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We theoretically construct a higher-order topological insulator (HOTI) on a Brillouin real projective
plane enabled by momentum-space nonsymmorphic (k − NS) symmetries from synthetic gauge fields.
Two anicommutative k − NS glide reflections appear in a checkerboard Z2 flux model, impose
nonsymmorphic constraints on Berry curvature, and quantize bulk and Wannier-sector polarization
nonlocally across different momenta. The model’s bulk exhibits an isotropic quadrupole phase diagram,
where the transition appears intrinsically from bulk gap closure. The model hosts the simultaneous
presence of intrinsic and extrinsic HOTI features: in a ribbon geometry where one pair of boundaries gets
open, the edge termination can induce boundary-obstructed topological phase within the symmetry-
protected topological phase due to the breaking of k − NS symmetry. At last, we present a concrete design
for the real projective plane quadrupole insulator and show how to measure the momentum glide reflection
based on acoustic resonator arrays. Our results shed light on HOTIs on deformed Brillouin manifolds via
k − NS symmetries.
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Crystalline symmetries play a crucial role in stabilizing
topological insulators and semimetals in solids and artifi-
cial materials. Combined with the three internal sym-
metries, topological classification can be further refined
via symmorphic (like inversion, reflection, and proper
rotations) [1–4] and nonsymmorphic symmetries [5–10]
beyond the tenfold way [11,12]. While nonsymmorphic
symmetries traditionally refer to screw rotations and glide
reflections accompanied by fractional lattice translation in
real space, recently their counterparts have been identified
in momentum space [13], known as the momentum-space
nonsymmorphic (k − NS) symmetries. The key to creating
k − NS symmetries is synthetic gauge fields [14], which
can projectively modify point-group symmetries into
space-group ones [13,15,16]. Since operating in momen-
tum space, k − NS symmetries can modify the topology of
the Brillouin zone (BZ). For example, the BZ torus was
transformed into a Brillouin Klein bottle under a single
k − NS symmetry [13], leading to nonlocal first-order
topology. It is thus pertinent to seek the construction of
higher-order topology via k − NS symmetries on versatile
BZ manifolds.
The electric polarization of crystals [17–19] was recently

extended to higher electric multipole moments, giving rise
to higher-order topological insulators (HOTIs) [20–22],
which has been observed in various physical platforms
(e.g., Refs. [23–29]). Moreover, the appearance of corner
charges has been distilled via the distinction of intrinsic
and extrinsic HOTIs [30–32] that are associated with

symmetry-protected topological phase (SPTP) and boun-
dary-obstructed topological phase (BOTP), respectively.
In particular, the quadrupole phase was realized in real-
space nonsymmorphic systems, where quantized quadru-
pole moment is protected by glide reflections [33–37].
However, higher-order band topology has not been realized
by k − NS symmetries, and the associated unique features
have not been discussed.
In this Letter, we theoretically introduce a quadrupole

topological insulator via two anticommutative k − NS
symmetries on a two-dimensional Brillouin real projective
plane (RP2). The two k − NS reflections, which emerge
from Z2 gauge fields and the associated checkerboard flux
pattern, partition the original BZ torus into several non-
unique RP2 manifolds. They impose nonsymmorphic
constraints on the energy bands and Berry curvature and
quantize bulk and Wannier-sector polarizations nonlocally
in momentum space. The system exhibits coexistence of
intrinsic and extrinsic HOTI features. In the bulk, the
quadrupole moment is induced by bulk gap closures and
protected by the k − NS symmetries. In cylinders, edge
polarization can be created via two means: first, SPTP
transition of bulk gap closures can occur due to hopping
variation along the open direction; second, BOTP transition
of edge gap closures can occur due to hopping strength
variations along the periodic direction. In our proposal, we
show that the half-translation of the k − NS symmetry can
be measured via momentum-resolved edge modes localized
on the opposite ends of a sample.
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Brillouin real projective plane.—RP2 is a two-dimen-
sional surface generalizing the Möbius strip. It is con-
structed from a square by identifying two pairs of opposite
edges with a half twist [Fig. 1(a)]. Mathematically, the
construction of RP2 can be represented as a unit square
(½0; 1� × ½0; 1�) with opposite edges following the equiv-
alence relations

ðx; 0Þ ∼ ð1 − x; 1Þ for 0 ≤ x ≤ 1; ð1aÞ

ð0; yÞ ∼ ð1; 1 − yÞ for 0 ≤ y ≤ 1: ð1bÞ

We aim to realize these conditions to realize RP2 in
momentum space. The k − NS reflections Mx and My

meet the need, as they perform glide reflection in momen-
tum space:

Mx∶ ðkx; kyÞ → ð−kx; ky þ πÞ; ð2aÞ

My∶ðkx; kyÞ → ðkx þ π;−kyÞ; ð2bÞ

which realizes Eq. (1) for k≡ ðkx; kyÞ∈ ½−π=2; π=2� ×
½−π=2; π=2� (see Sec. S1 of [38]). In addition, the simulta-
neous presence of Mx and My naturally defines a k − NS
inversion Pπ ≡MxMy, which confines the wave vectors as

