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A mobility edge (ME), representing the critical energy that distinguishes between extended and localized
states, is a key concept in understanding the transition between extended (metallic) and localized
(insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a
quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzing quench
dynamics with sudden introduction of dissipation. We demonstrate that dissipation can lead the system into
specific states predominantly characterized by either extended or localized states, irrespective of the initial
state. Our results establish the use of dissipation as a new avenue for inducing transitions between extended
and localized states and for manipulating dynamic behaviors of particles.
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Introduction.—The investigation of electronic transport
properties lies at the heart of condensed-matter physics [1].
Disorder is ubiquitous, and its crucial impact on transport
properties was unveiled through Anderson localization
(AL) [2,3]. In three-dimensional systems with substantial
disorder, a transition can occur from the extended phase to
the localized phase. Near this transition point, mobility
edges (MEs) may emerge, defining the critical energy that
distinguishes extended states from localized ones [3–5].
ME is a vital focus in studying disordered materials and
helps in understanding a material’s conductivity and
electronic properties. The extended-localized (metal-
insulator) transition can be induced by altering the position
of the Fermi energy across the ME. In addition to random
disorder, quasiperiodic potentials can also induce the
extended-localized transition (ELT) [6–22], resulting in
distinct physical phenomena different from that of disor-
dered potentials. For instance, in one-dimensional (1D)
quasiperiodic systems, the ELTand MEs can exist, whereas
in disordered systems, these phenomena are expected to
occur in dimensions higher than 2 according to scaling
theory [23].
With advancements in non-Hermitian physics and the

manipulation of both dissipation and quantum coherence
in experimental settings, recent years have witnessed a
growing interest in studying dissipative open quantum
systems. Dissipation can profoundly change the properties
of quantum systems, leading to various types of phase

transitions [24–34]. The impact of dissipation on the
localization and transport properties in disordered [35–44]
and quasiperiodic systems [45–51] has also garnered
widespread attention. It has been observed that dephasing
noise can transform other forms of transport behavior into
diffusive [46–48], thus, for subdiffusive and localized
systems, dephasing can destroy AL and enhance transport.
When considering the presence of MEs, the coupling of the
system boundaries to baths may significantly increase
environment-assisted quantum transport [49] and energy
current rectification [50].
Recently, Yusipov and co-workers applied a dissipative

operator [given by Eq. (4) below] to a disordered system
and discovered that it can drive AL into a stable state that
retains its localized properties without being destroyed
[42,43]. In this Letter, we investigate the impact of such
dissipation on a 1D quasiperiodic system with MEs and
find that the dissipation can drive the system into specific
states, which may be extended or localized, regardless of
the initial state. This reveals that the dissipation can induce
the transition between extended and localized states. Such
effects are not achievable with other types of dissipation,
such as dephasing, energy decay, particle number decay,
and so on. Remarkably, the ELT here does not necessitate
the change in either disorder strength or particle density,
both of which are believed to be the ways for altering the
properties of localization through shifting the relative
positions of the Fermi energy and the ME. Thus, the
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combination of such dissipation and MEs provides a
new approach to induce ELT and manipulate a system’s
transport properties.
Model.—We consider a dissipative system whose density

matrix ρ follows the Lindblad master equation [52,53],

dρðtÞ
dt

¼ L½ρðtÞ� ¼ −i½H; ρðtÞ� þD½ρðtÞ�; ð1Þ

where L is referred to as the Lindbladian, with its
dissipative component denoted as

D½ρðtÞ� ¼ Γ
X
j

�
OjρO

†
j − 1=2fO†

jOj; ρg
�
; ð2Þ

which contains a set of jump operatorsOj, all with the same
strength Γ here. Assuming that L is time independent,
we can express ρðtÞ ¼ eLtρð0Þ. One can define the steady
state as ρss ¼ limt→∞ ρðtÞ, which corresponds to the
eigenstate of the Lindblad generator with zero eigenvalue,
i.e., L½ρss� ¼ 0.
The Hamiltonian we consider in Eq. (1) is denoted as

H ¼ J
X
j¼1

�
c†jcjþ1 þ H:c:

�þ 2
X
j¼1

Vjnj; ð3Þ

where cj and nj ¼ c†jcj are, respectively, the annihilation
operator and local number operator at site j, and J is the
nearest neighbor hopping coefficient. The local potential Vj

takes V cos ½2πωjþ θ� for even sites and vanishes for odd
sites, where ω is an irrational number, and V and θ are
potential amplitude and phase offset, respectively. The
model is referred to as the 1D quasiperiodic mosaic model,
which features two MEs at Ec ¼ �J=V [13]. These two
MEs divide the energy spectrum into three regions,
including one extended region (−J=V < E < J=V) and
two localized regions corresponding to E > J=V and
E < −J=V, respectively. This model has been recently
realized, and the MEs have been detected [54]. Without
loss of generality, we set J ¼ 1, V ¼ 1, θ ¼ 0, and
ω ¼ ð ffiffiffi

