times,
revealing critical information in challenging problems such
as search and rescue operations at sea [26] and oil-spill
containment [45]. A simpler, more controllable alternative
to attracting OECSs for locating short-time attractors is the
instantaneous Lyapunov exponent (iLE) [46], defined as
the instantaneous limit of the well-known FTLE. The iLE
locates short-time attractors as trenches—or negative
regions—of the smallest eigenvalue s1 of the rate-of-strain
tensor of the fluid velocity. For example, Fig. 1 shows
short-term attractors marked by trenches of s1 (scalar field)
in an experimental velocity field (black vectors) describing
the motion of thousands of cells during chick gastrulation
[27]. A strong trench of s1 marks a short-term attractor
along the anterior-posterior (AP) axis corresponding to the
forming primitive streak [39] [panel (c)], while remaining
not identifiable from the inspection of the corresponding
velocity field [panel (b) and inset]. Similar results hold in
different flows (e.g., Fig. 1 of [25] and Figs. 4 and 5
of [26]).
This example shows that inspection and control of the

velocity field v is suboptimal to create material traps in

general unsteady flows. First, because the velocity field and
its streamlines are not objective, i.e., they depend on the
choice of reference frame used to describe motion (see also
SM, Sec. 6 and Figs. S1–S2 [28]). By contrast, the location
of material accumulation is frame invariant [24,25].
Second, it might be an unnecessarily strong requirement,
or uncompliant with boundary conditions, to prescribe
vðx; tÞ directly.
Active fluid model.—We adopt a simplified version of the

mechanochemical model developed in [40] consisting of an
active stokes flow characterized by the viscous stress σv ¼
−pIþ 2μSd and active stress σa ¼ mðB − I=2Þ, where Sd
is the deviatoric rate-of-strain tensor, B ¼ e ⊗ e character-
izes the orientation of active elements e ¼ ½cosðϕÞ sinðϕÞ�⊤,
m denotes the intensity of active stress, and I the identity
tensor. To account for flow compressibility, we use a simple
continuity equation ∇ · v ¼ cð−2p − p0mÞ where positive
isotropic viscous stress (p > 0), and isotropic contractile-
type (m > 0) active stress contribute to negative flow
divergence via the bulk viscosity 1=c and a nondimensional
parameterp0. Biologically,p0 modulates the cell propensity
to ingress into the third dimension given active isotropic
apical contraction. The resulting system of PDEs in non-
dimensional form [40] is

2p1Δvþ∇½∇ · v� þ gðm;ϕÞ ¼ 0;

g ¼ p1½2ðB∇mþm∇ ·BÞ þ ðp0 − 1Þ∇m� ¼ ∇ · ðAmÞ;

ϕt ¼ −ðv ·∇Þϕþω

2
þ
�
uy þ vx

2
cos2ϕþ vy − ux

2
sin 2ϕ

�
;

mt ¼ −ðv ·∇Þmþ p2ð1−me−
p3
2
mÞ þ p4Δm; ð1Þ

where p1 ¼ μc is a second nondimensional parameter
characterizing the ratio of the shear to bulk viscosity,
gðm;ϕÞ is the active force, and A¼2p1Bþp1ðp0−1ÞI.
The last two equations—not used here—model the dynamics

FIG. 1. Short-time attractors in an experimental multicellular flow. (a) Fluorescence image of the chicken embryo’s epiblast,
containing ≈60 000 cells during gastrulation. AP denotes the anterior-posterior axis. Velocities are reconstructed from light sheet
microscopy [27]. The scale bar is 500 μm, and t ¼ 0 corresponds to the beginning of gastrulation. (b) Velocity field vðx; 520Þ (black
vectors). (c) Instantaneous Lyapunov exponent field s1ðx; 520Þ (color map), consisting of the smallest eigenvalue of the rate-of-strain
tensor of v. Negative values of s1ðx; 520Þ mark short-time attractors. To visualize the effect of short-term attractors, green dots in panel
(c) mark the current t ¼ 520 position F520

