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The antiferromagnetic Weyl semimetal Mn3Sn has attracted wide attention due to its vast anomalous
transverse transport properties despite barely any net magnetization. So far, the magnetic properties of
Mn3Sn have been experimentally investigated on micrometer scale samples but not in nanometers. In this
study, we measured the local anomalous Nernst effect of a (0001)-textured Mn3Sn nanowire using a
tip-contact-induced temperature gradient with an atomic force microscope. Our approach directly maps the
distribution of the cluster magnetic octupole moments with 80 nm spatial resolution, providing crucial
information for integrating the Mn3Sn nanostructure into spintronic devices.
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The antiferromagnetic Weyl semimetals Mn3XðX ¼
Sn;GeÞ with a noncollinear spin structure in a kagome
lattice have been drawing significant attention since
they exhibit anomalous Hall and anomalous Nernst
effects (ANE), which are generally absent in antiferromag-
nets [1–4]. The cluster magnetic octupole moment [5]
in Mn3X characterizes the momentum-space Berry curva-
ture [6–8], which behaves as a macroscopic order param-
eter, like a ferromagnetic moment. These functional
antiferromagnets hardly exhibit magnetic shape anisotropy
due to their negligibly small demagnetizing fields [9]. This
property will bring shape diversity into spintronic devices.
For instance, nanowires must be magnetized along the
wire-width direction in thermoelectric generation and heat
flux sensing using an anomalous Nernst thermopile struc-
ture with a vertical temperature gradient [9–12]. With
ferromagnetic nanowires, due to the shape anisotropy,
we have to apply a finite external magnetic field along
the wire-width direction for efficient voltage generation by
the ANE. In contrast, when utilizing antiferromagnetic
materials like Mn3X, the negligible demagnetizing field
enables this without an external magnetic field [9,13]. The
efficiency and the stability of spintronic devices based on
such antiferromagnets relies on the controllability of the
octupole moments in nanostructures. Therefore, observing
the octupole moments in a nanostructure is crucial for the
practical application of Mn3Sn.
This Letter presents the first demonstration of visualizing

the spatial distribution of the cluster magnetic octupole
moments within a (0001)-oriented polycrystalline Mn3Sn
nanowire. We employ a recently developed method based

on conventional atomic force microscopy (AFM) [14,15].
This technique involves establishing a tip-to-sample con-
tact where the sample is heated, inducing a localized
temperature gradient [16,17], and measuring the thermo-
electric voltages due to the ANE at the wire’s ends [17], as
illustrated in Figs. 1(a) and 1(b). Thus, unlike the stray field
measurements with the nitrogen-vacancy center magne-
tometry [18,19], our signals directly reflect the orientation
of the local octupole moments. Similar methods that induce
temperature gradients by lasers have been applied to the
films and microwires of the Mn3Sn [20,21], as well as
magneto-optical Kerr effect measurements [22–24].
However, these measurements suffer from low spatial
resolutions, whereas our technique maps in a resolution
of 80 nm and is, therefore, more suitable for investigating
nanowires.
We employed a dc magnetron sputtering method for

growing a (0001)-textured polycrystalline Mn3Sn film on a
Sið380 μmÞ=SiO2ð500 nmÞ substrate [9]. The 50-nm-thick
Mn3Sn film is sputtered from a Mn2.7Sn alloy target using a
sputtering power of 60 Wand an Ar gas pressure of 0.8 Pa.
After the deposition, the film is transferred to the annealing
chamber and annealed at 723 K for 30 mins in vacuum
(< 1 × 10−6 Pa). Finally, a 2-nm-thick Al layer was
deposited, which becomes an AlOx layer after exposing
to atmosphere and acts as a capping layer to prevent the
oxidation of the Mn3Sn. Scanning electron microscope-
energy dispersive x-ray spectroscopy reveals that the
composition of the film is Mn3.12ð2ÞSn0.88ð2Þ, which is in
the range where D019Mn3Sn is reported to be stable [1,25].
Moreover, this Mn-rich condition is expected to promote
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the (0001)-preferred orientation of the Mn3Sn layer [9].
The result of the θ − 2θ scan of the x-ray diffraction for the
films is shown in Fig. 1(c). We confirmed the single peak of
(002) for the Mn3Sn layer, which indicates that most of the
kagome planes are parallel to the substrate, i.e., the (0001)-
textured Mn3Sn layer. We estimated the crystal grain size
to be 100–250 nm [9,19] from a cross-sectional TEM
measurement.
We used the (0001)-textured Mn3Sn for the experiment

