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Single-file systems, in which particles diffuse in narrow channels while not overtaking each other, is a
fundamental model for the tracer subdiffusion observed in confined geometries, such as in zeolites or
carbon nanotubes. Twenty years ago, the mean squared displacement of a tracer was determined at large
times, for any diffusive single-file system. Since then, for a general single-file system, even the
determination of the fourth cumulant, which probes the deviation from Gaussianity, has remained an
open question. Here, we fill this gap and provide an explicit formula for the fourth cumulant of an arbitrary
single-file system. Our approach also allows us to quantify the perturbation induced by the tracer on its
environment, encoded in the correlation profiles. These explicit results constitute a first step towards
obtaining a closed equation for the correlation profiles for arbitrary single-file systems.
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Introduction.—The investigation of the dynamic proper-
ties of interacting particle systems in nonequilibrium
settings has been a prominent area of research in the last
decades [1–5]. Among them, single-file diffusion, where
particles diffuse in narrow channels and cannot overtake
each other, plays an important role. Such geometrical
constraint results in a subdiffusive behavior of the mean
square displacement (MSD) of a tracer particle hX2

Ti ∝ T1=2

[6–8]. This theoretical prediction has been verified across
various scales, ranging from the diffusion of molecules
within zeolites [9] to the movement of colloids in confined
narrow trenches [10,11].
Beyond the scaling behavior of the MSD, the prefactor,

which contains the dependence on the mean density ρ̄ of
surrounding particles, has first been computed explicitly for
specific models: for instance, for reflecting Brownian par-
ticles [6], and later for the simple exclusion process (SEP) [8].
Twenty years ago,Kollmannextended the result to any single-
file system and showed that theMSDof a tracer can bewritten
at large times in terms ofmacroscopic properties of the system
as [12]

hX2
Ti ≃

T→∞

σðρ̄Þ
ρ̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πDðρ̄Þp ffiffiffiffi

T
p

: ð1Þ

In this expression, D is the collective diffusion coefficient,
which controls the relaxation of the density, and σ the
mobility, which governs the fluctuations of current [13].
Note that in all these results, as well as throughout this article,
annealed (equilibrium) initial conditions have been adopted.
Recently, there has been a growing interest in the

characterization of the statistical properties of various

observables, and in particular the position of a tracer
beyond the MSD (also known as second cumulant) [14–
28]. This is typically done by studying higher order
cumulants or, equivalently, the atypical fluctuations using
a large deviation framework. These methods give access to
finer properties of these observables, beyond the typical
Gaussian behavior encoded in the MSD.
More precisely, the higher order cumulants, or large

deviations, of the position of the tracer have only been
determined for a few specific models. For reflecting
Brownian particles the cumulants are known [14,18–20].
For the SEP, all the cumulants have first been determined in
the high density limit [29]. At arbitrary density, the
computation of the fourth cumulant was first achieved
[14,19] and later all the cumulants have been determined
[21,22]. However, for a general single-file system, even the
determination of the fourth cumulant, which probes the
deviation from Gaussianity, has remained an open question
since the work of Kollmann [12].
Here, we fill this gap and provide an explicit formula for

the fourth cumulant for an arbitrary single-file system. We
stress that, unlike previous results, which were obtained for
integrable models (essentially the SEP and those mappable
on it [30]), using tools like Bethe ansatz or inverse scattering
technique [14,21,22,25–28], our expression holds for any
model, whether integrable or not. Furthermore, beyond
quantifying the deviation from Gaussian behavior, our
approach also allows us to quantify the perturbation induced
by the tracer on its environment, encoded in the correlation
profiles [30]. We show that these profiles exhibit a nonana-
lytic behavior for nonintegrable models.
Macroscopic fluctuation theory.—Our starting point to

