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Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take
the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these
systems give rise to anomalously large, nonaffine collective deformations, which we argue to be a generic
consequence of “mass equilibration” within deformed networks. We propose and study a minimal “liquid
network” model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of
residually stressed mechanical networks with constant-tension bonds. We show that nonaffinity is strongly
dependent on the valency of the network as well as the degree of strain-softening or strain-stiffening tension
in the bonds. Taking diblock copolymer melts as a model system, liquid network theory captures
quantitative features of two bicontinuous phases based on comparison with self-consistent field theory
predictions and direct experimental characterization of acubic distortions, which are likely to be
pronounced in soft amphiphilic systems more generally.
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The self-assembly of amphiphiles into mesophases with
long-range order is of fundamental importance to the
formation of structure in biology and nanotechnology.
Beyond the classical lamellar, columnar, and sphere mes-
ophases, there are a variety of bicontinuous mesophases,
from amorphous sponges to triply periodic double net-
works. Of the latter, the double gyroid (DG), double
diamond (DD), and double primitive (DP), closely related
to triply periodic (cubic) minimal surfaces, are most
commonly observed [1–3]. The combination of highly
symmetric morphologies and complex topologies of these
structures underlie valuable functional properties, from
structural coloration in living organisms [4–6] to photonic
[7,8] and plasmonic metamaterials [9,10].
In contrast to atomic or molecular crystals, supramo-

lecular crystals, such as the bicontinuous networks, contain
upward of ∼104 macromolecules per unit cell, allowing for
more complex distortions. As shown in Fig. 1(a), bicon-
tinuous networks are typically visualized as interconnected
tubular domains, separated by slablike matrices or mem-
branes [11]. It is useful to decompose these structures into
mesoatomic units that represent collective groupings cen-
tered on the nodal interconnections: DG, DD, and DP
mesoatoms are, respectively, three, four, and six valent
[12,13]. Further abstraction of the network domains yields
a “skeletal graph” representation [see Fig. 1(c)] with nodes
centered within the mesoatoms and “struts” joining each
node. Recent observations of DG [14] and DD [15] crystals
assembled by block copolymers—subject to endemic
sources of symmetry-breaking stresses (e.g., due to

anisotropic solvent processing and inadequate thermal
relaxation via sample annealing)—exhibit strong, coherent
distortions of the otherwise cubic unit cells [Fig. 1(b)].

FIG. 1. Unit cells of a DG composed of tubular domains (red)
separated by a continuous matrix domain (blue) and disjoint
skeletal networks from SCF calculations, (a) with full cubic
symmetry and (b) after a simple shear. (c),(d) Neighboring
“mesoatomic units” highlighted in magenta and green, before
and after the simple shear, respectively. Schematic arrangement
of diblock copolymers with mesoatom pairs, at nodal positions
rðmÞ and rðnÞ, possessing equal chain numbers for cubic structures
(e) and net transfer of mass upon symmetry-breaking shear (f).
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Experimental reconstructions show a combination of
anomalously large fluctuations in strut lengths, yet surpris-
ingly low deviations in bond angles. This observation hints
at the exotic mechanics underlying network relaxation,
characterized by pronounced nonaffine response. While
rigid, amorphous soft materials, such as biopolymer net-
works, proteins, foams, and gels, have well-characterized
nonaffinity [16–27], and nonaffine fluctuations have been
studied in crystalline solids [28–30], the mechanism be-
hind the nonaffine response in supramolecular networks—
structured fluids with crystalline order—is apparently
fundamentally distinct. Notably, nonaffine and symmetry-
breaking distortions are thought to be important for the self-
assembly of Weyl metamaterials [31–33].
In this Letter, we explore the relaxation of supramo-

lecular networks in response to broken cubic symmetry,
through the lens of liquid network theory (LNT) as a proxy
for collective intranetwork mass redistribution [Fig. 1(b)].
Constant-tension networks exhibit highly nonaffine
response, which is a strong function of nodal valence
and symmetry with a linear response encoded in two cubic
invariants coupled to simple and elongational shear. LNT
predicts trihedral [34] DG (the 10-3a net [35]) to be
generically more nonaffine than tetrahedral DD (the 6-4
net), a result that we directly confirm using a combination
of self-consistent field (SCF) theory and experimental
tomographic reconstructions of acubic network phases of
block copolymers. More generally, we connect this regime
of pronounced nonaffine relaxation in perfectly ordered
networks to the presence of strain-softening central forces
between nodes.
Skeletal network degrees of freedom are specified by