475ðx0Þ ¼ x0 þ
R
520
475 vðFτ

475; τÞdτ of short-time trajectories of vðx; tÞ, starting at t ¼ 475 from a
uniform spatial configuration. Within this short time (45 min =12 h ≈ 6% of gastrulation time), trajectories accumulate on the
s1ðx; 520Þ trench. The inset shows both vðx; 520Þ and s1ðx; 520Þ, highlighting how attractors remain hidden to v but are correctly
captured by s1. See Supplemental Material, Fig. S2 for the same analysis at a different time [28].
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of the active stress intensity and orientation coupled to the
tissue velocity in chick gastrulation [40,42].
Abstracting morphogenesis as a control problem, one can

ask how embryos control their active stress to bring the right
cells to specific spatiotemporal coordinates. This is precisely
the case shown in Fig. 1, where mesendoderm precursor
cells converge to the attractors, marking the primitive streak
[40]. As a first step, we consider a simplified dynamicwhere
the orientation of active elements ϕðxÞ is prescribed and
time independent, and use the active stress intensitymðx; tÞ
as the control input. A time-independentϕ is a simplification
that could be experimentally enforced by steadymorphogen
concentration inducing planar cell polarity or by imposing
directional tension at the boundary [47]. How one might
control m experimentally is system dependent. In micro-
tubule-based active fluids, m can be controlled with light
patterns [15]. By contrast, in the context of gastrulation—the
most pertinent for our approach, given the viscous, com-
pressible active nematic model [Eq. (1)]—we were able to
indirectly control m in vivo in chick embryos by adding
FGF2 (fibroblast growth factor 2) (see, e.g., Fig. 4 of [42],
and SM S8 [28]). In Drosophila, m can be modulated
by optogenetic activation or inhibition of Rho signaling
[48–51].
Results.—To control short-time attractors, the OCP

involves steering the minimum eigenvalue of the rate of
strain tensor toward a target function while minimizing the
overall control effort and its gradient:

min
m;v

Js ¼
1

2

Z
Ω
ðs1 − zÞ2dΩþ β

2

Z
Ω
ðm2 þ k∇mk2ÞdΩ;

such that
−2p1Δv −∇½∇ · v� ¼ gðmÞ þ d in Ω
v ¼ 0 on ∂Ω;

ð2Þ

where zðxÞ represents a scalar target for the minimum
eigenvalue s1ðxÞ of the rate-of-strain tensor S, dðx; tÞ is an
imposed known force (or disturbance), and Ω, ∂Ω denote
the domain and its boundary, where we impose v ¼ 0. In

morphogenesis, d could arise from external forces imposed
on, rather than controlled by, the embryo. The optimal pair
ðv; mÞ for the OCP (2) should satisfy the following system
of first-order necessary conditions

−2p1Δv−∇½∇ ·v� ¼gðmÞþd inΩ;

v¼ 0 on ∂Ω;

−2p1Δλ−∇½∇ ·λ� ¼−∇ ·
�ðs1− zÞξ1 ⊗ ξ1

�
inΩ;

λ¼ 0 on ∂Ω;

−βΔmþβm−∇λ∶A¼ 0 inΩ; ð3Þ
where ξ1 is the eigenvector field associated with s1 (see
SM, Secs. 2–4 for details [28]; SM includes Refs. [29–34],
with additional information about the analysis and numeri-
cal solver of our OCP). Practically, at any t, given an
imposed force distribution dðx; tÞ, boundary conditions
and desired short-time attractor zðxÞ, (3) generates the
optimal mðx; tÞ to achieve z. See SM, Sec. 8 for an
algorithmic summary of (3) and a concrete application
to avian-embryos morphogenesis [28]. Equation (3)
requires an iterative method due to the complex nonlinear
relationship between v and the forcing term of the adjoint
equation involving s1 and ξ1. We solve (3) using a finite
element method and a gradient-based algorithm (SM,
Sec. 5 [28]) on a circular domain, and note that our
algorithm applies to arbitrary domains.
We set the target shape z as a scaled indicator function of

a rectangle so that the target value is −10 inside the
rectangle and zero elsewhere. We set the cable orientation
to a constant value ϕ ¼ ðπ=4Þ from the x axis and choose
the control weighting parameter β ¼ 10−6 and the non-
dimensional model parameters p0 ¼ 10, p1 ¼ 0.5. p1

modulates the overall fluid compressibility while high
p0 induces high negative divergence in regions with higher
m [40]. We select the space-time varying disturbance force
as dðx; tÞ ¼ de−ðrðtÞ=σÞ2f−½y − ycðtÞ�; x − xcðtÞg, where
xcðtÞ ¼ ½−0.5þ t; 0.5�, rðtÞ ¼ kx − xcðtÞk, and set the
intensity d ¼ 50, and standard deviation σ ¼ 0.2.