study the position of a tracer in a single-file system relies on
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the macroscopic fluctuation theory (MFT) [5]. At large
scales (long times and large distances), the MFT gives the
probability to observe a fluctuation of the density profile
ρðx; tÞ of a diffusive system in terms of the two transport
coefficients DðρÞ and σðρÞ [3,5,31], for which explicit
expressions have been obtained for several models. For
instance, for the SEP, DðρÞ ¼ 1 and σðρÞ ¼ 2ρð1 − ρÞ.
Other paradigmatic models include zero range processes
(ZRP) [2,32], the Kipnis-Marchioro-Presutti (KMP) model
[33], the Katz-Lebowitz-Spohn (KLS) model [34,35],
and models with more realistic pairwise interactions such
as Brownian particles with Weeks-Chandler-Anderson
(WCA) potential or dipole-dipole interactions, as involved
in experimental realisations of colloids confined in 1D [10].
The MFT is a powerful approach, in which all the micro-
scopic details of the model are replaced by the two transport
coefficientsD and σ only. Note, however, that one typically
ends up with nonlinear partial differential equations for the
time evolution of the density. Solving these equations is a
challenging task of current intense activity that has recently
led to important achievements [25–28,36–38].
MFT has proved to be useful to study a wide range of

observables, including even a microscopic observable such
as the position XT of a single tracer, for which different
approaches have been devised. (i) The first one relies on
expressing XT as a functional of the density of particles
XT ¼ XT ½ρ� [14,19]. This can be done since the tracer
effectively “cuts” the system into two parts, in which the
number of particles is conserved due to the noncrossing
condition. In practice, this is, however, tricky due to the
emergence of discontinuities in the density profiles at the
position of the tracer [14,19]. (ii) A second approach that
circumvents this issue consists of introducing a generalized
current [21,22] defined as the number of particles crossing
a fictitious moving wall. The tracer is then located at the
position where this current vanishes, again due to the
noncrossing condition. (iii) An alternative method, which
we apply here, consists of using a mapping between
different single-file systems, in which the position XT of
the tracer in the original model is mapped onto (the
opposite of) the integrated current Q̃T through the origin
in a dual model (see Fig. 1). More precisely, the current is
defined from the density ρ̃ðx; tÞ in the dual model as

Q̃T ¼
Z

∞

0

½ρ̃ðx; TÞ − ρ̃ðx; 0Þ�dx; ð2Þ

and the transport coefficients D̃ and σ̃ of the dual model are
written in terms of those of the original model as [30]

D̃ðρÞ ¼ 1

ρ2
D

�
1

ρ

�
; σ̃ðρÞ ¼ ρ σ

�
1

ρ

�
: ð3Þ

The main benefit of this approach is that, with MFT, the
study of the current Q̃T is generally simpler than that of XT
[16]. However, this is often at the cost of handling more

complex transport coefficients [for instance, the constant
DðρÞ ¼ 1 of the SEP is mapped onto the nonconstant
D̃ðρÞ ¼ 1=ρ2]. Here, since we aim to study general single-
file systems, and thus arbitrary D and σ, this is not a
limitation and we use this latter approach.
The main steps of the computation of the fourth

cumulant of XT for general D and σ are as follows (see
Supplemental Material for details [39]). First, we use the
mapping described above that allows us to obtain the
cumulants of XT from those of Q̃T in the dual model, with
D̃ and σ̃ given by (3). Explicitly, the cumulant generating
functions are related by [30]

ψ̂ðλÞ ¼ lim
T→∞

1ffiffiffiffi
T

p lnheλXT i ¼ lim
T→∞

1ffiffiffiffi
T

p lnhe−λQ̃T i

¼ κ2
λ2

2
þ κ4

λ4

4!
þ � � � ; ð4Þ

with κn the nth cumulant of the position of the tracer. Note
that the odd order cumulants vanish by symmetry.
Second, we determine the first cumulants of Q̃T using the

standard MFT formalism [5,16]. Explicitly, this requires
solving the MFT equations [16]

