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Anyons are particles intermediate between fermions and bosons, characterized by a nontrivial exchange
phase, yielding remarkable braiding statistics. Recent experiments have shown that anyonic braiding has
observable consequences on edge transport in the fractional quantum Hall effect (FQHE). Here, we study
transport signatures of anyonic braiding when the anyons have a finite width. We show that the width of the
anyons, even when extremely small, can have a tremendous impact on transport properties and braiding
signatures. In particular, we find that taking the finite width into account allows us to explain recent
experimental results on the FQHE at filling factor 2=5 [M. Ruelle et al., Phys. Rev. X 13, 011031 (2023)].
Our work shows that the finite width of anyons crucially influences setups involving anyonic braiding,
especially when the exchange phase is larger than π=2.
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Anyons are particles intermediate between bosons and
fermions, characterized by fractional exchange statistics
[1–3]. These are proposed to occur in two spatial dimen-
sions, and have found a solid experimental footing in the
fractional quantum Hall effect (FQHE) [4,5]. Fundamental
interest and potential technological applications [6] have
fueled intense activity leading to several theoretical pro-
posals to detect anyonic statistics in the FQHE [7–15].
Only recently, experiments were able to detect anyonic
statistics in the FQHE in the simplest filling fraction of 1=3
[16–19] as well as in the more complicated fraction of 2=5
[20–22].
Transport experiments on FQHE edges have been

successful in quantitatively extracting anyonic statistics
by measuring current correlations. In contrast to spatial
braiding as in the Fabry-Perot geometries, the physical
mechanism at play here is time-domain braiding [23]. In the
latter, anyons emitted from a source quantum point contact
(QPC) form a braiding loop in time with anyon pairs
excited at a QPC in the FQHE. The braiding loop in time is
due to the interference between two different time-ordered
processes [24,25].
Experiments are well captured by the theoretical for-

malism for ν ¼ 1=3 FQHE where the exchange phase is
π=3 [26]. However, experimental results at ν ¼ 2=5, where
theory predicts an exchange phase of 3π=5, strongly differ
from the theoretical predictions, even for a quantity as
essential as the sign of the tunneling current. The multiedge
structure of the ν ¼ 2=5 FQHE suggests the influence of
interedge interactions or edge reconstruction, among
others, as possible sources of the observed deviation from
theoretical predictions. However, none of these candidates
seem to explain the observed sign of the tunneling current.
In existing calculations, the natural assumption is to

neglect the width of anyons. Indeed, while anyonic

excitations always have a nonzero extension, it is deemed
negligible as it is typically much smaller than the average
spacing between successive anyons, and the thermal length
of the system. In this Letter, we show that the finite width of
the anyons, even when small, significantly affects their
braiding signatures, reflecting on the transport properties of
the system, in particular for composite fractions of the
FQHE where the exchange phase is larger than π=2.
Beyond the specific system we consider, our results show
that the finite extension of anyons is an essential ingredient
for a correct description of setups involving anyonic
braiding.
Time-domain braiding.—We first review the basics of

time-domain anyonic braiding [15,23,24,27]. Consider the
geometry of Fig. 1, showing a Hall bar in the FQHE with
chiral edge states, equipped with a QPC operating in the
weak tunneling regime, where tunneling of quasiparticles
between the edges can occur. For the system at equilibrium,
at all times, spontaneous processes where a quasiparticle-
quasihole (QP-QH) pair is created at the QPC do exist,
leading to zero net current due to electron-hole symmetry.
However, when a single quasiparticle (QP) on the upper
edge impinges on the QPC, there is a nontrivial interference
between the process where the QP-QH pair is created
before, and the one where it is created after the arrival of the
single QP. The interference of these two processes leads to
a braiding loop in the time domain, with an overall
coefficient 1 − e2iθ, where θ is the exchange phase between
two QPs. For fermions and bosons, the overall contribution
is zero, as θ ¼ π or 0, and the tunneling current is only due
to direct tunneling of the incoming QP through the QPC.
For anyons however, the cancellation is only partial due
to their nontrivial braiding statistics, with for example
θ ¼ π=3 for anyonic QPs in ν ¼ 1=3 FQHE. It has been
shown that this anyonic exchange dominantly contributes
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to physically measurable quantities at the QPC such as the
average tunneling current and current correlations [24,25].
In this work, we consider the impact of the finite width of
the incoming QP on the anyonic exchange process, and its
consequences on the transport properties.
Model.—We consider a Hall bar in the FQHE with chiral