FIG. 2. Optimal solution of the OCP generating short-time attractors. The target minimum eigenvalue zðxÞ is the indicator function of
a rectangle at the center of the domain. The optimal eigenvalue field s⋆1 ðxÞ is shown by the color map. (a),(b) correspond to different
initialization times ti and show the effect of short-time attractors by initializing a uniform set of fluid tracers (yellow dots) at each ti and
displaying their later positions integrating vðx; tÞ over short times, as in Figs. 1(c).
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Figure 2 shows the resulting optimal s1 along with a grid of
particles advected over short times for two different
initialization times. Figure 3 shows the optimal state-
control pair and its associated disturbance d. The control
m acts through gðmÞ ¼ ∇ · ðAmÞ, and therefore both m
and ∇m contribute to the state dynamics. Overall, the
disturbance strongly influences the optimal velocity.
Figure 4 shows the interplay between the control weight

β, the disturbance d, and the accuracy of the tracking
objective. To present an additional test case, we select a

different disturbance compared to Figs. 2 and 3, generating
two vortex-shaped force-field streamlines (Fig. 4, first
column) using the same functional form in the previous
test case. The target eigenvalue z is the same as in Figs. 2
and 3. The uncontrolled dynamics (m ¼ 0) does not
generate attraction (Fig. 4, second column), while weak
and strong control (third-fourth columns) steer s1 toward the
target, generating amaterial trapwhile rejectingd. In SM,S7
[28], we provide an extensive sensitivity analysis and show
that our control scheme can generate any attractor geometry

FIG. 3. Optimal control state pair ðm⋆; v⋆Þ and moving imposed (or disturbance) d associated to the OCP described in Fig. 2. d and v⋆

are vector fields (arrows) with their magnitude also displayed in the color map. The v⋆ vectors are normalized to ease visualization. Each
row (a),(b) corresponds to different initialization times ti as Fig. 2. The velocity dynamics v are strongly affected by the presence of the
disturbance.

FIG. 4. Controlled and uncontrolled dynamics for two spatiotemporal disturbances dðx; tiÞ (first column). Columns 2–4
show s1ðxÞ for no control, weak (β ¼ 0.1), and strong (β ¼ 10−6) control along with fluid tracers advected for a short time
starting from a uniform initial grid at ti. Here, dðx; tÞ ¼ d½xc1ðtÞ� − d½xc2ðtÞ�, where xc1ðtÞ ¼ 0.5½cosð0.5πtþ πÞ; cosð0.5πtþ πÞ�,
xc2ðtÞ ¼ 0.5½cosð0.5πtÞ; cosð0.5πtÞ�, and d½xciðtÞ� ¼ f−½y − yciðtÞ�; ½x − xciðtÞ�g500 expf−½ðx − xciðtÞ�2 þ ½y − yciðtÞ2�g=0.22.
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and is robust to changes in control andmodel parameters, the
orientation of active elements ϕ, and the disturbance d. In
SM, S8, we illustrate our approach in the context of avian
gastrulation control, where d represents a traction force
imposed on the embryo by extraembryonic cells, and the
embryo develops a ring-shaped, short-time attractor by
modulating its active myosin distributionm, consistent with
in vivo experiments in the chick embryo [40,42] (see
Supplemental Material [28], which includes Refs. [35–
37], for additional information on chick gastrulation).
Conclusion.—We have proposed an optimal control

problem that generates, for the first time, material short-
time attractors at desired locations in compressible, highly
viscous active nematics using the active stress intensity as
the control input. Short-time attractors predict the correct
location of material attraction, which may be undetected
from the inspection of frame-dependent velocity fields
(Fig. 1, [25,26]). Additionally, several configurations of
the frame-dependent v can generate the same frame-
invariant attractor configurations (see, e.g., Figs. S3–S5
[28]). Similarly, one can control material repellers, which,
together with attractors, shape complex motion in synthetic
active matter [23] and living embryos [39,41]. Our results
demonstrate how to achieve these aims in principal. As
experimental techniques to manipulate m increase in their
precision and availability in more systems, this theoretical
technique may enable the creation of material traps for
medical applications as well as enhance our ability to
control morphogenetic flows. For example, it will shed
light on how myosin activity (active stress intensity)
generates the required motion that compartmentalizes the
embryo, segregating distinct cell types (repellers) and
steering specific cells to precise locations (attractors). In
future work, we plan to consider the explicit orientational
dynamics of the active stress anisotropy, the effect of
inertial forces, and the control of Lagrangian coherent
structures that shape fluid motion over longer times.