node positions frðnÞg, along with strut-sharing, nearest-
neighbor node pairs hmni. We restrict our attention to
network deformations that maintain the number of nodes
and the connectivity of the graph. We take these node
positions as the effective, coarse-grained degrees of
freedom and consider the simplest form of the free energy
H that can account for internodal mass exchange, com-
posed of nearest-neighbor interactions of the form
H ¼ P

hmni hðlðmnÞÞ, where lðmnÞ ≡ jrðnÞ − rðmÞj is the
length of the strut joining node m to node n and h
is an energy per strut. The equilibrium condition then
requires a balance of forces at each node, i.e.,P

n∈ hmni τðlðmnÞÞr̂ðmnÞ ¼ 0, where r̂ðmnÞ is the unit vector
joining node n to node m, and τðlÞ≡ dh=dl is the
corresponding tension along the strut.
Generic equilibrium conditions for macromolecular

assemblies involve a balance of enthalpic costs due to
maintaining an interface between unlike components
(referred to as the intermaterial dividing surface for
amphiphilic morphologies) and entropic costs associated
with molecular configurations (e.g., reductions in entropy
due to stretching polymers) [36,37]. As depicted in
Fig. 1(e), macromolecules typically orient normal to the

struts; restoring forces due to changes in molecular con-
formation are thus transverse to the strut. However, macro-
molecules can easily translate along a network and even
hop between distinct networks (albeit with a free energy
barrier); as shown in Fig. 1(f), deformations can result in
easy intranetwork transfer of mass between mesoatoms.
Associating each macromolecule to the nearest strut and
assuming the areal density of molecules passing through
the interface to be approximately constant, the mass per
strut is roughly proportional to the strut length l.
Consequently, to maintain chemical equilibrium in the
network, τ is length independent [τðlÞ ¼ const]; this is
the constitutive relationship for LNT. Notably, length-
minimizing triply periodic networks with fixed valency
are known to correspond to the cubic skeletons of DG, DD,
and DP [38,39].
To explore the behavior of LNT, we first consider the

planar three-strut graph shown in Fig. 2(a), whose initial
configuration of struts with equal length l0 and angle of
120° results in mechanical equilibrium for the central node
for any constitutive form of τðlÞ. The boundary nodes are
then affinely displaced by stretching along the direction d̂
by a factor ε; the deformation matrix is Λij ¼ δij þ εd̂id̂j.
Finally, relaxation of the central node, while holding
boundary nodes fixed, results in a displacement u, as
depicted in Fig. 2(b); a nonzero value of u indicates a
nonaffine deformation of the graph. For LNT (constant
tension), equilibrium requires strut angles maintain 120°
coordination, which generally necessitates a nonaffine
displacement of the central node. This can be regarded
as a 1D version of Plateau’s laws for soap films [40,41].
Beyond trihedral graphs, equilibrium conditions for LNT
require strut orientations to sum to zero at each node. Thus,
nodes exhibiting tetrahedral and hexahedral symmetry,
such as those seen in DD and DP, are LNT equilibria, as
are the more exotic pentahedral nodes seen in DD mirror
twin boundaries [15]. More generally, we can consider a
broader class of power-law constitutive relations

τðlÞ ¼ τ0

�
l
l0

�
η

; ð1Þ

where τ0 is the residual tension of struts in the initial
configuration. The exponent η controls the character of the
mechanical response, as shown in Fig. 2(c): for η ¼ 1, the
struts obey Hooke’s law; for 0 < η < 1, the network strain
softens; for η > 1, the network strain stiffens; η ¼ 0
corresponds to LNT (i.e. constant tension). The increasing
magnitude of nonaffine deformation juj2 with strain ε
varies with η, as shown in Fig. 2(c). This measure of the
nonaffine response increases quadratically with strain,
juj2=l2