5
p

− 1Þ=2. Unless otherwise stated, we use open
boundary conditions in subsequent calculations.
The jump operator considered in Eq. (2) is given

by [42,43,55–60]

Oj ¼ ðc†j þ eiαc†jþlÞðcj − eiαcjþlÞ; ð4Þ

which acts on a pair of sites j and jþ l. This jump operator
does not alter the system’s particle number, but it does
change the relative phase between the pair of sites with the
distance l. For example, this operator synchronizes them
from an out-of-phase (in-phase) mode to an in-phase (out-
of-phase) mode when the dissipative phase α is set to 0 (π).
Such property is important for attaining the intended

extended or localized stationary states, as will become
evident below.
Dissipation-induced ELT.—We begin by examining the

jump operators in Eq. (4) for l ¼ 1 and analyzing the
properties of the stationary solution ρss in the eigenbasis of
the HamiltonianH, that is, ρmn ¼ hψmjρssjψni, where jψmi
and jψni are the eigenstates of the Hamiltonian H.
Figures 1(a)–1(c) illustrate the transition of the system’s
steady state from being predominantly composed of high-
energy localized states to predominantly composed of low-
energy localized states as the dissipation phase is varied
from α ¼ 0 to α ¼ π. The steady state here is independent
of the initial state. This implies that, if the initial state is
within the extended region located in the middle of the
energy spectrum, when the jump operator with α ¼ 0 or
α ¼ π is introduced, the state will ultimately predominantly
concentrate on localized regions.
The composition of the steady states can be understood

by analyzing the relative phases of neighboring lattice sites.
For an arbitrary nth eigenstate jψni ¼

P
L
j ψn;jc

†
j j∅i with

L being the system size, we can calculate the phase
difference Δϕn

i;l between the ith and the (iþ l)th lattice
points as Δϕn

j;l ¼ argðψn;jÞ − argðψn;jþlÞ. If Δϕn
j;l ¼ 0, it

implies that they are in phase. Therefore, we can calculate
the number of in-phase site pairs Nin

n;l with distance l, and

FIG. 1. The absolute values of the density matrix elements for
steady states with the dissipative phases (a) α ¼ 0, (b) α ¼ π=2,
and (c) α ¼ π in the eigenbasis of the Hamiltonian H. (d) The
proportion of in-phase site pairs for each eigenstate. Dashed lines
mark the MEs, separating eigenstates into localized (L), extended
(E), and localized (L) regions as eigenvalues increase. Here we
take l ¼ 1, L ¼ 100, and Γ ¼ 1.
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its proportion Pin
n;l ¼ Nin

n;l=Nt, where Nt ¼ L − l represents
the total number of site pairs. Figure 1(d) illustrates
that eigenstates with higher (lower) energy tends to have
larger (smaller) Pin

n;1 [61], explaining why the steady state
predominantly concentrates on high-energy (low-energy)
localized eigenstates for α ¼ 0ðα ¼ πÞ.
We further investigate the effect of the jump operators

in Eq. (4) with l ¼ 2. We first calculate the proportion of
in-phase lattice site pairs Pin

n;2 and find that it exhibits a
V-shaped pattern [Fig. 2(a)]. The localized states on both
sides of the energy spectrum tend to exhibit more in-phase
site pairs, while the extended states in the middle of the
spectrum tend to have more out-of-phase site pairs [61].
Therefore, by appropriately choosing the dissipation
phase α, it is possible to control whether the system’s
steady state is predominantly composed of localized or
extended eigenstates, as shown in Figs. 2(b)–2(d). When
the dissipative phase is α ¼ 0 [Fig. 2(b)], the system is
expected to reach a steady state predominantly composed
of the states associated with in-phase site pairs, thus
primarily concentrating on the localized eigenstates in both
higher- and lower-energy regions. Conversely, when α ¼ π
[Fig. 2(d)], the system is anticipated to attain a steady state
mainly composed of the states linked to out-of-phase site
pairs, favoring the dominance of extended eigenstates in the
midenergy regions. When α ¼ π=2 [Figs. 2(c) and 1(b)],

the dissipation operator becomes Hermitian, leading to
the system reaching the maximally mixed state ðρssÞmn ¼
δmn=L as its steady state. According to the diagonal
elements of the density matrix ρmn, for arbitrary α, we can
determine the fractions of localized and extended eigenstates
in steady states, i.e., Pl¼