edge states, equipped with a QPC where tunneling between
the edge states can occur (see Fig. 1). For simplicity, each
edge is described as a single mode Laughlin chiral Luttinger
liquid. As shown in the Supplemental Material [28], this can
capture the physics of complex composite fractions like ν ¼
2=5 by adapting the values of the parameters [see the dis-
cussion of Eq. (3)]. Up and down edge states are described in
the total Hamiltonian as H0u=d ¼ ðvF=4πÞ

R
dxð∂xϕu=dÞ2,

where ϕu (ϕd) denotes the bosonic mode on the upper
(lower) edge, vF > 0 is the propagationvelocity of the boso-
nic mode. The bosonic modes satisfy equal-time commu-
tation relations ½ϕu=dðxÞ;ϕu=dðyÞ� ¼ �iπsignðx − yÞ. The
edge hosts anyonic quasiparticles of charge e� ¼ νe,

described by the operator ψ ∼ ei
ffiffi
ν

p
ϕ. The QPC is placed

in the weak backscattering regime, causing tunneling of
anyonic QPs between the two edges. The corresponding
tunneling Hamiltonian is HTðtÞ ¼ Γ½AðtÞ þ A†ðtÞ�, where
AðtÞ ¼ ei

ffiffi
ν

p ðϕuð0;tÞ−ϕdð0;tÞÞ and Γ is the tunneling amplitude.
Similarly, the current flowing from edge u to d is given
by ITðtÞ ¼ ie�Γ½A†ðtÞ − AðtÞ�.
Current due to a single QP.—We first consider the

current created by a single anyonic QP on the upper edge
incident on the QPC. Crucially, this QP is taken to have a
finite extension. Because of chirality of the edge, this
spatial width leads to a finite temporal width for the bosonic
field at the position of the QPC. This can be modeled by
adding a finite-width solitonic excitation on the bosonic
edge modes [26,30]

ϕu ⟶ ϕu þ 2
ffiffiffi
λ

p �
tan−1

�
t − t0
tw

�
þ π

2

�
ð1Þ

where tw denotes the temporal width of the QP, whose
center reaches the QPC at t ¼ t0 and πλ is the phase due to
the exchange of two QPs. The current at the QPC due to
this QP can be expressed, to leading order in Γ, using the
Keldysh formalism as [31]

hITðtÞi ¼ −
i
2

Z
dt0

X

ηη0
η0
��

TKITðtηÞHTðt0η0 Þ
	
 ð2Þ

where η; η0 denote the Keldysh contour labels, and TK
denotes time ordering on the Keldysh contour. It takes the
form [28]

hITðtÞi¼2ie�Γ2

Z
t

−∞
dt0

�
e2δGðt−t0Þ−e2δGðt0−tÞ

�

×sin

2λ

�
tan−1

�
t− t0
tw

�
− tan−1

�
t0− t0
tw

���
ð3Þ

where GðtÞ ¼ hTϕðtÞϕð0Þi is the bosonic Green’s function

GðtÞ ¼ ln
�

sinhðiπkBTτ0=ℏÞ
sinh½πkBTðt − iτ0Þ=ℏ�

�
: ð4Þ

Here τ0 is the short-time cutoff, T is the temperature, and δ
is the scaling dimension of the QP tunneling across the
QPC. For the Laughlin case, one simply has λ ¼ δ ¼ ν. For
composite fractions, the values λ and δ can be adjusted to
describe the physics of the associated QP. For example, for
a FQHE with filling factor ν ¼ 2=5, the e=5 QPs can be
addressed simply by taking λ ¼ δ ¼ 3=5, and e� ¼ e=5, in
Eq. (3) [28,32].
The incoming QP wave packet in Eq. (1) is assumed to

have a Lorentzian profile [28]. Because of the finite width
of the QP wave packet, its braiding phase is smeared in
time, and it contributes only partially at a given time. This

