
Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

Xiao-Chen Sun,1,2,‡ Jia-Bao Wang,1,‡ Cheng He,1,2,3,* and Yan-Feng Chen1,2,3,†
1National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering,

Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

3Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China

(Received 8 May 2023; accepted 9 April 2024; published 24 May 2024)

Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-
established Abelian topological phases, while lacking straightforward configuration and manipulation,
especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of
triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings.
Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal
invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k
non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states.
Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-
commutative characters.
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Topological phases (TPs) represent a novel form of
matter [1–5] that has generated significant interest over the
last decade for designing band topology in artificial
materials, such as photonic and phononic crystals [6–18].
Their global behavior in the wave vector space (k space)
introduces robustness into energy bands, resulting in stable
wave transmission against unavoidable perturbations in
practical fabrications. The construction or breaking of
nodal points or lines of two neighboring bands typically
plays an essential role. One well-known case is topological
semimetals with topological charges (TCs) attached to
nodal points, which can manifest nontrivial Fermi arcs
[19,20]. It is intriguing to consider TCs as attributes
associated with the k sphere or k loop encompassing a
nodal point in the Brillouin zone (BZ) [21–23]. Breaking
such local band degeneracy further can give rise to
topological insulators, whose topological invariants such
as Chern number [1], Z2 invariant [24], and Zak phase [25]
characterize the global property of isolated bulk bands.
Then, nontrivial boundary states appear in the band gap.
So far, they have usually been used to deal with one gap or
nodal points between two adjacent bands, most of which
belong to the Abelian group with commutative property.
For example, TCs with opposite values annihilate, creating
gaps, while the same-valued TCs accumulate, transitioning
linear degeneracy to quadratic. Further gapping such a
quadratic degeneracy can lead to a system with a large
Chern number [26].
Things could be very different with more than one band

gap that can interact with each other. For instance, in a
three-band system, there are two interactive band gaps and
three kinds of possible degeneracies for every two bands,

corresponding to at least three kinds of TCs. They can
“braid” with each other, which is a unique noncommutative
operation intrinsically different from annihilation and accu-
mulation. Two-dimensional (2D), three-dimensional (3D),
and synthetic multiple dimensional topological semimetals
or complex eigenvalue space in non-Hermitian systems are
commonly considered to create sufficient dimensions for
band braiding and non-Abelian topological charges
(NATCs) [22,27–36]. Conversely, few studies have explored
one-dimensional (1D) NA band topology due to the con-
strained degree of freedom in this dimension, which in
practice necessitates additional parameter space and delib-
erate design, e.g., introducing imaginary couplings [23].
Although difficult to be realized, 1D NA systems have

their own advantages compared to semimetals. One stems
from their 1D BZ with periodic boundary conditions, that
can be seen as a subset k-loop surrounding some nodal
points in a parent 2D space. Consequently, the 1D NA cases
naturally upgrade to global NATPs, that can host end point
states in the full band gaps, leading to more straightforward
experimental observation. The other comes from their
simple model, compact size, and hassle-free manipulation
for future applications. A recent pioneering work demon-
strated 1DNAelectric circuit systems,which take advantage
of its accessible complicated configurations by taking a
subspace with both time-reversal (T ) and parity (P) sym-
metries broken while the combined PT symmetry is kept
Hamiltonian [23]. But theT -broken condition is not easy for
spinless airborne sound and even particularly difficult
[10] for possible complicated structures for braiding. For
example, although the 2D acoustic quantum Hall effect
based on T -broken models [13,14,37] is one of the earliest
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predicted acoustic topological phenomena, the experimental
realization is scarce so far [38].
In this Letter, we report on the experimental implemen-

tation of NATPs in a 1D T -invariant acoustic system. To
achieve this, we incorporate an additional partner unit cell
with braiding-type connecting tubes, which enables our
acoustic system to realize positive, negative, and complex
couplings within a single model. As a result, we observe all
i, j, and k phases belonging to the NA quaternion group Q,
featuring end point states and the generation of a phase
diagram. Furthermore, we verify quotient relations between
different NATPs. Based on the 1D T -invariant acoustic
system, our NATP paves a compact way to explore non-
commutative devices for classical waves.
Guaranteed by PT symmetry, the eigenvectors of the

