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Understanding how systems achieve thermalization is a fundamental task in statistical physics. This
Letter presents both analytical and numerical evidence showing that thermalization can be universally
achieved in sufficiently large two- and three-dimensional lattices via weak nonlinear interactions.
Thermalization time follows a universal scaling law unaffected by lattice structures, types of interaction
potentials, or whether the lattice is ordered or not. Moreover, this study highlights the critical impact of
dimensionality and degeneracy on thermalization dynamics.
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The energy equipartition theorem (EET), originally
derived from gas models, is a cornerstone in statistical
physics. The exploration of the EET in lattice models
commenced in the early 1950s, following the discovery of
the Fermi-Pasta-Ulam-Tsingou recurrence [1]. Extensive
research in one-dimensional (1D) lattices has established
that, in the thermodynamic limit, thermalization time (or
energy equipartition time) typically scales as a power-law
function of interaction strength, confirming the achievabil-
ity of the EET [2–21]. However, condensed matter systems
are often represented in higher spatial dimensions, typically
in two-dimensional (2D) and three-dimensional (3D) lattice
models, making the validation of the EET in these models
both theoretically and practically significant. Findings from
1D models may not be directly transferable to higher
dimensions due to the impact of dimensionality on physical
properties, such as the dependence of thermal conductivity
on dimensions [22–28]. Despite this, research on thermal-
ization in higher-dimensional lattices remains sparse, pri-
marily due to the complexities of numerical simulation and
theoretical analysis. The most relevant contributions in this
area are from Benettin and his collaborators, who inves-
tigated a hexagonal lattice with Lennard-Jones (LJ) poten-
tials, observing energy equipartition at timescales of ϵ−1 for
fixed or open boundarieswhile ϵ−5=4 for periodic boundaries
[29,30]. Here, ϵ denotes the energy density. Additionally,
studies have explored energy equipartition among flexural
modes in graphene [31–33]. The effect of disorder, leading
to Anderson localization and hindering energy diffusion
and, thus, affecting thermalization, remains completely
unexplored in high-dimensional lattices.
In this Letter, we extend these studies to typical high-

dimensional lattice models, including 2D hexagonal and
square lattices and 3D face-centered cubic (fcc) and simple

cubic (SC) lattices. We focus on the influence of dimen-
sionality on thermalization. Our findings reveal a universal
scaling law Teq ∼ g−2, where Teq represents thermalization
time and g is the interaction strength. This law is more
pronounced in higher dimensions than in 1D lattices.
Importantly, we discover that degeneracy plays a crucial
role: Higher degeneracy in square and SC lattices signifi-
cantly accelerates the thermalization, particularly in the
initial stages of energy redistribution, compared to lattices
with lower degeneracy, like the hexagonal and fcc lattices.
Introducing disorder may postpone the thermalization in
high-degeneracy lattices while may expedite this process in
low-degeneracy ones.
Our approach combines theoretical analysis with

numerical simulations. Previous studies on 1D lattices
have proposed several analytical methods [11,13], typically
identifying the scaling from the kinetic equations for
normal modes within the perturbation framework [13].
In recent studies of thermalization in 1D lattices [14–21],
the wave turbulence approach [34,35] has been instrumen-
tal. It not only contributes to the derivation of kinetic
equations, but also elucidates a network connecting all
normal modes through multiwave resonances. This net-
work plays a crucial role in facilitating the energy redis-
tribution toward equilibrium. We extend this approach to
high-dimensional lattices and find that, although increased
spatial dimensions complicate numerical simulations, they
simplify theoretical analysis. Our analysis reveals that each
normal mode is intricately connected to numerous other
modes. This extensive connectivity clarifies the consistence
between the time scaling derived from kinetic equations
and that observed for energy equipartition throughout the
entire network. It also explains the accelerated thermal-
ization observed in high-dimensional lattices. The impact
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of degeneracy, we propose, stems from additional energy
diffusion due to resonance among modes of the same
frequency, enhancing energy redistribution further.
Without loss of generality, we adopt an n-order poly-

nomial potential with n ≥ 3 as the integrability-breaking
term to derive the kinetic equation, since interaction
potentials can be expanded as polynomial terms by the
Taylor expansion. Consider a lattice described by the
Hamiltonian H ¼ H0 þ λVðnÞ, where

H0 ¼
X

l;α

1

2
Mlju̇lj2þ 1

4

X

ll0
α;β

½ulα −ul
0
α�Φll0

αβ½ulβ −ul
0
β �

and VðnÞðuÞ ¼ 1

n!

