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Unifying Atoms and Colloids near the Glass Transition through Bond-Order Topology
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In this combined experimental and simulation study, we utilize bond-order topology to quantitatively
match particle volume fraction in mechanically uniformly compressed colloidal suspensions with
temperature in atomistic simulations. The obtained mapping temperature is above the dynamical glass
transition temperature, indicating that the colloidal systems examined are structurally most like simulated
undercooled liquids. Furthermore, the structural mapping procedure offers a unifying framework for

quantifying relaxation in arrested colloidal systems.
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Colloidal systems have been successfully used as a
convenient microscopic model for atomistic systems [1],
as demonstrated by studies on both crystalline [2] and
glassy systems [3,4]. Compared to their atomic counter-
parts, micrometer-sized systems offer the advantage of
direct real-space visualization through microscopy imag-
ing. However, despite the large body of work based on the
paradigm of “colloids-as-big-atoms” for equilibrium phase
transitions [5,6], the equivalence has not been established
as clearly for more challenging conditions, such as far-
from-equilibrium or time-dependent dynamics. In this
respect, the long-time dynamics close to the glass transition
provides an interesting test case, that has been studied both
theoretically, with the mode coupling theory (MCT) [7],
and experimentally [8,9], and continues to be employed
[10-13]. Still, quantitative mapping of colloidal systems
onto atomistic ones remains limited due to the ambiguity in
determining the glass transition volume fraction [14].

The glass transition, both in colloidal suspensions and
atomistic glass formers, is characterized by large increases
in relaxation time [15] and viscosity [16] as the system
dynamically arrests [17,18]. Interestingly, the microscopic
dynamics are fundamentally different, i.e., Brownian versus
Newtonian, as well as the dissipative mechanisms, since the
interaction of colloids with the suspending medium damp-
ens thermal fluctuations. Nevertheless, a nominally similar
structural relaxation emerges [19,20], due to the timescale
separation of slow local density fluctuations and the fast
microscopic dynamics [21-24]. Because of crowding,
caging mechanisms appear through cooperative rearrang-
ing of particles with their nearest neighbors [24]. Hence, a
variety of short-range ordered arrangements originate that
minimize the local potential energy, the so-called “locally
favored structures” (LFS) [25]. The development of LFS
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when approaching the glass transition is however limited
by the geometric constraints posed by an Euclidean space
[26]. In three dimensions, full tiling with maximally
symmetric polyhedra (icosahedra) is not achievable and
other defected topological structures emerge, such as the
Frank-Kasper motifs [27,28]. The situation is quite differ-
ent in two dimensions, where minimally frustrated triangles
can be tiled in a space filling way [29], leading to
fundamental differences between 2D and 3D glasses [30].

The geometric frustration, which occurs in three dimen-
sions, originates from a competition between locally and
globally favourable energetic configurations and ultimately
prevents crystallization. Fragments of topologically close-
packed Frank-Kasper (FK) phases have been observed in
simulations both in undercooled liquids [31] and in soft-
particle systems [32]. A comprehensive topological frame-
work of the glass transition based on the homotopy of the
icosahedral point-symmetry group was developed by
Nelson [33,34], allowing for the enumeration of structural
motifs based on the algebra associated to the SU(2) group,
and has recently been successfully applied to describe
simulated model atomistic systems [35]. Compared to other
LES descriptions, such a framework provides an intrinsic
link between local, midrange, and global ordering [36].
This topological description is also able to reconcile the
kinetic and the structural views of the glass transition.
Recent work has shown that relaxation processes in binary
model glasses are intimately related to the evolution of such
structural motifs, where even the localized stringlike
structural excitation seen in both glasses and undercooled
liquids [37] can be rationalized in terms of a re-arrangement
of the disclination network describing the defected topo-
logical structure [38,39].