0 ¼ Γε2, as is generally expected for mechanical
networks for ε ≪ 1, where Γ is the “nonaffinity” parameter
[19,21,22,42,43]. We find that LNT is characterized by
especially large values of Γ, compared to strain-stiffening
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forces that are typical of many fiber networks [24,44–47].
As shown in Supplemental Material [48], similar values can
be achieved in finitely extensible flexible and semiflexible
polymer networks [55,56], but only in the highly non-
Hookean, high-extension limit. Moreover, the volume
constraint ensures that struts maintain nonzero tension
and places LNT in a similar class of residually stressed
mechanical networks as those described by the classical
description of rubber elasticity [57,58], involving Hookean
networks with affine response, independent of network
geometry [59]. This residual stress stabilizes the sub-
isostatic DG and DD networks, despite their low valency
(with valence z < 6) [60,61], which in turn alters expect-
ations for the dependence of nonaffinity on total valence.
The effect of pre-stress to stabilize otherwise floppy net-
works has recently been recognized in the context athermal
fiber networks [62], and more classically, underlies the
success of classical theories of rubber/gel elasticity [59].
Next, consider trihedral and tetrahedral graphs in 3D,

representing a nodal region in DG and DD, respectively.
The resulting nonaffinity parameter Γðd̂Þ has a directional
dependence that is plotted on the unit sphere, superimposed
on both graphs in Fig. 2(e); by symmetry of the uniaxial
deformation, Γð−d̂Þ ¼ Γðd̂Þ. The restoring force from each
strut is proportional to the projection of the strut direction
onto the stretch direction d̂; consequently, the DP hexa-
hedral nodes always maintain affine deformations. The
nonaffine response is therefore maximal along the strut
directions for both graphs and is zero along the threefold
axis (out-of-plane normal) of the trihedral graph and along
each of the fourfold rotoinversion axes of the tetrahedral
graph. The full range of the nonaffinity parameter for both
graphs is shown in Fig. 2(f). We see that LNT has the
largest nonaffine response for both networks over a broad
range of non-negative values of η, with larger values for the
tetrahedral graph when η > 4; as η → ∞, the maximal
values of Γtri and Γtet approach 1=4 and 4=9, respectively.
Moreover, the trihedral graph exhibits a consistently larger
maximum of the nonaffinity parameter for small η; the

tetrahedral graph becomes more nonaffine than the trihedral
for η > 2. Since networks may contain trihedral or tetra-
hedral nodes (or both for (3,4) nets [35] and certain Fischer-
Koch structures [63]) with a variety of orientations, it is
useful to quantify the averaged response for both types of
nodes, which we obtain by averaging Γðd̂Þ over all possible
stretching directions on the unit sphere. The resulting
averaged nonaffinity Γ̄ is plotted in Fig. 2(f); note that
Γ̄tri=Γ̄tet ¼ 3 (see Supplemental Material [48]).
Next, we turn to the linear response of full DG and DD

networks at fixed volume; calculation details are shown in
Supplemental Material [48]. Given a general deformation
matrix Λ, the nonaffine response is a function of the strain
tensor, ε ¼ ðΛTΛ − 1Þ=2, which is, by construction, sym-
metric and invariant under rigid rotations of the network
[64]. The nonaffine response can be characterized by hjuj2i,
where the average is taken over all nodes in a unit cell. In
the linear response regime, the quadratic scaling with εij is
characterized by a nonaffinity tensor Γijkl and takes on the
form

hjuj2i
l2
0

¼ Γijklεijεkl ¼ Γext

X

i

ε̂2ii
2
þ Γshear

X

i≠j
ε̂2ij; ð2Þ

where ε̂ij ≡ εij − εkkδij=3 is the deviatoric (i.e., traceless)
strain. For the cubic networks considered here, we can
express the tensor in terms of two independent components,
Γext and Γshear, representing the response to volume-
preserving extensional and shear strains, respectively
(see Supplemental Material [48]).
The resulting extensional and shear components of the

nonaffinity tensor are given in Table I for general values of
η. LNT predicts a ratio between the nonaffine response to
shear deformation ΓDG

shear=ΓDD
shear ¼ 3 that is in agreement

with average nonaffinity ratio of the trihedral and tetrahe-
dral nodes. For DD, because the extensional strain involves
compression and elongation along the ½100� family of
directions relative to the unit cell, which align with the
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FIG. 2. (a) Three-strut planar graph with initial strut lengths l0 and angle of 120° between neighboring struts, superposed with affinely
stretched variant (along d̂, in the plane). (b) Nonaffine relaxation, characterized by central node displacement u under equilibrium of
LNT. (c) Power-law constitutive relations for tension τðlÞ as a function of length l. (d) Nonaffine displacement juj2=l2

0, as a function of
strain ε. (e) Spherical map of direction-dependent nonaffinity Γ≡ juj2=ðl2

0ε
2Þ for a trihedral (top) and a tetrahedral (bottom) graph.