below. Two parallel Mn3Sn wires were fabricated by
electron beam lithography and Ar ion etching for the
AFM experiments. One serves as the sample wire,
400 nm in width, and the other is a 1.9-μm-wide heating
wire. Their edge-to-edge separation is 600 nm. An AFM
image of the device is shown in Fig. 1(b). We used an

atomic force microscope CoreAFM from Nanosurf [26]
with a silicon cantilever Tap190Al-Gðspring constant ¼
48 Nm−1Þ. Our device was placed on a homemade sample
holder with a terminal for electrodes. We applied an
alternating current (ac) to the heating wire with a frequency
f. Joule heating increases the temperature of the sample
wire by approximately 7 K, exhibiting oscillations at a
frequency of 2f. Very high frequency such as f ¼ 1 MHz
should not been used in this experiment since the temper-
ature change would not saturate in the timescale of 2f.
Here, we chose f ¼ 1043.43 Hz, which provides sufficient
time for the heat to distribute thoroughly in the sample and
still allows for a fast measurement by the lock-in amplifier.
We scanned the tip at the sample surface in contact mode
with a loading force of 50 nN. The resulting tip-contact-
induced thermoelectric voltages (V2f) across the sample
wire were detected using the standard lock-in technique.
We acquired both AFM topography and a voltage V2f map
simultaneously. The details of this technique are described
in our previous works [14,15]. All measurements were
performed in atmosphere at room temperature.
Initially, to confirm the behavior of the magnetic cluster

octupole moments under in-plane magnetic field, we
measured the ANE for the Mn3Sn thin film before
processing (5.2 mm × 2 mm × 50 nm) and its fabricated
nanowire (3 μm × 275 nm × 50 nm: one similar to that for
the AFM measurement) at 300 K. The results are shown in
Fig. 1(d), including the measurement configurations for
both devices. For the film, the temperature gradient (the
magnetic field) was applied in the direction perpendicular
(parallel) to the film using the method reported in the
previous works [9,27]. We adopted the method recently
developed by Leiva et al. [28] for the nanowire. An
alternating current Iac ¼ 0.2 mAðjc ¼ 1.3 × 1010 A=mÞ
was applied to the nanowire, which induces the out-of-
plane temperature gradient in the whole wire, and the
anomalous Nernst voltage was lock-in detected as the
second harmonic signal. One can see the saturation of
the signals at ∼1 T with 0.78 μV for the nanowire. The
hysteresis loop of the nanowire exhibits a well-defined
remanent magnetization along the wire-width direction,
indicating that the material retains a significant level of
magnetization even in the absence of the external field. The
abrupt switching at the smaller magnetic field reflects that
the nanowire contains much fewer numbers of grains than
the film. In these measurements, the magnitude of the
anomalous Nernst voltage VANE is given by

VANE ¼ l · SANE ·∇zT; ð1Þ

where l is the length of the sample, SANE is the coefficient
for the ANE. According to the simulation using COMSOL

Multiphysics, the temperature of the nanowire is increased by
∼4 K, which results in vertical induced temperature gra-
dient ∇zT ∼ 1.4 × 106 K=m. The value of SANE for the

FIG. 1. Concept of our experiment and the basic properties of
the Mn3Sn. (a) Conceptual illustration of the experiment.
(b) Topography of the whole device consisting of the sample
and heating wires including the measurement configuration.
(c) X-ray diffraction patterns of the Mn3Sn film. The simulation
is shown by the black curve. (d) Anomalous Nernst voltages of
the film and nanowire as the function of the external magnetic
field at room temperature.
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nanowire is estimated to be 0.18 μV=K, nearly consistent
with the one obtained in our previous works [9,29].
We show a magnified AFM image of the sample wire

and the corresponding V2f map before applying an external
magnetic field in Figs. 2(a) and 2(b), respectively. To obtain
Fig. 2(b), we applied Iac ¼ 3.4 mAðjc ¼ 3.6 × 1010 A=mÞ
to the heating wire. We set V2f ¼ 0 V at the substrate in
Fig. 2(b) to remove the offset. The signal V2f at the sample
wire is partially attributable to the local ANE in the textured
Mn3Sn sample. The tip contact with the sample surface
induces a local out-of-plane temperature gradient ∇zTL.
The detectable anomalous Nernst voltage VL