∂tq̃ ¼ ∂x½D̃ðq̃Þ∂xq̃� − ∂x½σ̃ðq̃Þ∂xp̃�; ð5Þ

∂tp̃ ¼ −D̃ðq̃Þ∂2xp̃ −
1

2
σ̃0ðq̃Þð∂xp̃Þ2; ð6Þ

p̃ðx; TÞ ¼ −λΘðxÞ; ð7Þ

p̃ðx; 0Þ ¼ −λΘðxÞ þ
Z

q̃ðx;0Þ

˜̄ρ

2D̃ðrÞ
σ̃ðrÞ dr; ð8Þ

FIG. 1. An example of mapping between two single-file
systems. The SEP (top) is mapped onto a zero range process
(below). This well-known mapping holds at the microscopic
level: the empty sites of the SEP becomes the particles of the ZRP
[2], while the position Xt of the tracer in the SEP is mapped onto
the integrated current through the origin Q̃t in the ZRP. At the
macroscopic level, such a mapping holds for any single-file
system [30]: the tracer in a system with transport coefficientDðρÞ
and σðρÞ is mapped onto the current in a system with D̃ðρÞ and
σ̃ðρÞ given by (3).
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where ˜̄ρ ¼ 1=ρ̄ is the mean density in the dual model. The
function q̃ðx; tÞ is the typical realization of the time
evolution of the density ρ̃ðx; tÞ that yields a given value
of the current Q̃T and fully controls the dynamics at large
times T. p̃ðx; tÞ is a Lagrange multiplier that ensures the
conservation of the number of particles at every point in
space and time. The cumulants are then deduced from the
solution of these equations by dψ̂=dλ ¼ −Q̃T=

ffiffiffiffi
T

p
, where

here Q̃T is given by (2) with ρ̃ðx; tÞ replaced by its typical
fluctuation q̃ðx; tÞ. Third, we expand q̃ and p̃ in powers of λ
and solve (5)–(8) order by order, up to order 3 included to

compute κ4. The practical resolution requires us to solve
diffusion equations with source terms of increasing com-
plexitywith the order in λ. Explicit results can be obtained by
isolating the dependence of the source terms on D̃ðρÞ, σ̃ðρÞ
and their derivatives, and then relying on a combination of
changes of functions and successive integrations by parts.
Results.—Lengthy calculations, given in Supplemental

Material [39], finally provide an explicit formula for the
fourth cumulant of the position Xt of a tracer for any DðρÞ
and σðρÞ,

κ4 ¼
3σðρ̄Þ3ðρ̄D0ðρ̄Þ þDðρ̄ÞÞ

π3=2ρ̄6Dðρ̄Þ7=2 −
σðρ̄Þ�σðρ̄Þσ0ðρ̄Þðρ̄D0ðρ̄Þ þ 4Dðρ̄ÞÞ þ 2σðρ̄Þ2D0ðρ̄Þ − ρ̄Dðρ̄Þσ0ðρ̄Þ2�

4
ffiffiffi
π

p
ρ̄5Dðρ̄Þ7=2

þ 3σðρ̄Þ3�D0ðρ̄Þ2 −Dðρ̄ÞD00ðρ̄Þ�
8

ffiffiffi
π

p
ρ̄4Dðρ̄Þ9=2 þ 3σðρ̄Þ3�2Dðρ̄ÞD00ðρ̄Þ −D0ðρ̄Þ2�

8π3=2ρ̄4Dðρ̄Þ9=2 þ ð3 ffiffiffi
2

p
− 4Þσðρ̄Þ2σ00ðρ̄Þ

8
ffiffiffi
π

p
ρ̄4Dðρ̄Þ5=2

þ 3
� ffiffiffi

2
p

π − 2
ffiffiffi
3

p �
σðρ̄Þ3�2Dðρ̄ÞD00ðρ̄Þ − 3D0ðρ̄Þ2�
16π3=2ρ̄4Dðρ̄Þ9=2 : ð9Þ

This result constitutes the first step beyond the second
cumulant (1) for any single-file system and provides a
quantitative measure of the deviation from Gaussian
behavior.
Several comments are in order. (i) The expression (9)

encompasses all previously known results on fourth cumu-
lants for specific single-file systems, for instance for
reflecting Brownian particles [14,18–20], for the SEP
[14,19] and models that can be related to the SEP, such
as the KMP model, or the random average process [30].
These previous results were obtained for models that can be
mapped, at least at the macroscopic level, to the SEP [30].
For all these models, the last term in (9) vanishes. (ii) More
precisely, the last term in Eq. (9) vanishes if and only if
DðρÞ ¼ 1=ðaþ bρÞ2, where a and b are constants. This is
the class of diffusion coefficients corresponding to models
that can be mapped onto a constant diffusion coefficient
(see Supplemental Material [39] for details). In the general
case of a model that cannot be mapped onto a constant
DðρÞ, as for paradigmatic models like the KLS model or
ZRP, or models with more realistic interactions (like
Brownian particles with WCA or dipole-dipole interaction)
this last term matters. Note that this term is the only one that
involves a

