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We propose a simple dissipative system with purely cubic defocusing nonlinearity and nonuniform linear
gain that can support stable localized dissipative vortex solitons with high topological charges without the
utilization of competing nonlinearities and nonlinear gain or losses. Localization of such solitons is achieved
due to an intriguing mechanismwhen defocusing nonlinearity stimulates energy flow from the ringlike region
with linear gain to the periphery of the medium where energy is absorbed due to linear background losses.
Vortex solitons bifurcate from linear gain-guided vortical modes with eigenvalues depending on topological
charges that become purely real only at specific gain amplitudes. Increasing gain amplitude leads to transverse
expansion of vortex solitons, but simultaneously it usually also leads to stability enhancement. Increasing
background losses allows creation of stable vortex solitons with high topological charges that are usually
prone to instabilities in conservative and dissipative systems. Propagation of the perturbed unstable vortex
solitons in this system reveals unusual dynamical regimes, when instead of decay or breakup, the initial state
transforms into stable vortex solitons with lower or sometimes even with higher topological charge. Our
results suggest an efficient mechanism for the formation of nonlinear excited vortex-carrying states with
suppressed destructive azimuthal modulational instabilities in a simple setting relevant to a wide class of
systems, including polaritonic systems, structured microcavities, and lasers.
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Vortices are ubiquitous topological objects showing in-
triguing evolution and rich interactions when they are nested
in nonlinear fields [1]. Vortices were observed in Bose-
Einstein condensates [2,3], hybrid light-matter systems [4],
polariton condensates [5–11], laser systems [12–15], plas-
mas, and in different optical materials [16–20]. Such states
are interesting for practical applications ranging from
information encoding, particle trapping, to controllable
angular momentum transfer from light to matter. In nonlinear
optical media one may observe the formation of vortex
solitons. Vortex solitons are excited higher-order nonlinear
states [21] that are usually prone to instabilities that may lead
to their collapse, decay or splitting into sets of fundamental
solitons [22]. Among the strategies allowing us to generate
stable vortex solitons in conservative optical media is the
utilization of materials with competing [23–27] or nonlocal
nonlinearities [28–31], various optical potentials [32–40],
and other approaches [16,18,22].
Vortex solitons can form not only in conservative, but

also in dissipative optical systems, in which case the search
of potential stabilization mechanisms becomes particularly
important and challenging, since fundamental solitons in
such systems are typically characterized by wider attractor
basins leading to their predominant dynamical excitation.
Nevertheless, dissipative vortex solitons may form in lasers
with saturable absorption [12,41–43], in systems governed
by complex Ginzburg-Landau equation [44–46], not
only in two- [47–52], but also in three-dimensional

settings [53–56], in mode-locked lasers [57], and in
systems with localized gain and nonlinear absorption
[58–66]; see reviews [67,68] and recent experimental
realizations [69]. In all dissipative systems mentioned
above the presence of competing nonlinearities, nonlinear
gain or absorption are central for suppression of instabil-
ities of vortex solitons.
In this Letter we propose a new simple mechanism of

formation of the ringlike dissipative vortex solitons that
does not require competing nonlinearities, nonlinear
absorption or optical potentials. Instead, it employs a
ringlike gain landscape created in a medium with uniform
background linear losses and defocusing cubic nonlinearity
that in this case prevents an uncontrollable growth of
light intensity. Our solitons have localized ringlike shapes
despite defocusing nonlinearity and absence of any poten-
tials. They have negative propagation constants laying in
the continuous part of the spectrum, where usually only
delocalized linear waves exist, thereby illustrating princi-
pally different mechanisms of formation from that of bright
solitons. They bifurcate from gain-guided linear vortex
modes existing only for a specific set of gain amplitudes,
thereby allowing observation of spatial localization over
broad range of gain amplitudes due to defocusing non-
linearity. Because in our system stabilization of vortex
solitons occurs with increase of gain amplitude, they appear
as remarkably robust states that can be stable even for high
topological charges, in contrast to vortices in previously
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considered conservative and dissipative systems, where
high-charge solutions are typically unstable.
We consider the propagation of light beams along the z