X

ll0β

Φll0
β

Yn

j¼1

½ulβj −ul
0
βj
�; ð1Þ

where l is a vector indexing the particle, the Greek letters
represent components of Cartesian coordinate, and Ml and
ulα denote, respectively, the mass and the displacement in
the α direction of the lth particle. The matrix elements Φll0

αβ

and Φll0
β are coefficients of Taylor expansion. We also use

the shorthand notation β ¼ ðβ1;…; βnÞ for brevity. The
parameter λ governs the interaction strength. The
Hamiltonian (1) can be rescaled by the energy density ϵ.
Specifically, setting ulα ¼ ũlαϵ1=2 leads to H̃ ¼ H=ϵ ¼
H0ð ˙̃uα; ũαÞ þ gVðnÞð ˙̃uα; ũαÞ, where g ¼ λϵðn−2Þ=2 represents
the interaction strength.
Considering the integrals of motion of Hamiltonian H0

as fIkg, we have the commutation relation ½H0; Ik� ¼ 0 in
terms of the Poisson bracket. In the presence of perturba-
tion VðnÞ, the system evolves following the Liouville
equation [36]:

∂tIk ¼ L0Ik þ L0Ik; ð2Þ

where L0 and L0 are Liouville operators such that L0Ik ¼
½H0; Ik� and L0Ik ¼ λ½VðnÞ; Ik�.
The kinetic equation up to the second-order perturbation

for Ik is

∂thIki ≈ hL0Ikifð0Þ þ
Z

∞

0

hL0L0ðτÞIkifðtÞdτ; ð3Þ

where L0ðτÞ ¼ e−L0τL0eL0τ and fðtÞ is the distribution
function of the system (1). The hIki is the ensemble
average over fðtÞ. With sufficiently weak perturbation,
the dynamics are primarily governed by H0, allowing the
deformed IkðtÞ to be considered as the integral of motion of
H0. Consequently, the distribution can be approximated by
a generalized Gibbs ensemble, expressed as

fðtÞ ∼ e−
P

k
θkðtÞIk ; ð4Þ

where θk is the Lagrange multipliers associated with Ik
[37]. The role of perturbations is to drive the evolution of Ik
within the space of integrals of motion of H0.
In a lattice model, we introduce the canonical complex

normal variables via asðkÞ ¼ PsðkÞ þ iωsðkÞQsðkÞ, where
QsðkÞ and PsðkÞ are the Fourier transforms of displace-
ments and momenta, respectively. The term ωsðkÞ denotes
the dispersion relation with k and s representing the wave
vector and polarization of the wave, respectively. It is
important to note that k and s possess clear physical
significance only in systems invariant under spatial trans-
lation; otherwise, they serve simply to order the waves. In
terms of asðkÞ, the integrable part of the Hamiltonian is
reformulated as

H0 ¼
X

s;k

EsðkÞ ¼
X

s;k

ωsðkÞasðkÞa�sðkÞ: ð5Þ

The integral of motion of H0 turns to be
IsðkÞ ¼ asðkÞa�sðkÞ. The nth-order nonlinear perturbation
can be reexpressed as

VðnÞ ¼ g
n!

Xn

l¼0

X

1…n

�
n

l

�
Wlþ1…n

1…l a1…ala�lþ1…a�n; ð6Þ

where aj ¼ asjðkjÞ is a shorthand notation and Wlþ1…n
1…l

weights the transfer of energy among waves a1;…; an.
Inserting Eqs. (4)–(6) into Eq. (3), we acquire the kinetic

equation for a specific integral of motion I1 ¼ Is1ðk1Þ as

∂thI1i ¼ η1 − γ1hI1i; ð7Þ

where η1 and γ1 are coefficients independent of hI1i and are
proportional to g2. Given that γ1 is nonzero, it follows that
hI1i relaxes at timescale approximately as 1=γ1; see Sec. I
in Supplemental Material [38] for a detailed derivation of
the kinetic equation.
Nonvanishing γ1 is guaranteed by the n-wave resonance

conditions:

ω1 þ � � � þ ωl ¼ ωlþ1 þ � � � þ ωn; ð8Þ

k1 þ � � � þ kl ¼ klþ1 þ � � � þ kn: ð9Þ

Given that the values of ωsðkÞ in large systems are densely
packed and considering that nonlinearity broadens the
frequency [35], the resonance condition Eq. (8) can be
replaced by a quasiresonant condition:

jω1 þ � � � þ ωl − ωlþ1 − � � � − ωnj ≲ Γ; ð10Þ

where Γ is the resonance width.
In high-dimensional settings, the multiplicity of

branches in dispersion relations facilitates identifying
solutions to resonance conditions. For example, consider
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a hexagonal lattice with a cubic polynomial potential
(n ¼ 3). The dispersion relation of this lattice, obtained
in the thermodynamic limit, showcases two distinct fre-
quency surfaces labeled as A and B, as depicted in Fig. 1(a).
In this limit, the frequencies densely populate these
surfaces. We investigate three-wave resonant solutions
using a well-established algorithm [34]. We start by moving
the coordinate origin from O to O0 along surface A. This
shift produces new frequency surfaces, namely, A0 and B0.
Below, we just discuss surface B0 as an example. The
extension to including surface A0 is straightforward; see
Sec. II in Supplemental Material [38]. Note that B0
intersects with the original surface B. This leads to a
distinct closed curve of intersection between B0 and B. This
phenomenon is graphically represented in Fig. 1(a). The
specific nature of this closed curve is further detailed in
Fig. 1(b) with a blue solid line. At any pointP on this curve,
the relation kOO0 þ kO0P ¼ kOP and ωOO0 þ ωO0P ¼ ωOP is
valid, as shown in Fig. 1(b). Here, the vector kOO0 is
situated on surface A, while kOP and kO0P are located on
surface B. This configuration indicates that each normal
mode kOO0 on surface A resonates with a multitude of mode
pairs kO0P and kOP, forming a node of vast three-wave
resonant sets.
All normal modes collectively form a fully connected

network. A minor adjustment of the origin to a new point
O00, close to O0, leads to the formation of another closed
intersection curve, depicted as a magenta dotted line in
Fig. 1(b). This new curve, incorporating the mode kOO00 ,
generates another vast three-wave resonant set. The geo-
metric properties of the dispersion relation cause this curve
to intersect the previous one at two specific points, P1

and P2. These intersections suggest a linkage between
the normal modes described by these two curves.
Consequently, this approach demonstrates how all normal
modes on surface A are interconnected with those on
surface B.

This intricate network structure, each mode acting as a
node of a vast three-wave resonant set, enables energy
dispersion across all modes through several cascades of
three-wave resonances. The timescale Teq ∼ 1=γ1, as deter-
mined by Eq. (7), thus, characterizes the energy equiparti-
tion within the lattice. This analytical approach can be
extended to other 2D and 3D lattices, as well as to
polynomial potentials of order n ≥ 3, given that they
possess multiple dispersion relation branches. In the con-
text of disordered systems, the resonance condition is
simplified to those outlined in Eq. (8) or (10), due to the
relaxed constraints on wave vectors, which enables a
greater variety of modes to meet the resonance criteria.
Thus, for both homogeneous and disordered lattices, Teq

can be rewritten as

Teq ∝ g−2 ¼ λ−2ϵ2−n: ð11Þ

For finite-size lattices without nonlinearity, the frequen-
cies of normal modes are discrete, limiting the general
satisfaction of resonance conditions. When nonlinearity is
introduced, each frequency ωs spans a continuous spectrum
within a certain range. As the lattice size N grows, the
frequency space becomes increasingly dense. This density
ensures that quasiresonance conditions are invariably met
in sufficiently large lattices at a fixed level of nonlinearity,
thereby validating the universal law described in Eq. (11).
This observation also suggests that, in smaller lattices, the
thermalization time scaling may diverge from the universal
scaling law, particularly with sufficient weak nonlinearity.
Numerical verification.—We conducted numerical

validations using two types of interaction potentials.
(i) LJ potential VðrÞ ¼ ½1=ð1þ rÞ6 − 1�2=72, whose lead-
ing terms contribute the harmonic potential of Eq. (1) and
its lowest-order anharmonic terms are cubic (terms of Vð3Þ):
In this model, Teq ∼ ϵ−1 is expected, as the higher-order
terms become negligible at low energy densities.
(ii) Hamiltonian (1) with a fourth-order nonlinearity
Vð4ÞðuÞ ¼ λ