system are pure real under a specific basis, which makes the
normalized vector matrix of a complete three-band gapped
system belonging to the orthogonal group Oð3Þ. Because
a vector can only be determined up to a sign �, the
order-parameter space of the Hamiltonian is the space
M3 ¼ Oð3Þ=Oð1Þ3. Degeneracies of bands invalidate the
discussion above and play as the obstacle of a S1 loop in
M3, which can be exactly described by the fundamental
group π1. In our case, π1ðM3Þ¼ℚ¼fþ1;�i;�j;�k;−1g,
the NA quaternion group as shown in Fig. 1(a) [22,23].
It comprises three anticommuting imaginary units that
satisfy ij ¼ −ji ¼ k, jk ¼ −kj ¼ i, ki ¼ −ik ¼ j, and
i2 ¼ j2 ¼ k2 ¼ −1, showing the invalid of the commuta-
tive law. Physically, þ1 represents the trivial topology
while f� ig, f� jg, f� kg, and f− 1g represent different
NATCs. A physical interpretation of this group is visual-
ized in Fig. 1(b), where two nodal points in a 2D three-band
system represent degeneracies between the 2nd & 3rd and
1st & 2nd bands, respectively. Because of the symmetry,
the wave vectors are pure real and acquire an additional π
phase along the k loop surrounding the nodal point, leading

to the assignment of charges iðkÞ. As the system evolves
with some parameter P, nodal points move along a braiding
trajectory and the k loop extends to a cylinder in the P-BZ
space. Inside the k cylinder, nodal point on every intersect-
ing surface indicates that NATC undergoes a process
of þk ∼ 1 ∼þi ∼ 1 ∼ −k. The sign of k changes due to
the NA braiding iki−1 ¼ k−1 ¼ −k [22], leading to the
bouncing of nodal points [31–33] (see Fig. S1 in the
Supplemental Material [39]). The only difference between
the 1D and 2D cases is that 1D BZ itself forms a k loop and
can be taken as a subspace in a 2D parent system. In this
sense, a local NATC upgrades to a global NATP [yellow
lines and arrow in Fig. 1(b)]. The intersection between the
nodal point trajectory and the k cylinder indicates the phase
transition points, where the band gaps close [Fig. 1(b)]. As
dictated by the bulk-boundary correspondence, end point or
interface state must exist at the boundary [Fig. 1(c)]. For
example, a 1D system with þk NATC shown in Fig. 1(b)
has an end point between the 1st and 2nd bands as shown in
the lower panel of Fig. 1(c).
One way to realize a theoretical model containing

such NATCs requires different types of couplings, includ-
ing positive, negative, and imaginary values [23], neces-
sitating T -broken condition. It has been established that
positive and negative couplings can be achieved by con-
necting cavities in the opposite and same directions,
respectively, by utilizing acoustic dipole modes because
the in-phase eigenvalue is larger or smaller than the out-of-
phase eigenvalue [40–42]. The expansion of the realm of
coupling coefficients leads to the higher-order topologi-
cal insulators and projection symmetry-protected Mobius
topological states, showcasing a profound new theory and
phenomenon [43]. Very recently, it has been confirmed
that positive and negative couplings introduce the twisted
π-flux block and, equivalently, a pair of T -invariant
complex hopping [44] (see Fig. S3 [39]). For practical
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FIG. 1. NATCs in bands. (a) Quaternion group. Balls represent group elements, and conjugate elements are in a similar color. For
example, �i are in light and dark red, respectively, while they are in the same topological class. Arrows in red, blue, and green define
mutual multiplications byþi,þj, andþk, respectively. For example, ð þ iÞ · ðblue →Þ ¼ ðþkÞ. (b) Schematic of the NATCs. DPs i and
k project onto the 2D BZ on a brown plane, marked as red and green dots, respectively. A k-loop circling DP-k in the origin changes its
NATCs with P increasing. A 1D BZ can be taken as such a loop in a high-dimensional space. (c) Band structure of i, j, and k phases.
Different phases feature different end point states.
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implementation, we use a braiding type of coupling
tubes to ensure uniform length among all the tubes,
and the coupling strength is controlled by diameters.
Additionally, we reshape the cavities into a U shape,
which enables tuning of on-site energy by their length and
minimizes the difference between the acoustic model and
the tight-binding approach (TBA) [45].
One unit cell contains 6 acoustic cavities, taking advan-

tage of braiding-type couplings conveniently constructed
via dipoles in U-shaped cavities. There are 3 cavities in one
layer for the requirement of 3 bands, and a set of partners on
the other layer for the construction of conjugate imaginary
couplings, as shown in Fig. 2(a), with sublattice index
XαðX ¼ A; B;CÞ, α ¼ ↑↓, respectively. The corresponding
TBA model is shown in Fig. 2(b). Their on-site energies are
marked as SX↑