Pπ∶ ðkx; kyÞ → ðπ − kx; π − kyÞ: ð3Þ

Mx, My, and Pπ further partition the Brillouin
torus. Specifically, Mx and My divides the first BZ

(½−π; π� × ½−π; π�) into four quadrants [Fig. 1(b)].
Further, each quadrant is divided into two pairs by Pπ:
the diagonal and off-diagonal pairs, and each pair is linked
by Pπ [Fig. 1(c)]. Therefore,Mx,My, and Pπ jointly divide
the first BZ into 16 plaquettes [Fig. 1(d)] (see Sec. S2 of
[38]). A reduced BZ can be defined on any four plaquettes
of distinct colors, e.g., the four plaquettes ðkx; kyÞ∈
½−π=2; π=2� × ½−π=2; π=2� at the zone center in Fig. 1(d).
Notably, the boundaries of the reduced BZ connect in an
antiparallel manner via Mx (red arrows) and My (violet
arrows), thereby realizing an RP2 in momentum space.
There are four remarkable features of the k − NS symmetry
group. First, analogous to their real-space counterparts, the
k − NS symmetries exhibit rich Abelian and non-Abelian
algebra depending on the (anti)commutation between Mx

andMy [34,47–51]. Second, the choice of the reduced RP2
BZ is nonunique [e.g., squares in black solid and dashed
lines in Fig. 1(d), as long as four plaquettes in distinct
colors are enclosed]. Third, the reduced RP2 BZ remains a
closed manifold, enabling adiabatic calculation of topo-
logical invariants. Fourth, at the reduced BZ corner, the
k − NS inversion exhibits four nonsymmorphic inversion
invariant momenta ð�π=2;�π=2Þ, and their symmetry
eigenvalues can be used for topology analysis (see
Sec. S3 of [38]). A topological invariant χ can be defined
for nonsymmorphic inversion (similar to the Fu-Kane
formula [52] for conventional inversion)

ei2πχ ¼
Y4
i¼1

Γi; ð4Þ

where Γi is the Pπ eigenvalue(s) of the occupied bands at
the ith nonsymmorphic inversion invariant momentum.
Tight-binding model.—Consider the square lattice of

four sites [Fig. 2(a)], the presence of π flux enables an
anticommutative relation between reflection Mx and the
translation operator Ly along y, i.e., MxLyM−1

x L−1
y ¼ −1.

The right-hand negative sign can be reformulated as a half-
translation along ky, i.e.,−1 ¼ eiGya=2 (where a is the lattice
constant and Gy the reciprocal lattice vector along y) [13].
Therefore, besides reversing kx, Mx also contains a half-
translation along ky, fulfilling Eq. (2a). Similarly, the
relation Eq. (2b) can be implemented by adding π flux
via a different gauge connection in Fig. 2(b). Jointly, we
arrange the negative hopping along both x and y directions
[Figs. 2(a) and 2(b)] to realize a checkerboard flux pattern
[Fig. 2(c)] featuring k − NS Mx and My. The associated
Bloch Hamiltonian is

Hðkx; kyÞ ¼

2
6664

0 aþ bþ 0

a�þ 0 0 b−
b�þ 0 0 a−
0 b�− a�− 0

3
7775; ð5Þ
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FIG. 1. Real projective plane in momentum space. (a) Folding a
real projective plane (left) from a rectangle (right), whose
opposite sides are glued in an antiparallel manner (denoted by
color arrows). (b) The k − NS mirror symmetries Mx and My
divide the first Brillouin zone (BZ) ½−π; πÞ × ½−π; πÞ into four
quadrants I-IV. (c) The k − NS inversion Pπ further divides each
quadrant into diagonal and antidiagonal partners (e.g., green and
blue colors in the I and III quadrants). The red dots indicate two
momenta linked by Pπ. (d)Mx,My, and Pπ jointly divide the first
BZ into 16 plaquettes. A reduced BZ can be defined using any
four plaquettes of distinct colors, e.g., the square at the zone
center surrounded by red and violet arrows. Other examples
include the squares in black solid and dashed lines.
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with a� ¼ γx � λxe−ikx , b� ¼ �γy þ λye−iky , and � denot-
ing complex conjugate. Here, γx and γy (λx and λy)
represent the intracell (intercell) hopping amplitudes along
x and y, respectively. Without loss of generality, we set
unity lattice constants and λx ¼ λy ¼ 1. Under the link
arrangements in Fig. 2(c), the k − NS symmetries satisfy-
ing Eqs. (2) and (3) have the form: Mx ¼ σ3 ⊗ τ1,
My ¼ σ1 ⊗ τ0, and Pπ ¼ iσ2 ⊗ τ1, together generating a
non-Abelian group D8. Here, σ’s and τ’s are Pauli matrices
acting on sites along y and x, respectively.
The consequence of the k − NS symmetries can be seen

from the energy bands and Berry curvatures. An example
energy contour validates the BZ partition in Fig. 2(d),
where the band in the reduced RP2 BZ can be extended to
generate that of the full BZ (see Sec. S4 of [38]). Such

shrinking of the BZ results from the gauge transformation
induced by the negative coupling, which doubles the lattice
constant along x and y (see Sec. S5 of [38]). The k − NS
symmetries impose the following nonsymmorphic require-
ments on the Berry curvature F (see Sec. S6 of [38]):