axis in a bulk medium with defocusing cubic nonlinearity
and linear ringlike gain landscape Iðx; yÞ, in the
presence of background linear losses characterized by
the parameter α:
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where the coordinates x; y are normalized to the character-
istic scale r0, the propagation distance z is normalized to
the diffraction length kr20, k ¼ 2πnr=λ, intensity is normal-
ized such that I ¼ nrjψ j2=k2r20jn2j, where n2 is the non-
linear coefficient. The ring-shaped gain landscape is
described by the function Iðx; yÞ ¼ νe−ðjrj−rcÞ2=d2 , where
ν is the gain amplitude, rc is the radius of the amplifying
ring, d is its width, and r ¼ ðx; yÞ. Spatial localization of
gain ensures stability of the background at r → ∞. The
amplitude of gain or losses jα − νj ∼ k2r20ni=nr is deter-
mined by small imaginary part ni of the refractive index
n ¼ nr þ ini, where ni ≪ nr. Defocusing cubic nonlinear-
ity is representative for semiconductors, such as AlGaAs
or CdS, for photon energies above 0.7Ebandgap [70–73].
Thus for CdS at λ ¼ 0.61 μm, where n2 ≈ −10−17 m2=W
and nr ≈ 2.5, and for r0 ¼ 10 μm one gets diffraction
length 2.58 mm, the amplitude of gain or losses α;ν∼0.4
corresponds to 1.55 cm−1 (consistent with reported absorp-
tion coefficients) while jψ j2 ¼ 1 corresponds to I ∼
3.8 × 1012 W=m2. Different approaches to control of gain
in semiconductors have been suggested, based, e.g.,
on electrical or optical pumping or creation of inhomo-
geneous concentrations of dopants [74]. Even though in
this spectral range nonlinear absorption also comes into
play, it should not affect our solitons at low powers.
Effective defocusing cubic nonlinearity can also be pro-
duced by cascaded quadratic processes [75]. Models
similar to Eq. (1) also supporting vortex solitons may
arise in microcavity systems with a ringlike pump (see
Refs. [69,76] and Supplemental Material [77], which
includes Refs. [78–81]). Further we set rc ¼ 5.25 and
d ¼ 1.75. Radially symmetric vortex soliton solutions of
Eq. (1) can be obtained in the form ψ ¼ ðwr þ iwiÞeibzþimϕ,
where b is the real-valued propagation constant, m is the
topological charge, wr;iðrÞ are the real and imaginary parts
of the field. The functions wr;i satisfy the system
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In this dissipative system the propagation constant b is not
an independent parameter and it depends on gain or loss

amplitude α; ν. To find the profiles wr;i and corresponding b
values we used Newton method complemented with an
energy flow balance condition that should hold for sta-
tionary states:

dU
dz

¼ −2π
Z

½α − IðrÞ�jψ j2rdr ¼ 0; ð3Þ

where U ¼ 2π
R jψ j2rdr is the energy flow of the vortex

soliton. Constraint (3) produces an additional to (2)
equation that is needed in the Newton method for definition
of propagation constant b (see Ref. [77]). Solitons in this
system are possible at ν > α, when gain inside the ring
becomes sufficiently strong to overcome background
losses. Increase of the field amplitude due to amplification
within the ring leads to growing defocusing nonlinearity
that expels light from the amplifying ring into a domain
with losses, where energy is absorbed. As a result, a stable
energy balance is possible even without nonlinear absorp-
tion, allowing us to obtain a rich variety of vortex solitons.
Because of the mechanism of their formation, they are
characterized by radial energy currents (besides azimuthal
ones associated with vortical phase structure). It should be
stressed that vortex solitons are stable only in ring-shaped
gain landscapes while in bell-shaped landscapes they are
unstable and usually transform into fundamental solitons.
Typical dependencies of the energy flow U on gain

amplitude ν for vortex solitons with different charges m are
presented in Fig. 1 at various values of the background