(f) Average nonaffine response for trihedral and tetrahedral graphs as a function of η. Shaded regions represent the full range of Γðd̂Þ.
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rotoinversion axes of the tetrahedral nodes, ΓDD
ext is uni-

formly zero for all values of η. Notably, for general η > 0,
ΓDG
ext becomes smaller than ΓDG

shear. While our results suggest
an apparent decrease in non-affinity with valence, we
emphasize that certain features of the response are conse-
quences of particular symmetries of networks. For exam-
ple, generic affinity of DP is a consequence of (local) nodal
symmetry, in which affine deformation preserve collinear-
ity of force-balancing struts in all three independent
directions. For DD, the perfectly affine response for
extensions along ½100� directions relies on global registry
of nodal response (i.e. black directions in Fig. 2(e)) along
crystallographic directions. Hence, in an “amorphous”
network of tetrahedral nodes (e.g. in a disordered bicon-
tinuous sponge), we expect non-affinity along extension
in all directions, as well as the possibility of additional
instabilities due to structural inhomogeneities in a dis-
ordered network [65].
Now we consider our results in the context of diblock

copolymers (BCPs), based on experiments involving DG
and DD networks formed from polystyrene-b-polydime-
thylsiloxane (PS-PDMS), as well as associated SCF cal-
culations of equilibrium structures (see Supplemental
Material [48]). First, we performed a series of SCF
computations that explore the equilibrium morphologies
formed by BCPs when the cubic symmetry of the DG-DD
unit cell is broken by an applied affine transformation Λ.
Using a skeletonization algorithm, we determined the
nonaffine displacements hjuj2i of nodes along separate
extensional and shear strain deformation paths (see
Supplemental Material [48]). This way, we were able to
measure nonaffinity components from SCF calculations,
shown in Table I. For DG, we found that the shear
component is comparable to predictions of LNT, but the
extensional component is somewhat smaller than expected.
This significant depression of ΓDG

ext suggests that terms
beyond LNT may prove important for certain strain
directions; indeed, our mechanical network model suggests
that a small, nonzero value of η is needed to capture this
scale of nonaffinity. While such a fractional tension-length
constitutive relationship is unlikely to have a clear physical
interpretation, our use of η in the power-law form τðlÞ
given in Eq. (1) is simply to facilitate the analysis in
this Letter. As shown in Supplemental Material [48], our
results hold under a much more general set of consti-
tutive relationships τðlÞ, wherein η ¼ lτ0=τ, which will

generically depend on deformation. SCF calculations show
a small, nonzero value for ΓDD

ext as well as a larger-than-
expected value of ΓDD

shear. Such discrepancies suggest that
effects beyond the minimal LNT, such as internet-
work interactions, may play a larger role in the response
of DD.

TABLE I. Components of the cubic nonaffinity tensor Γ for DG and DD, for generic (Gen. η) power-law strut
tension τðlÞ ∝ lη, LNT, and SCF theory linear diblock copolymer melts.

ΓDG
ext ΓDG

shear ΓDD
ext ΓDD

shear

Gen. η 3
4
½ð1 − ηÞ=ð1þ 3ηÞ�2 1

8
½ð1 − ηÞ=ð1þ ηÞ�2 0 1

6
½ð1 − ηÞ=ð2þ ηÞ�2

LNT 0.75 0.125 0 ≈0.042
SCF 0.20�0.02 0.17�0.02 0.02�0.01 0.28�0.02

FIG. 3. (a) 3D tomographic reconstruction from SVSEM data
of a DG grain from PS-PDMS thin film, with extracted skeletal
graph. (b) Distribution of nodal volumes in a 3D construction of a
unit cell in DG sample No. 1, showing ∼� 9% variations in
volume. Below, plots show (c) average nonaffine displacement
hjuj2i, (d) strut length variations