ffiffiffi
3

p
. (iii) Finally, the result (9), also gives the

fourth cumulant of the current Q̃T , in the dual model with D̃
and σ̃. Writing this expression in terms of these dual
transport coefficients thanks to (3), gives this fourth
cumulant of Q̃T for a general single-file system [see
Eq. (S60) of the Supplemental Material].
Beyond the cumulants: Correlation profiles.—On top of

the cumulants, our approach gives access to the response of

the bath of surrounding particles to the perturbation
induced by the displacement of the tracer. This response
is described by the bath-tracer correlation profile intro-
duced in [30], defined as

wðx; TÞ≡ hρðXT þ x; TÞeλXT i
heλXT i

¼
X∞
n¼0

λn

n!
hρðXT þ x; TÞXn

Tic; ð10Þ

which generates all the connected correlation functions
hρðXT þ x; TÞXn

Tic between the density field and the
displacement of the tracer. At large times T, these profiles
display a diffusive scaling behavior wðx;TÞ≃Φðz¼x=

ffiffiffiffi
T

p Þ
[30,45,46]. The scaling functionΦ, which thus contains the
full spatial structure of the bath-tracer correlations in the
long time limit, has been determined explicitly for the SEP
and for models that can be related to it [30,45,46]. Here, for
arbitrary DðρÞ and σðρÞ, Φ is derived from the solution of
the MFT equation q̃ðx; TÞ at final time (in the dual model
with D̃ and σ̃) and mapped back to the original model with
D and σ. The details of this mapping and the expressions of
the correlation profiles up to order 3 are given explicitly in
Supplemental Material [39], Eqs. (S67)–(S69).
In parallel of this explicit calculation, an important

question concerns the existence of a closed equation
satisfied by Φ. Indeed, in the case of the SEP, these profiles
have been shown to satisfy a simple exact closed equation
[45,46]. This result has allowed the determination of all the
correlation profiles (10). Since the publication of this
equation [45], several works have obtained exact results
for different observables for specific models of single-file
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systems [25–28], which can all be recast into a
similar closed equation, making it a promising tool to
investigate various questions in single-file diffusion and
beyond.

We investigate the possibility to obtain such an
equation for Φ by following the approach of [45,46].
It is shown in Supplemental Material [39] that
in fact,

∂zðDðΦÞ∂zΦÞ þ 1

2
ðzþ ξÞ∂zΦ¼ λσ00ðρ̄Þ

4ρ̄

Z
∞

0

Φ0ðzþ uÞΦ00ð−uÞdu

þ
�

λσðρ̄ÞD0ðρ̄Þ
8

ffiffiffi
π

p
ρ̄Dðρ̄Þ3=2 −

λ2σðρ̄ÞD0ðρ̄Þðρ̄σ0ðρ̄Þ− 2σðρ̄ÞÞ
32

ffiffiffi
π

p
ρ̄3Dðρ̄Þ5=2 þ λ2σðρ̄Þ2D0ðρ̄Þ2

64
ffiffiffi
π

p
ρ̄2Dðρ̄Þ7=2

�
Φ0ðzÞ

−
λ3σðρ̄Þ3ð2Dðρ̄ÞD00ðρ̄Þ− 3D0ðρ̄Þ2Þ

512ρ̄3Dðρ̄Þ5
�
ye−

y2

2

ffiffiffi
2

π

r
erfc

�
yffiffiffi
2

p
�
þ 2

π3=2
∂y

Z
1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t

p e−
ð1þtÞy2

ð1−tÞð1þ2tÞ

�

þOðλ4Þ; ð11Þ

where ξ ¼ dψ̂=dλ, and we have denoted y ¼ z=½2 ffiffiffiffiffiffiffiffiffiffi
Dðρ̄Þp �

to simplify the notations. In the case of the SEP, corre-
sponding to constant D, only the first term on the right-
hand side of Eq. (11) remains. We have written this term as
a convolution, instead of its explicit expression, because it
was the key step in [45,46] that allowed us to find a closed
form for the equation. Similarly, we have realized that the
second term in (11) can be expressed in terms of Φ0 only.
The only remaining task to obtain a closed equation is to
rewrite the last term in (11) in terms ofΦ. Anyhow, Eq. (11)
constitutes a first step towards obtaining a closed equation
for Φ for arbitrary DðρÞ and σðρÞ.
On top of its intrinsic interest, Eq. (11) allows us, as we