¼ SX↓
≡ SX, which is controlled by the

length of the cavity hX. There are no inner cell couplings
between these 6 cavities. The intercell couplings can
be expressed as vðXα;nÞ;ðYβ ;nþ1Þ½δðX; YÞ − δðα; βÞ ¼ 0�,
indicating that only couplings with exact the same or
totally different index exist. We further constrain that
vðX↑;nÞ;ðX↑;nþ1Þ ¼ vðX↓;nÞ;ðX↓;nþ1Þ ≡ vX and vðX↓;nÞ;ðY↑;nþ1Þ ¼
−vðX↑;nÞ;ðY↓;nþ1Þ ¼ vðY↓;nÞ;ðX↑;nþ1Þ ¼ −vðY↑;nÞ;ðX↓;nþ1Þ ≡ vXY ,
with n marks the unit cell. All connecting tubes have the
same length, and the strength of coupling is determined by
their diameter dX=dXY. In practice, we use the sign “�d” to

indicate positive or negative couplings and mark them as
red or blue in Fig. 2(a). The TBA Hamiltonian in a 1D
chain can be constructed (see details in [39]) and further
expanded in kx space as

HðkxÞ ¼
�

HdðkxÞ iHoðkxÞ
−iHoðkxÞ HdðkxÞ

�

HdðkxÞ ¼

2
64
SA þ 2vA cos kx 0 0

0 SB þ 2vB cos kx 0

0 0 SC þ 2vC cos kx

3
75

HoðkxÞ ¼ 2 sin kx

2
64

0 vAB vCA
vAB 0 vBC
vCA vBC 0

3
75; ð1Þ

with the basis ðA↑; B↑; C↑; A↓; B↓; C↓Þ. With the unitary
transformation U ¼ expðiτx ⊗ σ0π=4Þ, in which τx is the x
component of Pauli matrix and σ0 is the 3 × 3 identical
matrix, the Hamiltonian can be diagonalized with new
basis ðA↑ þ iA↓; B↑ þ iB↓; C↑ þ iC↓; A↑ − iA↓; B↑ − iB↓;
C↑ − iC↓Þ=

ffiffiffi
2

p
:

H0ðkxÞ ¼ UHðkxÞU†

¼
�
HdðkxÞ þHoðkxÞ 0

0 HdðkxÞ −HoðkxÞ

�

≡
�
HþðkxÞ 0

0 H−ðkxÞ

�
: ð2Þ

H�ðkxÞ are Hamiltonian with a pair of T -symmetric
conjugate NATCs. The effective model is shown in
Fig. 2(c).
In contrast to the Berry phase usually used to character-

ize topology of sole one bandgap, the topological property
of the current two related band gaps can be described by the
NA charge:

Q ¼ exp

�I
AðkxÞ · dkx

�
ð3Þ

where AðkxÞ ¼
P

t βt½−ði=2Þσt�with σt as the Pauli Matrix,
βt ¼

P
pqhupj∂kx juqiϵtpq=2 calculated from bands p and q,

ϵtpq being fully antisymmetric tensor. The bar over the
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FIG. 2. Model construction. (a) Two layers of acoustic structure.
U-shaped cavities are connected with effective positive couplings
by red tubes, and negative couplings by blue tubes. All the tubes
share the same length L ¼ 7 cm. The lattice constant is a ¼ 3 cm,
and the width of the cavity is W ¼ 0.48 cm. Other parameters are
shown in Table I [39]. (b) TBA model with pure real couplings.
(c) Effective TBA model with imaginary couplings.
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exponent indicates path ordering. The results of quaternion
group elements are represented as Pauli matrix 1 → σ0,
i → iσx, j → iσy, and k → iσz, where σ0 is the 2 X 2
identify matrix. It should be noticed that the signs � only
have relative meaning for NATCs i,j, and k, but distinguish
the trivial phase 1 and nontrivial phase −1 for the unit 1.
�ið�j;�kÞ can only be distinguished up to a basepoint,
which means that a pair of conjugate charges cannot be
distinguished by observing them separately. Their differ-
ence only manifests as interface states sandwiched by
them [23]. In this sense, although our design cannot
distinguish a pair of conjugate NATCs, it provides a good
platform to study one single phase and the interface
between phases in different classes. In the following, we
use the NATC of HþðkxÞ to represent a specific system.
The 9 parameters inHþ can be classified into 3 groups: 3

on-site energies SA;B;C, 3 intercell couplings with the same
letter index vX, and 3 intercell couplings with different
letter index vXY . The first two groups are in the diagonal
position of the Hamiltonian. The sum of each group
(SA þ SB þ SC & vA þ vB þ vC) does not affect the
NATC, because they can only shift or scale the bands.
To ensure orthogonality, we set the other parameters