(a)

(b)

FIG. 1. (a) Idealized geometry of a FQHE bar with a QPC,
showing an extended quasiparticle (QP, shape filled with blue and
white) impinging on the QPC on the upper edge. A tunneling
current through the QPC is created by the anyonic exchange
between the QP and the QP-quasihole pairs (green-red) excited at
the QPC. Because of its finite temporal width (tw), the QP
contributes only partially to braiding at time t at the QPC, as
indicated by the blue part of the QP. (b) Tunneling current at the
QPC, in units of I0 ¼ Γ2TðπTτ0Þ2δ−1, due to a single incoming
QP as a function of time [Eq. (3)] for λ ¼ δ ¼ 3=5, and for
different QP widths (tw ¼ 0, 0.01, 0.1 in units of tTh ¼ ℏ=kBT).
The center of the QP hits the QPC at t ¼ 0. As the width is
increased the current shifts from negative to positive values. Inset:
same figure for λ ¼ δ ¼ 1=3, showing that the effect of the QP
width is not significant for λ < 1=2.
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can significantly affect the tunneling current as illustrated
in Fig. 1(b). For tw → 0, the sine in Eq. (3) reduces to
θðt − t0Þθðt0 − t0Þ sinð2πλÞ, where θ is the Heaviside step
function, the current then reduces to a slowly decaying
function of time, with a characteristic timescale set by the
temperature, tTh ¼ ℏ=ðkBTÞ [33].
We show the tunneling current as a function of time for

λ ¼ 3=5 in Fig. 1(b) for different values of the width tw of
the incoming QP, and δ ¼ 3=5. For tw ¼ 0, the tunneling
current is strictly negative, as sinð2π × 3=5Þ < 0. As soon
as the QP has a finite width, the current becomes positive,
on a time interval around t0 which becomes wider as tw is
increased. Importantly, even if δ is adjusted, the qualitative
behavior of the currents remains largely unchanged, as long
as λ > 1=2: changing δ modifies the power-law decrease of
the Green functions in Eq. (3), which will mainly move the
value of tw at which the current becomes negative, without
changing the overall behavior of the current. This behavior
is in complete contrast to that at λ ¼ 1=3 (which corre-
sponds to the usual Laughlin ν ¼ 1=3 case). Here, the
current due to a QP of zero width is positive. However,
endowing the QP with a finite width does not significantly
impact the current, as shown in the inset of Fig. 1, for
δ ¼ 1=3. Again, the qualitative behavior is robust against a
change of parameters, as long as λ < 1=2.
As shown in Fig. 1, the impact of a finite width is starkly

different between λ > 1=2 and λ < 1=2. For λ > 1=2, the
smearing of the braiding phase due to the finite width of the
incoming anyon leads to an effective λ smaller than 1=2 at
small times, dramatically changing the sign of the current.
On the other hand, for λ < 1=2, the smearing of the
braiding phase only produces a small quantitative effect,
without qualitative change of the current. λ ¼ 1=2 acts as a
threshold value: for λ < 1=2 (resp. λ > 1=2) the braiding at
the QPC occurs dominantly between the incoming anyonic
QP and the QPC QP (resp. QH), which explains why the
tunneling current changes sign when λ crosses 1=2 [28].
Poissonian stream of QPs.—We now consider the case

of a Poissonian stream of QPs incident on the QPC, leading
to an average current Iu (Id) on the upper (lower) edge. This
corresponds to the situation of Ref. [16] where upstream
QPCs in the tunneling regime are used as the sources of the
QP streams.
In the single QP case, there were two timescales

characterizing the system: the thermal time tTh ¼
ℏ=ðkBTÞ and, tw, the temporal width of the QP. A stream
of QPs introduces another important timescale: the average
temporal spacing between successive QPs, given by the
inverse of the incoming current on the QPC, ts ¼ e�=Iþ,
where I� ¼ Iu � Id.
Normalizing all times with ts, the stream of incoming