P
ll0 jul − ul

0 j4=4: This model excludes the
three-wave resonances and is used to verify the prediction
of Teq ∼ ϵ−2 for thermalization dominated by four-wave
resonances.
In our simulation, fixed boundary conditions are

adopted. Initially, only the first 10% of modes were excited.
We evolve the system using the eighth-order Yoshida
method and apply a conventional method [5] to determine
the equipartition time. We define spectral entropy ζðtÞ ¼
−
P

k wkðtÞ log½wkðtÞ�, where wkðtÞ ¼ ĒkðtÞ=½
P

k ĒkðtÞ�.
Here, EkðtÞ ¼ ½P2ðkÞ þ ω2ðkÞQ2ðkÞ�=2 is the energy of
the kth mode, and ĒkðtÞ is its average in the time window of
length t [39]. The degree of equipartition is characterized
by ξðtÞ ¼ N−1eζðtÞ with ξðtÞ ¼ 1 characterizing the equi-
partition. Setting a large threshold of ξðtÞ may significantly
extend simulation time. For hexagonal and fcc lattices, we

FIG. 1. Demonstration of the three-wave resonances in a
hexagonal lattice. (a) displays the dispersion relation with two
frequency surfaces labeled as A and B. Surface B0 results from
shifting the origin O to O0 on surface A. (b) illustrates the
intersection curves between B and B0 (solid line) and between B
and B00 (dashed line). Surface B00 (not depicted) is derived by
further shifting the origin from O0 to O00 on surface A. The two
closed curves represent two groups of resonant three-wave sets,
connected at points P1 and P2.
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confirm that further raising ξðtÞ from ξðtÞ ¼ 0.5 does not
alter the scaling law of Teq; thus, we apply ξðtÞ ¼ 0.65 as
the criterion of equipartition, while for the square and SC
lattices we have to set ξðtÞ ¼ 0.95 to determine equiparti-
tion, as lower thresholds could impact the scaling law (see
Sec. III in Supplemental Material [38] for more details).
Figure 2(a) presents results for both ordered and dis-

ordered hexagonal and fcc lattices, where appropriate
lattice sizes were chosen to minimize finite-size effects.
In this context, disorder refers to masses uniformly
distributed in the range m∈ ð1 − δ; 1þ δÞ, where δ is a
constant value less than 1. The findings align closely with
theoretical expectations and show, in addition, that disorder
induces an about 10% increase in thermalization speed on
average. Comprehensive fitting across the energy density
interval yields Teq ∼ ϵ−1�0.04 and Teq ∼ ϵ−2�0.05 for the
LJ and Vð4Þ potentials, respectively (see Sec. IV in
Supplemental Material [38] for more details). It can be
found that the thermalization time here is significantly
shorter than in the counterparts of 1D case [19,21],
consistent with earlier findings in hexagonal lattices
[29,30]. However, thermalization time differences between
2D and 3D lattices are minor.
Figure 2(b) illustrates how thermalization time varies

with system size in a uniform SC lattice. At larger sizes and
lower energy densities, numerical outcomes concur with
theoretical predictions, though the size necessary for
convergence substantially exceeds that of the fcc lattice.
At the largest system sizes achieved, we observed Teq ∼
ϵ−1�0.10 for the LJ potential across the entire energy range
and Teq ∼ ϵ−2�0.12 for the Vð4Þ potential at ϵ < 10−4.

Figure 2(c) showcases results for a uniform square
lattice. For the LJ potential, alignment with theoretical
predictions is evident in the largest lattice sizes, yielding
Teq ∼ ϵ−1�0.10 at ϵ < 10−4. Contrastingly, for the Vð4Þ

potential, a noticeable slow convergence occurs, deviating
from theoretical expectations even at our computational
limits, with Teq ∼ ϵ−1.7 around ϵ ∼ 10−5. At higher energy,
densities approach ϵ ∼ 10−3, and numerical results for both
potentials only roughly match the predictions. Notably, in
both the square and SC lattices, deviations in smaller
systems are marked, as depicted in Figs. 2(b) and 2(c).
Introducing disorder into the square and SC lattices results
extends the thermalization time, as Fig. 2(d) shows for the
square lattice as an example.
We primarily attribute these discrepancies to degeneracy.