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔl2i

p
=hli, and (e) variance

in nodal volume
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔV2i

p
=hVi, for experiments (markers),

simulated deformation paths from SCF calculations (red curves),
and corresponding LNT predictions (blue, dashed curves) as a
function of total strain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðε̂2Þ=2

p
.
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We analyzed prior experimental data, which consist of
3D density fields extracted using “slice-and-view” scan-
ning electron microscopy (SVSEM) [12,14]. This tech-
nique yields nanometer-scale voxels representing local
density measurements of PDMS relative to PS, resulting
in 3D reconstructions, such as shown in Fig. 3(a), which
then can be skeletonized using a similar algorithm as used
for the density fields obtained from SCF calculations [66].
The experimental data include structures sampled from
three distinct grains of a DG polycrystal and two distinct
grains of a DD polycrystal. While each of the grains
possess distinct triclinically deformed unit cells (obtained
from Fourier analysis of the density field data), we can
compare against predictions of LNT and molecular SCF
theory by simulating constant-volume deformations paths
that include the triclinic unit cells for each of the grains (i.e.,
maintaining roughly constant ratios of shear to extensional
strain). The average nonaffine displacement along each
family of deformations for the DG samples is shown in
Fig. 3(b) for SCF calculations and LNT, along with
experimental measurements; note that the error bars come
from unit-cell averaged measurement of nonaffine dis-
placement from multiple unit cells within each 3D
reconstruction. We plot these distinct deformation paths,
which combine mixtures of extensional and shear strain,
as functions of a common strain measure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðε̂2Þ=2

p
, a

combination of extensional and shear strain (see
Supplemental Material [48]). While there is good agree-
ment between LNT and SCF for low strain, SCF results
depart from LNT predictions for strain values on the order
of 5%–10%. For larger strains, the nonaffine response
attains significant nonquadratic contributions involving
higher order couplings between extensional and shear
strain that fall well outside of the linear response regime.
Nevertheless, we note that the parameter-free LNT does a
remarkable job in capturing the magnitude of nonaffinity
for the experimental DG samples, which evidently exhibit
significant acubic distortion (≈20%). Further studies
involving careful processing and annealing are needed to
fully relax the networks and may result in better agreement
between experiment and theory.
Finally, we address our central hypothesis that mass

transport plays a key role in the equilibration of deformed
networks. Since we assumed that macromolecules associate
with struts, the variance in strut length, shown in Fig. 3(c),
is related to fluctuations in the total mass of molecules
associated with a given strut. These fluctuations may
originate from variations in macromolecule density and
conformations at constant mass per strut and thus involve
elastic contributions to the strut tension. A different
measure of mass transport is the variation in the volume
per node (or mesoatom), determined by counting the mass
contribution per voxel and associating each voxel to the
nearest node in space (see Supplemental Material [48]).
For example, a single unit cell from an experimental sample

shows ∼10% variation in volume between nodes [see
Fig. 3(b)] that are equivalent in the undeformed, cubic
configuration. Applying the same method to the DG grains
and simulated deformation paths, we find that variance in
nodal volume increases with strain and again, as shown
in Fig. 3(e), LNT exhibits a smaller variance than SCF
calculations as well as experimental measurements.
We have shown that, to a first approximation, the

collective response of supramolecular networks to sym-
metry-breaking deformations is controlled by equilibration
of mass along network elements, captured via a simple
principle of length minimization. While both experiment
and SCF theory exhibit near-quantitative and fit-free agree-
ment with LNT in the linear response regime, it is clear that
additional contributions from macromolecule elasticity as
well as packing constraints (and thus intranetwork inter-
actions) are needed, particularly in the large-strain regime.
Nevertheless, LNT naturally explains prior observations of
“rigid” strut angle relationships and “soft” strut length
requirements for BCP network deformations and de-
fects [14,15]. Furthermore, LNT can rationalize an
observed “node-splitting” transition observed in DD (see
Supplemental Material [48]), particularly under modest
extensional strain, where tetrahedral nodes split into pairs
of trihedral nodes. Since LNT equilibria correspond to
locally length-minimizing networks, node-splitting events
tend toward globally length-minimizing configurations,
known as “Steiner networks,” composed of purely trihedral
nodes [38,39]. As such, LNT provides a minimal basis for
understanding deformations of supramolecular networks
well beyond linear response, into the regime of defects and
structural transitions.
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