© 2024 American Physical Society
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In the present work, we exploit this structural perspective
to establish a mapping between binary colloidal mixtures,
compressed with an electric field (a system controlled by
volume fraction), to atomistic simulations of an under-
cooled liquid undergoing temperature quenching. The
agreement in the populations of structural motifs is excel-
lent, suggesting their independence on the details of the
interaction potential. In particular, our findings reveal that
the “arrested” experimental systems align with simulated
temperatures exceeding the glass transition point. Slower
compressions correspond to lower simulated mapping
temperatures. In essence, our Letter provides a clear and
unambiguous method to quantify relaxation in colloidal
systems.

Experiments and simulations.—Experiments are carried
out using a binary colloidal particle suspension whose
concentration is controlled through dielectrophoretic forces
generated by an electric field gradient (“dielectrophoretic
bottle” [40]). A sketch of the experimental setup (Supple-
mental Material, Figs. 1 and 2) and additional details can be
found in the Supplemental Material, Secs. A-D [41]. We
use binary mixtures of sterically stabilized polymethyl
methacrylate (PMMA) colloidal particles with diameters
of 3.0 and 3.6 pm and a 5% polydispersity, giving a ratio
a = 0.84 +0.02, and a dielectric constant ep =~ 2.6 [52].
The small and large particles are covalently labeled with the
fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazol (NBD) and
nile blue oxazone (nile red), respectively, and sterically
stabilized with poly(12-hydroxystearic acid) [53]. An addi-
tional radii ratio a = 0.7 £ 0.06 is achieved with particle
diameters 2.1 and 3 pm with a polydispersity of 4% and
5%, respectively, where the large particles are dyed with
rhodamine isothiocyanate (RITC). The particles are dis-
persed in equal weight parts in a mixture of cyclohexyl
bromide (72.8 wt%) and cis-decalin (27.2 wt%), saturated
with tetrabutylammonium bromide (TBAB) (¢p = 5.6), to
guarantee near-refractive index and density matching
[54,55]. The final suspensions are equilibrated in the stock
vial for 8 days, followed by another 3 days in the electric
bottle sample cell, before turning the electric field on
(frequency f = 1 MHz). Different compression protocols
are achieved by varying the intensity of the electric field
(Eqms = 0.2, 0.25, or 0.3 V/pm). Hence, we gradually
increase the particle concentration by compression at
constant stress, which entails a variable rate, starting
from typically ~20 wt%. The structural evolution is
resolved using confocal microscopy (Supplemental
Material Fig. 3 [41]).

The experiments on the colloidal system are compared to
molecular dynamics simulations of a model binary atom-
istic system described by pairwise potentials, optimally
parametrized for the experimental systems. As the physics
of bond frustration is mostly determined by the near-range
inter-particle repulsion [57], we employ a modified version
of the Wahnstrom Lennard-Jones (LJ) potential [58] whose

bonding energy depends explicitly only on particle size.
Instantaneous configurations of both the undercooled liquid
and the amorphous solid regime are obtained through a
linear temperature quench from a well-equilibrated high
temperature liquid at fixed zero pressure. Three different
quench rates, spanning up to 3 orders of magnitude, are
used: T, = T,/10", with n =1, 2, 3. Details of the LJ
parametrization and the simulations are given in Supple-
mental Material Sec. E [41].

The local structural motifs, classified into local bonding
classes enumerated by Nelson [34], are identified in both
experimental and simulated systems using a modified
Voronoi tessellation [39,59], by labeling the local environ-
ments via the triples (N4, N5, Ng). Here N, is the number
of bonds of bond-order n. Two nearest-neighbor particles
are identified as having a bond of order n if they have n
common neighbors. Thus (0,12,0) represents the defect-
free icosahedron, the minimally frustrated structure asso-
ciated with both a low local energy and volume [60,61].
Further details on the analysis are provided in Supple-
mental Material Secs. H-I [41].