ANE along the
wire-length direction is given by

VL
ANE ¼ 1

wt

ZZZ
SANE ·my · ∇zTLdxdydz; ð2Þ

wheremy is the unit vector of the cluster magnetic octupole
y component; w and t are the width and the thickness of the

nanowire, respectively. The range of integral is the volume
near the tip where the out-of-plane temperature gradient
extends. In our measurement configuration, the contribu-
tions of the in-plane temperature gradients to the ANE are
negligible since the magnitude of the x component (∇xTL)
is less than 2% of ∇zTL according to the simulation and the
y component (∇yTL) does not produce anomalous Nernst
voltage along the wire-length direction. The tip contact also
induces a local temperature change ΔTL, that causes the
Seebeck effect (SE) [15,30,31] at, for example, grain
boundaries where the Seebeck coefficient discontinuously
changes. Ignoring the spatial resolution, the Seebeck
voltage VL

SE is given by

VL
SE ¼

�
SðAÞxx − SðBÞxx

�
· ΔTL; ð3Þ

where SðAÞxx and SðBÞxx are the Seebeck coefficients of adjacent
two grains. Therefore, the signal shown in Fig. 2(b) results
from the local ANE and SE.
To observe the magnetic response of the Mn3Sn, we

employed a magnetizing process along the �y direction.
The sample was positioned within an independent electro-
magnet, allowing us to control the magnetic field in the
range of �2 T. We smoothly swept the magnetic field
strength from 0 to 2 T in the positive or negative y
directions, subsequently returning it to 0 T. After the
application of the magnetic field, we repositioned the
sample back into the AFM at its original location. We
then repeated the V2f mapping procedure at 0 T. The
resulting V2f mappings after applying �2 T are repre-
sented in Figs. 2(c) and 2(d), respectively. Notably, follow-
ing the application of a positive (negative) magnetic field,
we observed an expansion of the areas displaying positive
(negative) V2f signals. This clearly illustrates the presence
of a magnetic component within our signal.
We can numerically separate the magnetic (ANE) and

nonmagnetic (SE) signals from Figs. 2(c) and 2(d) by
having the following assumption: As magnetizing oppo-
sitely, the individual magnetic octupole moments reverse
the direction while the positions of the magnetic domain
boundaries remain unchanged [18,19]. This assumption
can be verified by the ANE measurement for the nanowire
shown in Fig. 1(d). Since the nonmagnetic SE signal is
unchanged between the positively and negatively magnet-
ized sample, the average and half difference between the
V2f in Figs. 2(c) and 2(d) give the SE and ANE signals,
respectively. The results are shown in Figs. 3(a) and 3(b).
We also subtract the nonmagnetic signals in Fig. 3(a) from
the V2f in Fig. 2(d), as shown in Fig. 3(c), which should
indicate the ANE signal in the initial magnetic state. In
Fig. 3(d), we show the line profile of the VSE and VANE
signals on the dashed lines in Figs. 3(a)–3(c). We will
discuss the details in Fig. 3 after showing the simulation
of the temperature distribution change induced by the tip.
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FIG. 2. Thermoelectric voltage mapping on the Mn3Sn sample
wire. (a) Magnified topography of the Mn3Sn sample wire.
(b) The local thermoelectric voltage mapping on the Mn3Sn wire
before applying an external magnetic field. (c),(d) The same, but
after applying positive and negative 2 T along the y direction,
respectively. The scanning areas for (a)–(d) are identical: the scan
range is 5.4 μm × 2.0 μmð400 pixels × 150 pixelsÞ.
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The results on another Mn3Sn device shown in the
Supplemental Material [32] are quantitatively very similar
to Figs. 2(b)–2(d) and 3(a)–3(c).
For discussion on the quantitative thermoelectric coef-

ficients and the spatial resolution of our technique, we
need the temperature distribution induced by the tip
contact in the sample wire. We performed numerical
simulations on the geometry of our real device by using
COMSOL Multiphysics [33]. According to studies in scanning
thermal microscopy [34–36], the dominant heat transfer
mechanisms between the tip and the sample are air
conduction and water meniscus [37]. In our model, these
mechanisms are represented by a disc-shapedvirtualmaterial
inserted in between the tip and sample with phenomeno-
logical parameters: the thermal conductanceGc¼ 20 μW=K
and the contact thermal radius rc ¼ 30 nm (which should be
comparable to the tip radius > 10 nm) [15]. The heat
conductivities of Mn3Sn, Si (tip and substrate), and SiO2