FIG. 1. Energy flow U vs gain amplitude ν at α ¼ 0.1 (a),
α ¼ 0.2 (b), and α ¼ 0.5 (c) for vortex solitons with charges
m ¼ 1; 2;…5 indicated next to the curves. (d) Propagation
constant b versus ν at α ¼ 0.1. Stable (unstable) branches are
shown with solid (dashed) lines. Colored circles and encircled
labels correspond to solitons shown in Fig. 2.
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losses α. Solid lines correspond to stable solitons while
dashed lines correspond to unstable ones. Vortex solitons
emerge when gain amplitude ν exceeds certain minimal
value depending on topological charge m. While at small
losses α ¼ 0.1 vortices with larger topological charges
require larger gain levels for their appearance [Fig. 1(a)],
the order of appearance of vortex solitons may change with
increase of α, so thatm ¼ 2 [Fig. 1(b)] orm ¼ 3 [Fig. 1(c)]
vortices may acquire the lowest thresholds in ν. This order
is determined by the overlap of the field of the vortex with
charge m with gain landscape that determines its amplifi-
cation efficiency. For a given m the threshold value of ν
for appearance of the soliton increases with increase of
losses α. Remarkably, with decrease of ν the energy flow of
the vortex soliton vanishes exactly in the point where the
imaginary part λi of the complex eigenvalue λ ¼ λr þ iλi of
linear eigenmode ψ ¼ ðwr þ iwiÞeiλzþimϕ with topological
charge m supported by the gain or loss landscape
i½α − IðrÞ� becomes zero. Such modes are obtained from
Eq. (2) with an omitted nonlinear term that in this case
transforms into a linear eigenproblem. Thus, exactly at this
value of ν the corresponding linear vortex mode of the
i½α − IðrÞ� landscape evolves without net gain or attenu-
ation. This means that vortex solitons bifurcate from linear
gain-guided vortex modes. Notice that while the concept of
gain guiding is well established [82], it was not applied to
vortex states. The properties of gain-guided linear vortex
modes are summarized in Fig. S1 of [77].
Representative dependencies of propagation constants b

of vortex solitons with various topological charges on gain
amplitude ν are shown in Fig. 1(d). These dependencies

start in the points where soliton’s propagation constant b is
equal to the eigenvalue λ ¼ λr of the associated gain-guided
mode (that is purely real for this ν). Propagation constants
of solitons are negative due to defocusing nonlinearity. The
dependence UðνÞ may be two-valued, i.e., two different
solutions can coexist for the same ν. This usually happens
for high topological charges [see m ¼ 4, 5 branches in
Fig. 1(a)]. With increase of α the dependencies UðνÞ
become single-valued for higher and higher m [Fig. 1(c)].
Representative profiles of dissipative vortex solitons

corresponding to the dots near encircled labels in
Figs. 1(a)–1(c) are presented in Fig. 2 in panels with the
same labels. At fixed α with increase of ν vortex solitons
expand in the radial direction far beyond the amplifying
ring [compare solitons with m ¼ 1 in Figs. 2(a1) and 2(a2)
at α ¼ 0.1 or m ¼ 5 solitons in Figs. 2(c3) and 2(c4) at
α ¼ 0.5]. The soliton’s width is minimal in the bifurcation
point from the gain-guided mode. This expansion is
accompanied by an increase of the soliton’s amplitude.
For high background losses α ∼ 0.5 the solitons with low
charges m may have unusual field modulus distributions
u ¼ ðw2

r þ w2
i Þ1=2 with local radial minima [Figs. 2(c1)

and 2(c2)]. The presence of radial currents outwards
amplifying ring is obvious from oscillations of the tails
of the real and imaginary parts wr;i at r → ∞. In the
parameter range where the dependence UðνÞ is two valued,
the solitons from lower and upper branches at fixed ν differ
in peak amplitudes and in radial oscillation frequencies of
tails ofwr;i while widths of the field modulus distributions u
may be close [Figs. 2(a3) and 2(a4)]. Increasing topological
chargem at fixed α; ν results in increase of the radius of the

FIG. 2. Vortex solitons with m ¼ 1 (a1), (a2) and m ¼ 5 (a3), (a4) at α ¼ 0.1; m ¼ 2 (b1), m ¼ 3 (b2), and m ¼ 4 (b3),(b4) at
α ¼ 0.2; m ¼ 1 (c1),(c2) and m ¼ 5 (c3),(c4) at α ¼ 0.5, corresponding to labels in Figs. 1(a)–1(c).
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vortex-ring [compare states in Figs. 2(b1) and 2(b4)
or states in Figs. 2(c2) and 2(c4)]. Higher-order vortex
solitons with radial nodes where field modulus u vanishes,
were found too (not shown), but all such states are unstable.
Qualitatively similar results were obtained for other ring-
like IðrÞ profiles, for example with steplike gain variation
(see Fig. S2 in [77]).
The central result of this Letter is that in this simple

system, where collapse is absent and azimuthal modula-
tional instabilities are suppressed because material is
defocusing, dissipative vortex solitons can be stable even
for large topological charges. To illustrate this, we have
performed linear stability analysis searching for perturbed
states of the form ψðr;ϕ; zÞ ¼ ðwr þ iwi þ feδzþinϕ þ
g∗eδ∗z−inϕÞeibzþimϕ, where δ ¼ δr þ iδi is the perturbation
growth rate, fðrÞ and gðrÞ are the radial profiles of
perturbation modes, n is the azimuthal perturbation index,
and asterisks stand for complex conjugation. The substi-
tution of this ansatz in Eq. (1) and its linearization around
wr þ iwi yields the linear eigenvalue problem for δ (see
Ref. [77]), that was solved numerically. Vortex soliton with
a given m is stable if δr ≤ 0 for all n and is unstable
otherwise.
The results of stability analysis are summarized in Fig. 1