Local structural motifs and mapping temperature for
athermal experiments.—The local structural motifs in the
experimental configurations achieved by compression of
the colloidal systems are compared here to those in the
simulated atomistic system, undergoing thermal quench-
ing. In simulations, the glass transition regime manifests
itself by a change in slope in the energy and volume per
particle with respect to decreasing temperature (Supple-
mental Material Fig. 5 [41]), where the intersection of the
low and high temperature linear extrapolations gives a well-
founded estimate of the glass transition temperature 7',
(Supplemental Material Fig. 7 [41]). At temperatures just
above T, all curves for different T, progressively deviate
from each other, indicating kinetic arrest and the transition
to a structural glass. The slowest quench (n = 3) produces
the lowest glassy cohesive energy and volume per particle,
and hence the most relaxed structure. Correspondingly,
the icosahedral or Frank-Kasper (IFK) fraction content
increases with decreasing temperatures, as the system
enters the glass transition regime (Supplemental Material
Fig. 4 [41]). The slow quench rates (i.e., more relaxed
glasses) have an increased IFK fraction. This agrees with
earlier works showing that well-relaxed glassy structures
consist of a kinetically arrested system-spanning network
of small particle icosahedral motifs [62—-64] penetrated by
sixfold defect bonds associated with large particle Frank-
Kasper structures [27], with the remaining regions con-
sisting of fourfold, fivefold, and sixfold bonds [38]. On the
other hand, in a deeply undercooled liquid regime, before
the glass transition, the structure generally consists of
nonpercolating icosahedral motives. Because of their topo-
logical origin, such low-energy structural motifs are rather
insensitive to local distortions. Hence, they offer a plat-
form to map the experimental colloidal systems onto the
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FIG. 1. Comparison of the local structural motifs populations

normalized by the total particle number, for a colloidal experi-
ment and atomistic simulations of a thermally quenched LJ
system at the effective temperatures 7';;, for different quench rates
T, =Ty/10", with n = 1, 2, 3. The system has a = 0.7 and it is
experimentally compressed with E. i = 0.25 V/pm up to a
volume fraction @ ~ 0.52. The inset depicts schematics of most
frequently occurring bonding topologies, with green and red lines
indicating bonds of order 4 and 6, respectively, and a planar view
of experiments (left) and simulations at 7’5 (right).

simulated atomistic ones, revealing how relaxed the col-
loidal systems really are.

To map an instantaneous configuration of the colloidal
system onto the thermal atomistic one, for each quench rate
T, we determine an effective temperature T, based on the
optimal quantitative matching of the experimental and
simulated (N4, N5, Ng) populations, as defined by their
minimum root-mean-square (rms) residual (Supplemental
Material Fig. 6 [41]). The corresponding populations of
local bonding motifs found in experiments and simulations
at T, are displayed in Fig. 1 and Supplemental Material
Fig. 12 [41] for two different samples, revealing a remark-
able agreement. The combination of the well-founded
estimate of 7', from simulations with the mapping of the
colloidal system on the atomistic one provides an internally
consistent way of unifying colloidal and atomistic systems,
although they are quenched in different ways.

Effect of compression protocol and composition.—We
repeat the mapping procedure for consecutive configura-
tions achieved during an experimental compression, to
obtain a time-resolved mapping while approaching the
glass transition for a system at a given composition
xs =V,/(Vy+V,), where V and V, are the total volumes
of small and large particles, respectively. In the electric
bottle experiment, suspensions undergo compression under
a constant stress, possibly slightly reduced upon crowding.
The inset in Fig. 2 displays the effective temperature as a
function of the experimental volume fraction @ for two
continuous compression experiments, where time is an
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FIG. 2. Normalized effective temperature of compressed col-
loidal systems versus composition. The systems are compressed
with E,,, = 0.2 (yellow), 0.25 (black), and 0.3 V/pm (blue) for
5 day (solid symbols) or 52 h (open symbols). The inset depicts
the evolution of the effective temperature versus volume fraction,
during a compression, for systems with y, = 0.8 (dashed line)
and y, = 0.85 (solid line). The two data points (blue and black)
correspond to two different realizations at y, = 0.75, for which
we provide the detailed simulated dynamics (Supplemental
Material Figs. 14 and 15 [41]). The error bars indicate the
precision of the reported quantities, as derived from the temper-
ature sampling in simulations and the typical experimental error
for the considered particle polydispersity [56].