We acknowledge Manli Chuai, Guillermo Serrano
Nájera, and Kees Weijer for the experimental data in
Fig. 1 and SM S8, and Alex Plum for his comments on
the manuscript. M. S. acknowledges financial support from
the Hellman Foundation.

*mserra@ucsd.edu
[1] J. Toner and Y. Tu, Long-range order in a two-dimensional

dynamical XY model: How birds fly together, Phys. Rev.
Lett. 75, 4326 (1995).

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy,
T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha,
Hydrodynamics of soft active matter, Rev. Mod. Phys.
85, 1143 (2013).

[3] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto,
Asters, vortices, and rotating spirals in active gels of polar
filaments, Phys. Rev. Lett. 92, 078101 (2004).

[4] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E.
Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A.
Procaccini et al., Interaction ruling animal collective be-
havior depends on topological rather than metric distance:
Evidence from a field study, Proc. Natl. Acad. Sci. U.S.A.
105, 1232 (2008).

[5] A. Bricard, J. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Emergence of macroscopic directed motion in
populations of motile colloids, Nature (London) 503, 95
(2013).

[6] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein,
and J. O. Kessler, Self-concentration and large-scale coher-
ence in bacterial dynamics, Phys. Rev. Lett. 93, 098103
(2004).

[7] S. Ramaswamy, Active matter, J. Stat. Mech. (2017)
054002.

[8] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Non-
reciprocal phase transitions, Nature (London) 592, 363
(2021).

[9] M. J. Bowick, N. Fakhri, M. C. Marchetti, and S.
Ramaswamy, Symmetry, thermodynamics, and topology
in active matter, Phys. Rev. X 12, 010501 (2022).

[10] S. Shankar, A. Souslov, M. J. Bowick, M. C. Marchetti, and
V. Vitelli, Topological active matter, Nat. Rev. Phys. 4, 380
(2022).

[11] M. R. Shaebani, A. Wysocki, R. G. Winkler, G. Gompper,
and H. Rieger, Computational models for active matter,
Nat. Rev. Phys. 2, 181 (2020).

[12] C. Joshi, S. Ray, L. M. Lemma, M. Varghese, G. Sharp, Z.
Dogic, A. Baskaran, and M. F. Hagan, Data-driven dis-
covery of active nematic hydrodynamics, Phys. Rev. Lett.
129, 258001 (2022).

[13] A. Manzoni, S. Salsa, and A. Quarteroni,Optimal Control of
Partial Differential Equations, Analysis, Analysis, Approxi-
mation and Applications (Springer, New York, 2021).

[14] T. D. Ross, H. J. Lee, Z. Qu, R. A. Banks, R. Phillips, and
M. Thomson, Controlling organization and forces in active
matter through optically defined boundaries, Nature
(London) 572, 224 (2019).

[15] L. M. Lemma, M. Varghese, T. D. Ross, M. Thomson, A.
Baskaran, and Z. Dogic, Spatio-temporal patterning of
extensile active stresses in microtubule-based active fluids,
PNAS Nexus 2, pgad130 (2023).

[16] D. J. Cohen, W. James Nelson, and M.M. Maharbiz,
Galvanotactic control of collective cell migration in
epithelial monolayers, Nat. Mater. 13, 409 (2014).

[17] S. Shankar, L. V. Scharrer, M. J. Bowick, and M. C.
Marchetti, Spatiotemporal control of active topological
defects, arXiv:2212.00666.

[18] M.M. Norton, P. Grover, M. F. Hagan, and S. Fraden,
Optimal control of active nematics, Phys. Rev. Lett. 125,
178005 (2020).

[19] P. Gulati, S. Shankar, and M. C. Marchetti, Boundaries
control active channel flows, Front. Phys. 10, 948415
(2022).

[20] L. Giomi, Geometry and topology of turbulence in active
nematics, Phys. Rev. X 5, 031003 (2015).

[21] S. Shankar and M. C. Marchetti, Hydrodynamics of active
defects: From order to chaos to defect ordering, Phys. Rev.
X 9, 041047 (2019).