with vortex soliton families UðνÞ where stable (unstable)
families within depicted range of ν values are plotted with
solid (dashed) curves. Representative dependencies of the
real part of perturbation growth rate on gain amplitude ν
for different topological charges m or different losses α
are shown in Figs. 3 and 4, respectively. We show δrðνÞ

dependencies only for azimuthal indices n that can lead to
instability within depicted range of ν values. When insta-
bility is present, it usually occurs for low-amplitude
solitons near bifurcation point from gain-guided modes
[when the dependenceUðνÞ is two-valued, its lower branch
is usually always unstable, see dashed curves in Figs. 3
and 4 corresponding to such branches]. One of the unusual
properties of this system is that at fixed α vortex solitons
typically become stable with increase of gain amplitude ν,
since growth rates for all n tend to vanish after certain
maximal value of ν. Higher-charge vortex solitons usually
require larger gain amplitudes ν for stabilization (see Fig. 3
that shows that the width of the instability domain broadens
with increase of m), but this picture may change if vortex
states with higher charge bifurcate at smaller values of ν in
comparison with m ¼ 1 states, in which case the former
families can be completely stable (Fig. 1). Increasing
background losses result in suppression of instabilities
associated with large azimuthal perturbation indices n
(Fig. 4) leading to narrowing of the instability domain
for solitons with sufficiently high topological charges.
Thus, at α ¼ 0.9 even m ¼ 10 soliton can be stable close
to the bifurcation point from linear gain-guided state.
The existence of stable dissipative vortex solitons was

confirmed by direct simulations of their evolution dynam-
ics in the frames of Eq. (1). While stable perturbed vortex
solitons do not show any appreciable distortions over huge
propagation distances and their peak amplitude max jψ j
(defined over the entire transverse plane) remains nearly
constant indicating on the absence of unstable perturbations
[see dynamics of perturbed stable m ¼ 4 soliton in
Fig. 5(c)], the unstable solitons instead of decaying may

FIG. 3. Real part δr of perturbation growth rate for different
azimuthal perturbation indices n versus gain amplitude ν at
α ¼ 0.1 for solitons withm ¼ 2 (a), 3 (b), 4 (c), and 5 (d). Dashed
curves in (c),(d) correspond to lower branches of the two-valued
UðνÞ curves.

FIG. 4. δr vs ν dependencies for different azimuthal indices n
and vortex soliton with m ¼ 4 at different values of the back-
ground losses α ¼ 0.1 (a), α ¼ 0.2 (b), and α ¼ 0.5 (c).
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transform into other stable vortex states not only with
lower, but also with higher topological charges. This
usually happens when higher-charge states have lower
threshold in ν and are stable while lower-charge states
appearing at larger ν values are unstable [see m ¼ 3 and
m ¼ 1 branches in Fig. 1(c)]. The example of transforma-
tion of unstable m ¼ 1 vortex into stable m ¼ 3 state is

shown in Fig. 5(a). Another scenario of instability develop-
ment accompanied by the reduction of topological charge
fromm ¼ 4 tom ¼ 2 is illustrated in Fig. 5(b). In all cases,
the vortex solitons emerging as a result of instability
development are stable.
In conclusion, we proposed a simple model allowing to

obtain remarkably robust dissipative vortex solitons with
high topological charges in structured gain or loss land-
scape combined with defocusing cubic nonlinearity. Being
stable attractors of the system such vortex-carrying states,
can be easily excited from noisy inputs [77]. Our results
pave the way to experimental realization of stable higher-
charge vortex solitons in dissipative physical systems,
including polaritonic ones, nonlinear structured microcav-
ities, and various laser systems [77]. Vortices are important
for practical applications connected with communications,
where they can serve as carriers of information encoded in
the magnitude or sign of topological charge [83], digital
spiral imaging [84], particle manipulation and high-
resolution imaging [85,86], and for development of vortex
lasers [87]. Robustness of high-charge vortex solitons
illustrated in our system and the possibility of transforma-
tion between states with different charges may be beneficial
for such applications.
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