implicit variable. Over longer times, the curves level off
and reach a plateau. This is attributed to a slowing down in
structural rearrangements. Upon compression or upon
quenching, an increasing number of low-energy structural
motifs emerge (Supplemental Material Fig. 11 [41]),
leading to increasing energy barriers for further structural
evolution and prolonged relaxation times [60]. Our athe-
rmal experimental systems can only explore such motifs
when the barrier energies are small enough to be overcome
by stress-driven structural instabilities during constant
stress compression in the experiments. Once these low-
energy structural transitions become exhausted, the evolu-
tion becomes exceedingly slow, seemingly arrested within
the experimental time frame. However, the mapping
method enables verification of whether the system has
effectively entered a glassy state. The volume fraction at
which the plateau is reached in the experiments is approx-
imately @, ~ 0.5 for y, = 0.8 and ®,, ~ 0.6 for y, = 0.85,
with initial volume fraction of 0.25 and 0.3, respectively.
Notably, even a minor composition variation of 6% results
in a more than 15% variation in ®,,. This variation exceeds
typical experimental uncertainties in volume fraction
measurement, which are around 3% [56]. Therefore, we
conclude that, for a given compression protocol, @, also
depends on the initial volume fraction, in line with previous
findings [65], while the mapping temperature of the
final slowed-down state primarily depends on the
composition y.
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In Fig. 2, we display the normalized effective temper-
ature T3/T, in the long-time plateau as a function of
composition y,. The corresponding volume fractions are
reported in Supplemental Material Fig. 8 [41]. These results
were achieved by compressing for 5 days with field
intensities E,, = 0.2 V/pm  (yellow) and E,, =
0.3 V/pm (blue). Normalizing 77 with respect to T, offers
a quantifiable measure of proximity to the glass transition
and, consequently, the relaxation of the colloidal system.
As expected, the weaker hence slower compression
(yellow) leads to lower effective temperatures T3/7,
indicating a closer proximity to the glass transition. The
mapping temperature 7, weakly depends on the simulated
quench rate, where faster quench rates correspond to lower
T, values (Supplemental Material Figs. 6 and 9 [41]). Such
a weak dependence reflects the close-to meta-equilibrium
state of the simulated undercooled liquid. By employing the
mapping protocol, we can also incorporate results where
the compression is halted after 52 h (represented by open
circles) into an effective measure of the distance to the glass
transition. Remarkably, all mapping temperatures are well
above the corresponding glass transition temperature 7'y,
and thus in the meta-equilibrium of the simulated under-
cooled liquid. This observation is also confirmed by the fact
that the corresponding simulated systems have not yet
developed a caging plateau in the intermediate scattering
function ISF [66] (Supplemental Material Fig. 14 [41]), nor
a divergence in the dynamic viscosity # (Supplemental
Material Fig. 15 [41]). Details of the calculation of the ISF
and # are provided in Supplemental Material Sec. G [41].
For both compression protocols, the mapping temperature
increases with the fraction of small particles y,. At
increasing fractions of small particles several factors might
hinder the overcoming of energy barriers: a larger contact
area, entailing higher dissipation in over-damped dynam-
ics, higher volume filling of the small particles i.e. higher
crowding, and a differing heterogeneity. To additionally
assess the role of particle sizes, we consider a system with
particle diameters 2.1 and 3 pm, namely a ratio a = 0.7,
compressed with E,, =0.25 V/um (black cross).
Compared to the system with a = 0.84, the mapping
temperature in the arrested state is lower, indicating a
greater degree of relaxation. We attribute this observation to
the increased heterogeneity of the system with a = 0.7.
Higher degrees of heterogeneity are indeed associated to
more unstable energy states, with more fluctuating energy
landscapes favoring relaxation [67]. This is in line with
previous numerical findings that localized stress-driven
structural transitions (shear transformation zones [68]) can
mediate plasticity in quasistatic loading protocols due to
local volume and therefore stress heterogeneity. Hence
heterogeneity can play the role of an effective temperature
in an athermal amorphous solid [69].