PHYSICAL REVIEW LETTERS 132, 218302 (2024)

218302-5

https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevLett.92.078101
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1103/PhysRevX.12.010501
https://doi.org/10.1038/s42254-022-00445-3
https://doi.org/10.1038/s42254-022-00445-3
https://doi.org/10.1038/s42254-020-0152-1
https://doi.org/10.1103/PhysRevLett.129.258001
https://doi.org/10.1103/PhysRevLett.129.258001
https://doi.org/10.1038/s41586-019-1447-1
https://doi.org/10.1038/s41586-019-1447-1
https://doi.org/10.1093/pnasnexus/pgad130
https://doi.org/10.1038/nmat3891
https://arXiv.org/abs/2212.00666
https://doi.org/10.1103/PhysRevLett.125.178005
https://doi.org/10.1103/PhysRevLett.125.178005
https://doi.org/10.3389/fphy.2022.948415
https://doi.org/10.3389/fphy.2022.948415
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevX.9.041047
https://doi.org/10.1103/PhysRevX.9.041047


[22] A. J. Tan, E. Roberts, S. A. Smith, U. A. Olvera, J. Arteaga,
S. Fortini, K. A. Mitchell, and L. S. Hirst, Topological chaos
in active nematics, Nat. Phys. 15, 1033 (2019).

[23] M. Serra, L. Lemma, L. Giomi, Z. Dogic, and L.
Mahadevan, Defect-mediated dynamics of coherent struc-
tures in active nematics, Nat. Phys. 19, 1355 (2023).

[24] G. Haller, Lagrangian coherent structures, Annu. Rev. Fluid
Mech. 47, 137 (2015).

[25] M. Serra and G. Haller, Objective eulerian coherent struc-
tures, Chaos 26, 053110 (2016).

[26] M. Serra, P. Sathe, I. Rypina, A. Kirincich, S. D. Ross, P.
Lermusiaux, A. Allen, T. Peacock, and G. Haller, Search
and rescue at sea aided by hidden flow structures, Nat.
Commun. 11, 1 (2020).

[27] E. Rozbicki, M. Chuai, A. Karjalainen, F. Song, H. Sang,
R. Martin, H. Knölker, M. MacDonald, and C. Weijer,
Myosin-II-mediated cell shape changes and cell intercala-
tion contribute to primitive streak formation, Nat. Cell Biol.
17, 397 (2015).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.218302, which in-
cludes Refs. [29–34], for additional information about the
analysis and numerical solver of our OCP, and which also
includes Refs. [35–37], for additional information on chick
gastrulation.

[29] S. Salsa, Partial Differential Equations in Action: From
Modelling to Theory (Springer, New York, 2016), Vol. 99.

[30] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, England, 2012).

[31] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller,
T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier,
P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D.
Wells, and J. Zhang, The deal.II library, version 9.3,
J. Numer. Math. 29, 171 (2021).

[32] S. G. Johnson, The NLopt Nonlinear-Optimization Package
(2011), http://ab-initio.mit.edu/nlopt.

[33] M. Gurtin, An Introduction to Continuum Mechanics
(Academic Press, New York, 1982), Vol. 158.

[34] B. Chachuat, Nonlinear and dynamic optimization: From
theory to practice, Technical Report, 2007.

[35] D. New, The adhesive properties and expansion of the chick
blastoderm, Development 7, 146 (1959).

[36] H. C. Lee, Y. Fadaili, and C. D. Stern, Molecular character-
istics of the edge cells responsible for expansion of the chick
embryo on the vitelline membrane, Open Biol. 12, 220147
(2022).

[37] J. Downie, The mechanism of chick blastoderm expansion,
Development 35, 559 (1976).

[38] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland,
and G. Haller, A critical comparison of Lagrangian
methods for coherent structure detection, Chaos 27,
053104 (2017).

[39] M. Serra, S. Streichan, M. Chuai, C. J. Weijer, and L.
Mahadevan, Dynamic morphoskeletons in development,
Proc. Natl. Acad. Sci. U.S.A. 117, 11444 (2020).

[40] M. Serra, G. Serrano Nájera, M. Chuai, A. M. Plum, S.
Santhosh, V. Spandan, C. J. Weijer, and L. Mahadevan, A
mechanochemical model recapitulates distinct vertebrate
gastrulation modes, Sci. Adv. 9, eadh8152 (2023).