P
iρii (Pe ¼

P
j ρjj), where iðjÞ

represents the index of the extended (localized) eigenstates
jψ ii (jψ ji). When α is tuned from 0 to π, the system’s steady
state shows the transition from being dominated by localized
eigenstates to being dominated by extended eigenstates
[Fig. 3(a)], which indicates that dissipation can be used to
manipulate the ELT. In Supplemental Material [61], we
investigated the variations of Pl and Pe with system size.
It is observed that, when α ¼ 0, Pe and Pl show minimal
changes with size, while for α ¼ π, as the size increases,
Pl (Pe) gradually tends toward 0 (1).
We further examine this transition from a dynamical

perspective. We prepare a localized or extended eigenstate
as the initial state and introduce dissipation with l ¼ 2 at
t ¼ 0. We then calculate the fidelity, which represents the
overlap between the time-evolved state ρðtÞ and the initial
state ρi, denoted as [64,65]

F½ρðtÞ; ρi� ¼ Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞ1=2ρiρðtÞ1=2

q �
: ð5Þ

At α ¼ 0 [Fig. 3(b)], the fidelity rapidly approaches zero
when the initial state is extended, indicating that the

FIG. 2. (a) The proportion of in-phase lattice site pairs for each
eigenstate, with the mobility edges marked by the dashed lines.
Like in Fig. 1, the dashed lines here represent MEs. The absolute
values of the steady-state density matrix elements with the
dissipative phases (b) α ¼ 0, (c) α ¼ π=2, and (d) α ¼ π in
the eigenbasis of Hamiltonian H. Other parameters are l ¼ 2,
L ¼ 100, and Γ ¼ 1.

FIG. 3. (a) The fractions of localized eigenstates (Pl) and
extended eigenstates (Pe) in steady states as a function of the
dissipative phase α. Evolution of the fidelity defined in Eq. (5)
after a sudden introduction of dissipation with the strength Γ ¼ 1
and the phases (b) α ¼ 0, (c) α ¼ π=2, and (d) α ¼ π. The initial
states are set as follows: the system’s ground state, which is
localized (red dashed line), and the state corresponding to the
eigenvalue situated in the center of the energy spectrum of the
Hamiltonian H, characterized as extended (blue solid line). Here,
L ¼ 144 and l ¼ 2.
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structure of the initial state has been completely modified.
Conversely, the fidelity tends to a nonzero value when the
initial state is localized, suggesting that certain character-
istics of the initial state are preserved. This is because the
steady state is primarily composed of localized states, i.e.,
Pl ≫ Pe. When α ¼ π=2 [Fig. 3(c)], the steady state
contains extended and localized states, resulting in non-
zero fidelity for both. Finally, for α ¼ π [Fig. 3(d)], the
steady state primarily consists of extended states.
Therefore, when the initial state is an extended state,
the fidelity is not equal to zero, but it tends to zero when
the initial state is localized.
We have revealed that an extended (localized) state can

be guided toward a steady state primarily composed of
localized (extended) states by applying dissipation.
Furthermore, even after removing the dissipation once
the system has reached a steady state, its properties
continue to persist [66]. This differs from the majority
of previous studies on the influence of dissipation on AL,
where dissipation disrupts localization, but removing it
leads the disordered system back to localization [67]. By
introducing a period of dissipation and subsequently
removing it, the parameters in the Hamiltonian remain
unchanged, but the dynamical properties undergo a pro-
found transformation, as shown in Fig. 4. Consequently,
dissipation provides a means to manipulate transitions
between localized and extended states.
Experimental realization.—Reference [13] has proposed

realizing the quasiperiodic mosaic model based on optical
Raman lattices [68–71]. They constructed a spin-1=2
system using two hyperfine states j↑i ¼ jF1; mF1i and
j↓i ¼ jF2; mF2i, and mapped the spin-up (spin-down)
lattice sites to the odd (even) sites (see Fig. 5). They
applied the Raman coupling via a standing wave field and a
plane wave to generate the spin-dependent primary lattice
VpðxÞσz ¼ V1 cosð2kpxþ ϕpÞσz and three standing wave
fields together to generate a secondary quasiperiodic lattice
VsðxÞ ¼ V2 cosð2ksxþ ϕsÞ only for spin-down atoms. As
the depth of the primary lattice significantly exceeds that
of the secondary lattice (V1 ≫ V2), we will proceed to
discuss the realization of the dissipation operator below,
with the secondary lattice’s impact considered negligible.
We will primarily focus on discussing the realization
of the case with α ¼ 0 by introducing the auxiliary
lattice [56–59]. An arbitrary phase α can be achieved,
for instance, through an array of resonators coupled by
superconducting qubits [42,60].