are 12 [38,39], 130 [40], and 1.2 Wm−1K−1 [41], respec-
tively. We set the initial temperature to 293.15 K and applied
a current of 3.4 mAðjc ¼ 3.6 × 1010 A=mÞ to the heating
wire next to the sample. We omitted the surface oxide layer
on top of the sample wire in the modeling, that barely affects
the results of the simulation. The simulated results are shown
in Figs. 4(a) and 4(b), the temperature distribution in the
x − z plane across the sample wire with and without tip
contact, respectively. Before the tip contact, the temperature
of the sample wire is ∼299 K, which is homogeneous, as
shown in Fig. 4(a). The tip contact drastically changes
the landscape of the temperature distribution as shown in
Fig. 4(b). The temperature change ΔTL (∼1.2 K on the
average in the sample) extent of ∼500 nm along the x
direction. The out-of-plane temperature gradient ∇zTL with
tip contact in the same plane is shown in Fig. 4(c).
Remarkably, the out-of-plane temperature gradient is pro-
duced very locally: the extent in the x direction is ∼80 nm.
Therefore, The integral in Eq. (2) should be taken in a
cylindrical region with the radius of 80 nm in the Mn3Sn
sample (themagnitude of∇zTL is∼4 × 106 K=monaverage
in the cylindrical region). We found that the resolution
of ANEð∼80 nmÞ is much better than that of
SEð∼500 nmÞ in our technique, that is consistent to our
previous experiments [14,15].
Figures 3(b) and 3(c) represent the distributions of the

y-component of the cluster magnetic octupole moments in
the Mn3Sn nanowire with a spatial resolution of 80 nm. As
shown in Fig. 3(c), the VANE becomes positive or negative
depending on the position, which implies the randomly
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FIG. 3. Numerically extracted nonmagnetic and magnetic sig-
nals. (a) Nonmagnetic signal. (b) Magnetic signal after applying
2 T. (c) Magnetic signal in the initial state. The averaging and
subtraction between the signals in Figs. 2(b)–2(d) produce these
images. The numerical processing was performed after carefully
aligning the shift of scanning positions. (d) The line profiles on the
dashed lines in (a)–(c). The green and red profiles represent the
magnetic signals before and after applying 2 T.
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FIG. 4. Simulated temperature distribution of the Mn3Sn
sample wire by COMSOL Multiphysics. (a) Temperature distribu-
tion in the x − z plane without tip contact. (b) Temperature
distribution with tip contact. (c) Distribution of the out-of-plane
temperature gradient with tip contact. The same geometry as the
actual device has been set. The heating wire is behind the sample
(Mn3Sn) wire.
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distributed octupole domains in the initial state. Small
islands of VANE marked by black arrows in Fig. 3(c) are
attributable to grains of Mn3Sn. After applying a magnetic
field, as shown in Fig 3(b), the VANE distribution changes,
and the value becomes always positive. These results
indicate that the octupole domains exhibit a remanent state
along the wire-width direction (þy direction). However, the
VANE signal is inhomogeneous, reflecting the presence of
the grains with tilted Kagome planes about the x axis,
consistent with the broad peak of (002) in Fig. 1(c), i.e.,
some grains with not-well-oriented kagome planes. Using a
typical value of VANE ∼ 180 nV in Figs. 3(d) and the
simulated value of ∇zTL ∼ 4 × 106 K=m, we obtained
SANE ∼ 0.27 μV=K. This value is greater than the estima-
tion by the conventional method shown in Fig. 1(d)
(0.18 μV=K), but close to the reported one in the single
crystal Mn3Snð∼0.3 μV=KÞ [39,42]. The nonuniform ANE
distribution per grain explains this tendency: Some grains
do not fully contribute to the ANE, probably due to their
tilted Kagome planes, which decreases the thermoelectric
efficiency from the intrinsic one. Using a typical value

of jVL
SEj ∼ 200 nV and Eq. (3), we obtain ðSðAÞxx − SðBÞxx Þ∼

0.17 μV=K. As we have discussed before, due to the
insufficient resolution, this value must be averaged across
several grains, but the order of magnitude is consistent with
the previous report, in which the Sxx along ½21̄ 1̄ 0� and
½011̄0� differ by 0.7 μV=K [38].
We observed the local anomalous Nernst effect in a

(0001)-textured Mn3Sn nanowire using the tip-contact-
induced temperature gradient with 80 nm spatial resolution.
Not like the magnetic imaging by the stray field measure-
ment, our approach directly maps the distribution of the
cluster magnetic octupole moments in Mn3Sn. We visual-
ized the octupole domains in the initial and remanent states
in a nanowire, which is crucial information for the
integration of Mn3Sn. Our work provides a solid method-
ology to investigate the magnetic structures of the anti-
ferromagnetic Weyl semimetal.
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