Figure 3(a) displays the frequency spectra for hexagonal
and square lattices, organizing the spectral index k in
ascending order to guarantee ωk ≤ ωkþ1. This arrangement
highlights a significantly higher degeneracy in the second
model. Such degeneracy manifests through the formation
of distinct plateaus, where modes with matching frequen-
cies converge. Modes within each plateau, sharing identical
frequencies, facilitate rapid Chirikov resonances among
them, thus promoting swift energy transfer. This observa-
tion is further supported by comparing the evolution of ξ in
square and hexagonal lattices, as illustrated in Fig. 3(b),
employing a LJ potential with an energy density of
ϵ ¼ 10−4. Analogous observations apply to fcc and SC
lattices, respectively.
The inset in Fig. 3(b) explicitly contrasts the energy

diffusion among modes within a plateau and across
plateaus in the square lattice. It plots ξ over time, with
green lines indicating ξ for modes within a plateau and gray
lines for ξ of modes selected from different plateaus. The
graph highlights that degenerate modes relax more rapidly.
Nevertheless, the disparity in ξ within and across plateaus,
or between hexagonal and square lattices, diminishes over
time. Hence, while degenerated modes facilitate quick
energy diffusion, the slower energy transfer across plateaus,

FIG. 2. Thermalization time as a function of energy density.
(a) Displays results for hexagonal and fcc lattices with both
homogeneous and inhomogeneous masses, where lattice sizes
extend beyond the substantial influence of finite-size effects. (b)
and (c) Present the findings for the square and SC lattices with
homogeneous mass, respectively. (d) Shows the dependence of
the thermalization time on the disorder degree for the square
lattice.

(a) (b)

FIG. 3. (a) Ascending ordered frequencies of modes for the
hexagonal and square lattices. (b) Evolution of ξ over time t for
the hexagonal and square lattices. Inset: comparison of ξ
evolution over time for modes within a plateau (represented in
green) and for modes selected from different plateaus (in gray) for
the square lattice.
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governed by multiwave resonance, still dictates the scaling
exponent of Teq. This explains the necessity for a larger
threshold of ξ in lattices with high degeneracy. Introducing
disorder can eliminate degeneracy to some extent and, thus,
results in the increase of the thermalization time [see
Fig. 2(d)].
A technique consequence of degeneracy is the require-

ment for significantly larger lattice sizes to reduce finite-
size effects in the case of high-degeneracy lattices, as all
modes within a plateau are equivalent to a single mode in a
nondegenerate scenario. This fact, as well as the require-
ment of a larger ξ, leads to the need for larger-scale
computer simulations for this type of lattices.
In summary, our theoretical analysis, building on the

multiple branch structure of dispersion relations, shows
that, in sufficiently large lattices under weak nonlinear
interactions, all normal modes form a fully interconnected
network. In this network, each mode acts as a node within
broad multiwave resonant sets, leading to a general
adherence to a universal thermalization time scaling law,
Teq ∼ g−2. This scaling law confirms the applicability of the
EET in the thermodynamic limit of lattices. Unlike in 1D
lattices, where segregating the Hamiltonian into integrable
and nonintegrable parts is essential to observe this universal
law, our numerical simulations indicate that higher-
dimensional lattices naturally follow this law when
employing the harmonic approximation as the integrable
part. The extensive interconnectivity of each mode through
multiwave resonances elucidates the accelerated thermali-
zation observed in higher-dimensional lattices compared to
their 1D counterparts.
A key discovery is the impact of degeneracy on thermali-

zation in high dimensions, notably in lattices like square
and SC, where Chirikov resonances among degenerate
modes speed up thermalization. This phenomenon, acting
alongside multiwave resonances, introduces an alternative
mechanism for energy redistribution. Generally, the ther-
malization scaling remains unaffected, because the multi-
wave resonances, which dominate this scaling, serve as the
primary mechanism for the slow energy transfer process
among degenerate sets. In certain cases, especially with
relatively large interaction strength, however, it may lead to
a modification in the scaling law, with Teq ∼ g−b, where
b < 2. Introducing relatively small disorder may enhance
the thermalization for low-degeneracy lattices, as it causes
the relaxation of resonance conditions. On the contrary,
introducing disorder may postpone the thermalization for
high-degeneracy lattices since its degeneration-relieving
effect.
Future research should address several areas: the role of

higher-order multiwave resonances in energy transfer, the
details of effect of degeneracy on thermalization rate and
the time scaling in high-degeneracy lattices, and the
implications for real-world materials. Additionally, explor-
ing higher energy densities, including the impact of

many-body localization and breathers, remains crucial.
Finally, understanding the impact of boundary conditions
on thermalization, identifying different mechanisms for
energy diffusion, and effectively eliminating finite-size
effects in highly degenerate lattices will require much
larger-scale numerical simulations.
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