now discuss, to provide (i) a signature of the nonintegrable
nature of general single-file models and (ii) a shortcut to
obtain the cumulants of Xt.
Relation with integrability.—First, it can be shown that

the last term in (11) is directly associated to the
ffiffiffi
3

p
in the

expression of κ4 (9), as discussed above. In particular, both
vanish for the specific choice DðρÞ ¼ 1=ðaþ bρÞ2, which
is the class of diffusion coefficients for which the nonlinear
heat equation is integrable [47]. Second, this term displays
a nonanalytic behavior with respect to the distance to the
tracer, with a logarithmic singularity ∼y ln y as y → 0. It
shows that this term introduces a completely new class of
functions, compared to the case of the SEP (and related
models) in which only analytic functions were present
[45,46]. Note that such behavior was also observed in the
correlation profile of a driven tracer in the SEP [48], a
model which is expected to be not integrable. All these
points indicate that the presence of the last term in (11) is a
signature of the nonintegrability of a single-file model with
arbitrary DðρÞ and σðρÞ.
A conjecture for a shortcut to the cumulants.—First of

all, note that in the case of the SEP, boundary conditions for
Φð0�Þ and Φ0ð0�Þ have been obtained from microscopic
considerations [30,45,46]. These relations are very useful,
since together with the bulk equation (11) written in the

specific case of the SEP, they allow us to fully determine
the profiles and the cumulants without solving the MFT
equations (5)–(8). Several of these relations have recently
been extended to any single-file system, and take a simple
physical form [38]

P½Φð0þÞ� − P½Φð0−Þ� ¼ λ; ½∂zμðΦÞ�0þ0− ¼ 0; ð12Þ

where PðρÞ is the pressure, and μðρÞ the chemical potential,
given by P0ðρÞ ¼ ρμ0ðρÞ and μ0ðρÞ ¼ 2DðρÞ=σðρÞ. We
have used the notation ½f�ba ¼ fðbÞ − fðaÞ. The remaining
boundary condition, obtained for the SEP in [30,45,46],
which has not yet been generalized to an arbitrary single-
file system [38], is a key relation allowing to obtain ψ̂
directly from Φð0�Þ and Φ0ð0�Þ [which are fully deter-
mined by the bulk equation (11) and the boundary con-
ditions (12) completed by Φð�∞Þ ¼ ρ̄], instead of
computing the integral (2), which is usually a difficult
task. We conjecture that, for arbitrary D and σ, this last
relation takes the form

ψ̂ ¼ −2∂zμðΦÞjz¼0

Z
Φð0þÞ

Φð0−Þ
DðrÞdr: ð13Þ

This conjecture is supported by the following points. (i) For
DðρÞ ¼ 1 and σðρÞ ¼ 2ρð1 − ρÞ, it reduces to the expres-
sion obtained for the SEP [30,45,46]. (ii) Furthermore,
from our above results on the profiles Φ and the fourth
cumulant κ4, we can check that this relation holds up to
order 4 in λ included. (iii) Finally, Eq. (13) is invariant
under the duality mapping (3) (see Supplemental
Material [39]).
Conclusion.—We have considered tracer diffusion (as

well as the current of particles) in general single-file
systems at large times. We have determined an explicit
expression for the fourth cumulant of Xt, which constitutes
the first extension of the result of Kollmann on the second
cumulant [12], for any DðρÞ and σðρÞ and provides a
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quantitative measure of the deviation from Gaussian
behavior. On top of the cumulants of Xt, we have obtained
the response of the bath of surrounding particles to the
displacement of the tracer by determining the full spatial
structure of the bath-tracer correlation profiles (up to order
4). These explicit results, which hold for any system,
allowed us to pinpoint the effect of nonintegrability, both
on the cumulants and the correlation profiles. This work
constitutes a first step towards obtaining a closed equation
for the correlation profiles for arbitrary DðρÞ and σðρÞ.

[1] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer, Berlin, Heidelberg, 1991).