Midrange icosahedral ordering.—The robustness of
the icosahedral motif has long been appreciated at the
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FIG. 3. Square root of the angular power spectrum / = 6 versus

radial distance, for all particles (black) and for icosahedral-
centered particles (red), in experiments (solid lines) and simu-
lations (dashed lines), for the system of Fig. 1.

nearest-neighbors level and used to investigate the LFS
structures of undercooled liquids [70-76]. Icosahedral
symmetry has, however, also been used to evaluate midrange
ordering. A recent probe exploits the spherical harmonic
transform of a four-point spatial correlation function, where
the /=6 harmonic coefficient is found to dominate,
indicating a non-negligible icosahedral point-like symmetry
of liquid medium-range order [77,78]. Figure 3 and
Supplemental Material Fig. 13 [41] display a similar
analysis for two experiments and the corresponding simu-
lations. The details of the analysis are described in
Supplemental Material Sec. I [41]. In particular, we plot
S,(Lr)=[@1+ 1) pr(r)?]'/? for 1=6 as
a function of the radial distance r, with p(r,0,¢) =
S S p(r)Y™(0, @) the particle density around a
particle averaged over all such particles, decomposed with
respect to the spherical harmonics Y7" (6, ¢), where 0, ¢ are
the angular coordinates. We find a close agreement between
the colloidal and model LJ system at the mapping temper-
ature. If the particle at the origin has the icosahedral motif,
the S,(6,r) increases by an order of magnitude, demon-
strating the relevance of nonicosahedral motifs, but also the
Frank-Kasper motifs which accommodate its defected
packing. Such a structural indicator has been directly related
to dynamic heterogeneities [78]. Therefore, the agreement in
midrange ordering does not only confirm the validity of our
mapping approach, but also suggests a direct link between
the proposed local motif analysis and some dynamical
aspects of the glass transition. It is important to underline
that, while inertial and stochastic dynamics can give similar
results in this temperature regime [22,23,79], the over-
damped Brownian dynamics of our experimental system
will give an entirely different timescale for arrest. Therefore,
our structural mapping does not directly translate into a
dynamic mapping of colloidal and atomistic systems. Still, it
allows us to establish a meaningful baseline to study
deviations from hard-sphere Brownian dynamics “at equal
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structure,” which can be calculated as described in
Supplemental Material Sec. G [41]. In colloidal systems
such deviations are expected due to the presence of brush
layer lubrication [80], hydrodynamics [81], hydrodynamics
within the brush [82], softness [83] and noncentral or contact
forces [84].

Conclusions.—A colloidal glass former, arrested by
mechanically increasing the volume fraction and brought
close to the glass transition, has been compared to a
thermally quenched atomistic simulated LJ system. The
striking similarity in the bonding topology distributions of
local structural motifs provides a robust method for
establishing a quantitative equivalence between particle
volume fraction and temperature, eliminating experimental
ambiguities. Specifically, this method demonstrates that our
arrested colloidal systems exhibit structural similarities to
deeply undercooled liquids, even at high volume fractions
0.58 < ® < 0.64, where ® = (.58 is typically considered
the glass transition limit for near-hard colloids [21] and
® = 0.64 the maximum random packing fraction [85]. The
consistency of our approach is evident in the excellent
agreement between mapped thermal and athermal systems,
particularly regarding midrange ordering, assessed by
deviations from icosahedral point-group symmetry.
These deviations, stemming from the connectivity of local
structural motifs [29], are closely linked to dynamical
heterogeneities [78]. Overall, we provide a way to un-
ambiguously determine how close to the glass transi-
tion a colloidal system is by quantitatively assessing its
relaxation.
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