Figure 5(a) shows the realization of the pairwise dis-
sipator with l ¼ 1. By coherently coupling two nearly
degenerate levels in the system to an auxiliary site in
between with antisymmetric Rabi frequencies �Ω, which
can be obtained by controlling the wavelength of the
driving laser to match that of the primary lattice, one
can achieve the annihilation part of the dissipative operator.
Decay back to the lower sites occurs through spontaneous
emission, and this process is isotropic, leading to the
form of the creation operator being symmetric [56–59].
In this way, one can realize the jump operator of the
form ðc†j þ c†jþ1Þðcj − cjþ1Þ.
Similarly, the case for l ¼ 2 can also be realized, as

shown in Fig. 5(b). However, there are several key
differences with the case of l ¼ 1. (1) The auxiliary lattice
must be spin dependent, necessitating the use of two
hyperfine states j↑i ¼ jF0

1; m
0
F1i and j↓i ¼ jF0

2; m
0
F2i to

construct a spin-1=2 lattice. It is essential to ensure that
they satisfy the condition mF1 −m0

F1 ¼ mF2 −m0
F2. (2) It

requires a phase difference of π with the primary lattice,
namely, that the odd (even) sites correspond to spin-down
(spin-up) sites in the auxiliary lattice. (3) By manipulating
the polarization of the driving laser, one can attain the
specific coupling that spin-up (spin-down) states in
the primary lattice only couple with spin-up (spin-down)
states in the auxiliary lattice [72,73]. For example, if
mF1 −m0

F1 ¼ 0, the driving laser needs to be π polarized
[74,75]. Moreover, to obtain a π phase shift in the effective
Rabi frequency Ω from one spin-up (spin-down) site to the
next spin-up (spin-down) site, one needs to set the driving

FIG. 4. Schematic illustrating transitions between extended and
localized states manipulated by dissipation.

FIG. 5. Schematic realization of the dissipative process of the
form ðc†j þ c†jþlÞðcj − cjþlÞ with (a) l ¼ 1 and (b) l ¼ 2. The
lower (upper) lattice correspond to the physical (auxiliary) lattice.
Atoms in the lower sites are coupled to the auxiliary sites in
between with opposite Rabi frequency �Ω and then sponta-
neously decay back to the lower sites.
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laser’s wavelength to be twice that of the standing wave
laser generating the primary lattice.
By comparing the diffusion [76–79] or transport behav-

iors [15,80–82] of atoms before and after the introduction
of dissipation, one can obtain extended and localized
information about the initial and final states, thereby
detecting the ELT caused by dissipation.
Conclusion and discussion.—We have investigated the

influence of dissipation on the 1D quasiperiodic mosaic
model, which possesses exact MEs, and proposed its
experimental realization. By calculating the distribution
of the steady-state density matrix and the characteristics of
quench dynamics, we revealed that dissipation can drive the
system into specific states primarily composed of either
extended or localized states, regardless of the initial states.
Hence, dissipation can be utilized to induce transitions
between extended and localized states, thereby enabling the
manipulation of particle transport behaviors. In addition to
its applications in condensed-matter physics, our results
also have potential applications in quantum simulation,
specifically in controlling the dynamical behavior of
particles and preparing desired states. Given a specific
example, when simulating systems with MEs using cold
atoms, preparing atoms near the ground state is challenging
when they are localized, but introducing dissipation can aid
in achieving this goal.
The manipulation of the ELT is expected to be common

in various systems featuring MEs [61]. When considering
the impact of this dissipation on the anomalous MEs
separating critical states from localized or extended ones,
it is found that dissipation can induce critical-localized
or critical-extended transitions (see Supplemental Material
[61]). Our results pose several interesting issues. How do
such dissipation affect a many-body system with MEs? Can
the dissipation be employed to manipulate the transitions
between thermalized states and many-body localized states?
Can the similar ELT exist in a three-dimensional dissipative
disordered system with MEs? Further, the dissipative oper-
ator in Eq. (4) utilizes the phase distribution characteristics of
different states in the energy spectrum to select specific states
as steady states. This provides a new perspective, suggesting
that we can also explore other distinguishing features to
construct experimentally feasible dissipative operators for
the purpose of selecting different states.
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