[41] M. Lange, A. Granados, S. VijayKumar, J. Bragantini, S.
Ancheta, S. Santhosh, M. Borja, H. Kobayashi, E.
McGeever, A. C. Solak et al., Zebrahub-multimodal zebra-
fish developmental atlas reveals the state transition dy-
namics of late vertebrate pluripotent axial progenitors,
bioRxiv (2023).

[42] M. Chuai, G. Serrano Nájera, M. Serra, L. Mahadevan, and
C. J. Weijer, Reconstruction of distinct vertebrate gastrula-
tion modes via modulation of key cell behaviors in the chick
embryo, Sci. Adv. 9, eabn5429 (2023).

[43] S. Shadden, F. Lekien, and J. E. Marsden, Definition and
properties of Lagrangian coherent structures from finite-
time Lyapunov exponents in two-dimensional aperiodic
flows, Physica (Amsterdam) 212D, 271 (2005).

[44] M. Serra, P. Sathe, F. Beron-Vera, and G. Haller,
Uncovering the edge of the polar vortex, J. Atmos. Sci.
74, 3871 (2017).

[45] R. Duran, T. Nordam, M. Serra, and C. H. Barker,
Horizontal transport in oil-spill modeling, inMarine Hydro-
carbon Spill Assessments (Elsevier, New York, 2021),
pp. 59–96.

[46] P. J. Nolan, M. Serra, and S. D. Ross, Finite-time Lyapunov
exponents in the instantaneous limit and material transport,
Nonlinear Dyn. 100, 3825 (2020).

[47] D. Kunz, A. Wang, C. U. Chan, R. H. Pritchard, W.Wang, F.
Gallo, C. R. Bradshaw, E. Terenzani, K. H. Müller, Y. Y. S.
Huang et al., Downregulation of extraembryonic tension
controls body axis formation in avian embryos, Nat.
Commun. 14, 3266 (2023).

[48] G. Guglielmi, J. D. Barry, W. Huber, and S. De Renzis, An
optogenetic method to modulate cell contractility during
tissue morphogenesis, Dev. Cell 35, 646 (2015).

[49] E. Izquierdo, T. Quinkler, and S. De Renzis, Guided
morphogenesis through optogenetic activation of Rho
signalling during early drosophila embryogenesis, Nat.
Commun. 9, 2366 (2018).

[50] H. J. Gustafson, N. Claussen, S. De Renzis, and
S. J. Streichan, Patterned mechanical feedback establishes
a global myosin gradient, Nat. Commun. 13, 7050
(2022).

[51] H. Guo, M. Swan, and B. He, Optogenetic inhibition of
actomyosin reveals mechanical bistability of the mesoderm
epithelium during drosophila mesoderm invagination, eLife
11, e69082 (2022).

PHYSICAL REVIEW LETTERS 132, 218302 (2024)

218302-6

https://doi.org/10.1038/s41567-019-0600-y
https://doi.org/10.1038/s41567-023-02062-y
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1063/1.4951720
https://doi.org/10.1038/s41467-019-13993-7
https://doi.org/10.1038/s41467-019-13993-7
https://doi.org/10.1038/ncb3138
https://doi.org/10.1038/ncb3138
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.218302
https://doi.org/10.1515/jnma-2021-0081
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1242/dev.7.2.146
https://doi.org/10.1098/rsob.220147
https://doi.org/10.1098/rsob.220147
https://doi.org/10.1242/dev.35.3.559
https://doi.org/10.1063/1.4982720
https://doi.org/10.1063/1.4982720
https://doi.org/10.1073/pnas.1908803117
https://doi.org/10.1126/sciadv.adh8152
https://doi.org/10.1126/sciadv.abn5429
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1007/s11071-020-05713-4
https://doi.org/10.1038/s41467-023-38988-3
https://doi.org/10.1038/s41467-023-38988-3
https://doi.org/10.1016/j.devcel.2015.10.020
https://doi.org/10.1038/s41467-018-04754-z
https://doi.org/10.1038/s41467-018-04754-z
https://doi.org/10.1038/s41467-022-34518-9
https://doi.org/10.1038/s41467-022-34518-9
https://doi.org/10.7554/eLife.69082
https://doi.org/10.7554/eLife.69082