[2] M. R. Evans and T. Hanney, J. Phys. A 38, R195 (2005).
[3] B. Derrida, J. Stat. Mech. (2007) P07023.
[4] T. Chou, K. Mallick, and R. K. Zia, Rep. Prog. Phys. 74,

116601 (2011).
[5] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.

Landim, Rev. Mod. Phys. 87, 593 (2015).
[6] T. E. Harris, J. Appl. Probab. 2, 323 (1965).
[7] D. G. Levitt, Phys. Rev. A 8, 3050 (1973).
[8] R. Arratia, Ann. Probab. 11, 362 (1983).
[9] K. Hahn, J. Kärger, and V. Kukla, Phys. Rev. Lett. 76, 2762

(1996).
[10] Q.-H. Wei, C. Bechinger, and P. Leiderer, Science 287, 625

(2000).
[11] B. Lin, M. Meron, B. Cui, S. A. Rice, and H. Diamant, Phys.

Rev. Lett. 94, 216001 (2005).
[12] M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003).
[13] In the original work of Kollmann [12], the MSD is ex-

pressed in terms of DðρÞ and of the static structure factor at
vanishing wavenumber SðρÞ, which can be related
to the mobility and diffusion coefficient as σðρÞ ¼
2ρDðρÞSðρÞ [14].

[14] P. L. Krapivsky, K. Mallick, and T. Sadhu, J. Stat. Phys. 160,
885 (2015).

[15] B. Derrida and A. Gerschenfeld, J. Stat. Phys. 136, 1 (2009).
[16] B. Derrida and A. Gerschenfeld, J. Stat. Phys. 137, 978

(2009).
[17] P. L. Krapivsky and B. Meerson, Phys. Rev. E 86, 031106

(2012).
[18] C. Hegde, S. Sabhapandit, and A. Dhar, Phys. Rev. Lett.

113, 120601 (2014).
[19] P. L. Krapivsky, K. Mallick, and T. Sadhu, Phys. Rev. Lett.

113, 078101 (2014).
[20] T. Sadhu and B. Derrida, J. Stat. Mech. Theory Exp. 2015,

P09008 (2015).

[21] T. Imamura, K. Mallick, and T. Sasamoto, Phys. Rev. Lett.
118, 160601 (2017).

[22] T. Imamura, K. Mallick, and T. Sasamoto, Commun. Math.
Phys. 384, 1409 (2021).

[23] B. Derrida and T. Sadhu, J. Stat. Phys. 176, 773 (2019).
[24] B. Derrida and T. Sadhu, J. Stat. Phys. 177, 151 (2019).
[25] K. Mallick, H. Moriya, and T. Sasamoto, Phys. Rev. Lett.

129, 040601 (2022).
[26] E. Bettelheim, N. R. Smith, and B. Meerson, Phys. Rev.

Lett. 128, 130602 (2022).
[27] E. Bettelheim, N. R. Smith, and B. Meerson, J. Stat. Mech.

(2022) 093103.
[28] A. Krajenbrink and P. Le Doussal, Phys. Rev. E 107,

014137 (2023).
[29] P. Illien, O. Bénichou, C. Mejía-Monasterio, G. Oshanin,

and R. Voituriez, Phys. Rev. Lett. 111, 038102 (2013).
[30] A. Poncet, A. Grabsch, P. Illien, and O. Bénichou, Phys.

Rev. Lett. 127, 220601 (2021).
[31] H. Spohn, J. Phys. A 16, 4275 (1983).
[32] F. Spitzer, Adv. Math. 5, 246 (1970).
[33] C. Kipnis, C. Marchioro, and E. Presutti, J. Stat. Phys. 27,

65 (1982).
[34] S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28,

1655 (1983).
[35] S. Katz, J. L. Lebowitz, and H. Spohn, J. Stat. Phys. 34, 497

(1984).
[36] A. Krajenbrink and P. Le Doussal, Phys. Rev. Lett. 127,

064101 (2021).
[37] A. Krajenbrink and P. Le Doussal, Phys. Rev. E 105,

054142 (2022).
[38] A. Grabsch, P. Rizkallah, and O. Bénichou, SciPost Phys.