QPs on the QPC can be modeled by modifying the bosonic
fields as

ϕu=d ⟶ ϕu=d þ 2
ffiffiffi
λ

p X

k

�
tan−1

�ðt − tu=dk Þ=ts
τw

�
þ π

2

�
ð5Þ

where tu=dk denotes the time at which the kth QP on the u=d
edge hits the QPC, and these times follow a Poissonian
distribution. Moreover, we have defined the scaled width of
QPs, τw ¼ tw=ts. Using the expression of the current in
Eq. (2), the average tunneling current at the QPC is [28]

hITi ¼ −4e�Γ2

Z
∞

0

dt
sin ½xImfðt; λ; τwÞ�
exp ½Refðt; λ; τwÞ�

Imðe2δGðtÞÞ ð6Þ

where we have performed a Poissonian average over the
times tu=dk , and x ¼ I−=Iþ is the asymmetry of the incom-
ing currents. fðt; λ; τwÞ is the phase accumulated as finite-
width QPs pass the QPC, and is given by

fðt; λ; τwÞ ¼
Z

∞

−∞
du


1 − exp

�
−2iλ

�
tan−1

�
t=ts − u

τw

�

þ tan−1
�
u
τw

����
: ð7Þ

Here, the integration over u is essential as due to their finite
width, the QPs start affecting the QPC even before their
center hits the QPC. We emphasize that Eq. (7) gives the
phase accumulated due to braiding of the Poissonian stream
of finite-width QPs with QP-QH pairs at the QPC. This
is readily seen by taking tw → 0, giving fðt; λ; τwÞ →
t=tsð1 − e−2iπλÞ, which is the phase due to a stream of
zero-width QPs [26].
We plot the imaginary part of the finite-width phase

fðt; λ; τwÞ as a function of time in Fig. 2, for λ ¼ 3=5 and
different values of the scaled width τw. For τw ¼ 0, the
imaginary part of the phase is simply linear in t, with a
negative slope equal to sinð2πλÞ. As soon as the QPs have a
finite width, we find a dramatic change occurring close to
t ¼ 0: Imfðt; λ; τwÞ is initially positive, and takes a finite
amount of time (set by τw) to become negative and
eventually recover the same negative slope. This behavior

FIG. 2. Imaginary part of the finite-width phase as a function of
time for λ ¼ 3=5, for scaled width τw ¼ 0, 0.01, 0.03. It is
sinð2π � 3=5Þðt=tsÞ for τw ¼ 0, but becomes positive close to
t ¼ 0when τw is finite. Inset: same curves for λ ¼ 1=3, showing that
for λ < 1=2 a finite width does not significantly change the phase.
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is reminiscent of the behavior of the current due to a single
QP shown in Fig. 1. The inset of Fig. 2 shows the imaginary
part of the phase for λ ¼ 1=3. There, we see a linear
behavior with a positive slope for τw ¼ 0, which is only
marginally affected when τw is nonzero. Note that the real
part of the phase, which also enters Eq. (6), mostly
contributes to the integral at short times. However, it does
not vary significantly with τw for any λ, and is thus not
shown here.
Hence, close to t ¼ 0, the effective phase experienced by

the QPs tunneling across the QPC is quite different from the
full phase of the QP. As the rest of the integrand is peaked
close to t ¼ 0, a sizable contribution to the tunneling
current comes from the t ≃ 0 region. We find that this
results in an average positive tunneling current for λ ¼ 3=5,
as opposed to a negative average tunneling current seen for
delta-width QPs. This is shown in Fig. 3(a) where the mean
current hITi is plotted as a function of the scaled width τw

for different values of the asymmetry x of the incoming
currents. One readily sees that hITi grows from negative to
positive as τw is increased. For Lorentzian QP wave
packets, hITi changes sign at τw ∼ 0.003; for other shapes
of finite width QPs (not shown), the qualitative behavior is
the same.
We now examine the consequence of the finite width of

the incoming QPs on the experimentally measured P factor
[26,28], which is a generalized Fano factor for the cross-
correlations of the output currents:

Pðx ¼ I−=IþÞ ¼
hδIuδIdi

e�Iþ
∂hIT i
∂I−

�
�
�
I−¼0

ð8Þ

where hδIuδIdi denotes the current cross-correlations. The
P factor was measured in recent experiments [16,20,21] to
extract anyonic statistics in the FQHE. For ν ¼ 1=3 FQHE,
the experiments find an excellent agreement with the theory
of Ref. [26] where the incoming QPs are assumed to have
zero width. On the other hand, for ν ¼ 2=5, the experiments
are in strong disagreement with the theoretical calculations,
as the P factor is predicted to be positive and quite large
(close to 6), while the experiments measure negative values
of the order of −1.
We plot the P factor for ν ¼ 2=5 FQHE (λ ¼ 3=5,

δ ¼ 3=5) in Fig. 3(b) for different values of the scaled
width τw. Experimental data points from Ref. [20] are
shown in brown. The black curve denotes the predictions of
Ref. [26] where τw ¼ 0, and is in complete disagreement
with the experimental data. With a nonzero τw, the curves
now have negative values, getting closer to the experimen-
tal data. The inset zooms into the region around the data
points; we find that τw ∼ 0.075 agrees relatively well with
the experiments.
The scaled width τw is proportional to the transparency

T of the source QPCs. Indeed the applied voltage V before
a source QPC can be seen as a regular stream of incoming
excitations whose spacing is equal to their width (∼1=V).
As only a fraction T of these excitations is transmitted, it
gives a scaled width τw ∼ T . The value τw ∼ 0.075 that we
find to get a reasonable agreement with the experimental
results for the P factor is thus compatible with the trans-
parencies T used experimentally (typically T ∼ 0.1).
A detailed comparison with experimental results, including
the effect of varying the transparency T [18], and consid-
ering different shapes for the excitations [28], will be the
subject of future work.
In conclusion, we have studied anyonic braiding sig-

natures in FQHE edge transport accounting for the anyons’
finite width. We have shown that the finite width of anyons
decreases the effective braiding phase seen at the QPC. For
a braiding phase 2πλ > π, a finite width can lead to an
effective phase < π, changing the sign of the tunneling
current. This allows us to quantitatively explain recent

FIG. 3. (a) Tunneling current hITi at the QPC due to a stream of
Poissonian QPs, as a function of scaled width τw, for different
values of current asymmetry: x ¼ 0.2, 0.5, 1. hITi is negative for
very small τw, and becomes positive for τw ≳ 0.003. (b) Fano
factor PðxÞ of Eq. (8) as a function of the current asymmetry x for
different values of scaled width: τw ¼ 0, 0.05, 0.075, 0.1.
Experimental data from Ref. [20] are shown as brown points
with error bars. PðxÞ is in contradiction even with the sign of the
experimentally measured values for τw ¼ 0, but becomes com-
patible with the experimental data for τw ≃ 0.075. Inset: enlarge-
ment of the region close to the experimental data points. Curves
on both panels were obtained in the regime of negligible
temperature.
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experiments on ν ¼ 2=5 FQHE. In contrast, for a braiding
phase 2πλ < π, the finite width only reduces this phase
further, causing no change in the sign of tunneling current.
This explains the relative insensitivity of ν ¼ 1=3 FQHE to
the finite width of anyons. Our conclusions are robust
against variation of the scaling dimension, which is
typically nonuniversal.
This work naturally leads to several possible extensions.

Given the crucial impact of the finite width of incoming
anyons, it might be interesting to study the consequences of
the finite extent of the QPC [34–36]. The impact of
Coulomb interaction inside the QPC could also be impor-
tant for a complete description of the system. Finally,
accounting for the finite width may be important in other
architectures involving anyons including flying qubits [37],
Fabry-Perot, and Mach-Zehnder interferometry [38], and
even in different physical platforms hosting anyons such as
spin liquids [39–42].

Note added.—Recently, another work appeared [43], which
also studies the impact of finite width on anyon colliders,
and finds results consistent with ours.
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