as SA − SB ≡ S−, SA þ SB − 2SC ≡ Sþ, vA − vB ≡ v−,
vA þ vB − 2vC ≡ vþ, vAB ≡ u, vBC ≡ v, and vCA ≡ w.
Without the loss of generality, we neglect the long-range
coupling (w ¼ 0) and the difference of the first two sites
(S− ¼ 0), and set u ¼ 1 as the unit. We obtain a phase
diagram with 3 of remaining parameters: v−; vþ and Sþ as
shown in Fig. 3(a) leaving v ¼ 1 (see Fig. S4 [39]).
1D NATPs feature end point states in bulk gaps. We first

select states in i and k phases marked as triangle and square,
respectively, in Fig. 3(a) (Details of parameters can be
found in Table I [39]). The sample of phase i with probe
and source is presented in Fig. 4(a) (see Fig. S5 [39]). All
samples are fabricated using photosensitive resin via 3D
printing, regarded as an acoustic hard boundary. We drill
some round holes on the cavities at the upper and lower
surfaces and print a corresponding plug for the convenience
of measurements. In the frequency range we focus on, there
are three bands with two gaps. Nontrivial NATPs can be
clarified by the rotation of the state when wave vector kx
goes through the loop −π=a to π=a. For instance, in the i
phase, the states of the 2nd and 3rd bands get π phase while
the lowest state maintains its sign (see Fig. S6 [39]). If we
embed the 1D BZ into a parent 2D BZ by replacing cos kx
and sin ky with kx and ky, a degeneracy between 2nd and 3rd
bands can be found. Consequently, we can see an end point
state between the twisting bands. The experiment results are
shown in Fig. 4(b), which agree with the simulation and
TBA results (see Fig. S7 [39]). Simulations are implemented
by the commercial software COMSOL Multiphysics based
on a finite element method. The states in the k phase twist its
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1st and 2nd bands and manifest an end point state between
them as shown in Fig. 4(d).
The phase diagram provides us with more information

when the fourth dimension is introduced. By fixing vþ ¼ 0,
and treating inactive v as an axis, we obtain the phase
diagram in Fig. 3(b). It is worth noting that the slice
of v ¼ 1 in Fig. 3(b) is identical to the slice vþ ¼ 0 in
Fig. 3(a). The phases appear to be unaffected along the v
axis, except for the band degeneracy at v ¼ 0, which does
not lead to a phase transition. We select a state in the j
phase denoted by a circle, which twist its 1st and 3rd bands,
and two sets of states sandwich the 2nd band and can be
observed [Fig. 4(c)]. Another phase diagram is shown in
Fig. S8 [39], which shows the tunable nature of our system.
In the Abelian case, such as Berry phase in Chern

insulators, the domain-wall act as the difference of two
phases sandwiching it: ΔQ ¼ QL −QR, which transitions
to quotient relations in NA scenario: ΔQ ¼ QLQ−1

R ¼
QL=QR [23]. Specifically, the domain-wall between phases
j& kðk& i; i& jÞ acts similarly the end point in one single
phase iðj; kÞ. In fact, both Abelian and NA cases follow
the same rule that the domain-wall state is determined by
the original and inverse value of topological invariants on
its two sides, respectively. The experimental sample with
the detector and source marked is shown in Fig. 5(a). NA
quotient relations are visible in our acoustic systems, as
shown in Figs. 5(b)–5(d).
In summary, our Letter demonstrates the realization of

NATPs in the T -invariant acoustic system. In a similar way,
a more compact T -broken model based on air-flow

background [14] with a minimum three-atom unit cell,
could be used to realize analogous NATPs (see Fig. S9 in
[39]). Through this temporal modulation, the nonreciprocal
even nonlinear non-Abelian braiding process could be
explored in the future, which might be relevant to the
impact of phonon dynamics on coherence or other quantum
mechanical phenomena [46]. The concept of NATP can be
further combined with non-Hermitian [29] and Floquet
topology [47], or other NA braiding processes [48–52] to
explore new phenomena. In contrast to its 2D and 3D
counterparts, 1D NA topology exhibits a distinct end point
state in a complete gap, making it a promising candidate for
designing functional primitive structures. By utilizing
acoustic dipole modes, we effectively implement positive,
negative, and equivalently complex couplings, making
acoustic crystals a versatile platform for simulating almost
all kinds of TBAmodels in theory. Our design only requires
one auxiliary unit cell and provides probably the simplest
method to achieve effective complex couplings in practice,
which could be useful for compact devices. The model
could be realized in a finite size sample, preserving the
essence of NA physics (see Fig. S10 [39]). The connecting
tubes can be replaced by soft tubes, making it a plug-and-
play and tunable topological device designs. The phase
diagrams obtained with different parameters reveal the
system’s distinct physical properties, directly indicating
the topological intricacy and can potentially provide a clear
and definitive roadmap for future NA topological device
development.
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