16, 016 (2024).
[39] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.132.217101, which in-
cludes Refs. [40–44] for details of the calculations.

[40] M. R. Evans, Braz. J. Phys. 30, 42 (2000).
[41] M. R. Evans and T. Hanney, J. Phys. A 38, R195 (2005).
[42] A. Kundu and J. Cividini, Europhys. Lett. 115, 54003

(2016).
[43] D. B. Owen, Commun. Stat. Simul. Comput. 9, 389 (1980).
[44] J. Krug and J. Garcia, J. Stat. Phys. 99, 31 (2000).
[45] A. Grabsch, A. Poncet, P. Rizkallah, P. Illien, and O.

Bénichou, Sci. Adv. 8, eabm5043 (2022).
[46] A. Grabsch, P. Rizkallah, A. Poncet, P. Illien, and O.

Bénichou, Phys. Rev. E 107, 044131 (2023).
[47] H. Liu, Commun. Nonlinear Sci. Numer. Simul. 36, 21

(2016).
[48] A. Grabsch, P. Rizkallah, P. Illien, and O. Bénichou, Phys.

Rev. Lett. 130, 020402 (2023).

PHYSICAL REVIEW LETTERS 132, 217101 (2024)

217101-5

https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/1742-5468/2007/07/p07023
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.2307/3212197
https://doi.org/10.1103/PhysRevA.8.3050
https://doi.org/10.1214/aop/1176993602
https://doi.org/10.1103/PhysRevLett.76.2762
https://doi.org/10.1103/PhysRevLett.76.2762
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1103/PhysRevLett.94.216001
https://doi.org/10.1103/PhysRevLett.94.216001
https://doi.org/10.1103/PhysRevLett.90.180602
https://doi.org/10.1007/s10955-015-1291-0
https://doi.org/10.1007/s10955-015-1291-0
https://doi.org/10.1007/s10955-009-9772-7
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevLett.113.120601
https://doi.org/10.1103/PhysRevLett.113.120601
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1088/1742-5468/2015/09/p09008
https://doi.org/10.1088/1742-5468/2015/09/p09008
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1007/s00220-021-03954-x
https://doi.org/10.1007/s00220-021-03954-x
https://doi.org/10.1007/s10955-019-02321-4
https://doi.org/10.1007/s10955-019-02363-8
https://doi.org/10.1103/PhysRevLett.129.040601
https://doi.org/10.1103/PhysRevLett.129.040601
https://doi.org/10.1103/PhysRevLett.128.130602
https://doi.org/10.1103/PhysRevLett.128.130602
https://doi.org/10.1088/1742-5468/ac8a4d
https://doi.org/10.1088/1742-5468/ac8a4d
https://doi.org/10.1103/PhysRevE.107.014137
https://doi.org/10.1103/PhysRevE.107.014137
https://doi.org/10.1103/PhysRevLett.111.038102
https://doi.org/10.1103/PhysRevLett.127.220601
https://doi.org/10.1103/PhysRevLett.127.220601
https://doi.org/10.1088/0305-4470/16/18/029
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1007/BF01011740
https://doi.org/10.1007/BF01011740
https://doi.org/10.1103/PhysRevB.28.1655
https://doi.org/10.1103/PhysRevB.28.1655
https://doi.org/10.1007/BF01018556
https://doi.org/10.1007/BF01018556
https://doi.org/10.1103/PhysRevLett.127.064101
https://doi.org/10.1103/PhysRevLett.127.064101
https://doi.org/10.1103/PhysRevE.105.054142
https://doi.org/10.1103/PhysRevE.105.054142
https://doi.org/10.21468/SciPostPhys.16.1.016
https://doi.org/10.21468/SciPostPhys.16.1.016
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.217101
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1209/0295-5075/115/54003
https://doi.org/10.1209/0295-5075/115/54003
https://doi.org/10.1080/03610918008812164
https://doi.org/10.1023/A:1018688421856
https://doi.org/10.1126/sciadv.abm5043
https://doi.org/10.1103/PhysRevE.107.044131
https://doi.org/10.1016/j.cnsns.2015.11.019
https://doi.org/10.1016/j.cnsns.2015.11.019
https://doi.org/10.1103/PhysRevLett.130.020402
https://doi.org/10.1103/PhysRevLett.130.020402