Mx∶ Fð−kx; π þ kyÞ ¼ −Fðkx; kyÞ; ð6aÞ

My∶Fðπ þ kx;−kyÞ ¼ −Fðkx; kyÞ; ð6bÞ

Pπ∶Fðπ − kx; π − kyÞ ¼ Fðkx; kyÞ; ð6cÞ

which are confirmed in Fig. 2(e).
The model is an insulator at zero energy unless the bulk

gap closing condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2x þ γ2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2x þ λ2y

q
ð7Þ

is satisfied (see Sec. S4 of [38]). The isotropic feature of
Eq. (7) implies that the bulk-energy gap closing condition is
nonseparable along the x and y directions.
Dipole and quadrupole moments quantized by k − NS

symmetries.—Based on techniques derived in Refs. [20,21],
we find that k − NS Mx, My, and Pπ quantize electric
polarization in a nonlocal manner (see Sec. S8 of [38] for
detailed derivation):

fpj
xðkyÞg¼Mxf−pj

xðky þ πÞg mod 1; ð8aÞ

fpj
yðkxÞg¼

Myf−pj
yðkx þ πÞg mod 1; ð8bÞ

fpj
xðkyÞg¼Pπf−pj

xðπ − kyÞg mod 1; ð8cÞ

fpj
yðkxÞg¼Pπf−pj

yðπ − kxÞg mod 1: ð8dÞ

Here, pxðkyÞ ¼
PNocc

j¼1 ν
j
xðkyÞ is the sum of Wannier centers

of the occupied bands and similar for pyðkxÞ. This feature
stems from the fact that no wave vector k is invariant under
k − NS reflections, as indicated by the momentum half-
translation on the right hand of Eq. (8a). In addition,
k − NS Pπ enforces a vanished bulk polarization, as the
Berry phases of the two filled bands come in pairs around
zero, in accordance with the calculation via Eq. (4) (also see
Sec. S3 of [38]).
Mx and My further quantize the quadrupole moment

nonlocally by restricting the Wannier-sector polarization
p
νy
x and pνx

y as (Sec. S8 of [38])

fpνy
x ðkyÞg¼Mxf−pνy

x ðky þ πÞg mod 1; ð9aÞ

fpνx
y ðkxÞg¼

Myf−pνx
y ðkx þ πÞg mod 1: ð9bÞ

(a) (b)
(c)

(d) (e)

(f) (g) (h)

FIG. 2. Lattice model for nonsymmorphic reflections and
inversion in momentum space. (a),(b) Threading π flux projec-
tively modifies the conventional reflections miði ¼ x; yÞ into k −
NS ones Miði ¼ x; yÞ, which anticommute with the translational
symmetries Ljðj ¼ y; xÞ along the other direction. (c) Model with
checkerboard π flux enables anticommutative Mx and My and
their product Pπ . Solid and dashed lines indicate real positive and
negative hoppings. (d) The entire iso-energy contour (at E ¼ 0.5)
can be constructed by that within the reduced RP2 BZ (shaded
yellow). (e) Nonsymmorphic Berry curvature of the lowest band.
(f),(g) Nonlocal constraints on the Wannier centers νx [(f); also
see Eq. (8)] and Wannier-sector polarization p

νy
x [(g); also see

Eq. (9a)]. (h) Isotropic binary bulk phase diagram showing the
quadrupole pν ¼ ð1=2; 1=2Þ within phase boundary (red circle)
associated with bulk gap closure. γx ¼ 0.75 and γy ¼ 0.68 are
consistently used for (d)–(g).
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Whereas p
νy
x and pνx

y can be either 0 or 1=2, they must
additionally satisfy p

νy
x ¼ pνx

y because the phase transition
occurs under an isotropic bulk band closure [see Eq. (7) and
Fig. 2(e)]. Such isotropic bulk gap closure accompanies the
quadrupole phase transition, which distinguishes the cur-
rent model from the originally reported double-mirror
quadrupole insulator model [20,21,30], where the phase
transition accompanies a Wannier band closing (when in
the absence of C4 rotational symmetry) and the Wanner-
sector polarizations are independent along different direc-
tions [21] (see Sec. S7 of [38] for a detailed comparison).
Shown in Fig. 2(f) are the gapped Wannier bands sym-
metric around νx ¼ 0.5 in the RP2 reduced BZ, confirming
vanished bulk polarization px ¼ 0. Such vanished bulk
polarization is enforced by k − NS symmetry Pπ, accordant
with the fact that besides being symmetric around
ki ¼ 0ði ¼ x; yÞ, the Wannier band is also symmetric
around ki ¼ �π=2ði ¼ x; yÞ (see Sec. S9 of [38]).
Figure 2(g) shows the Wannier-sector polarizations p

νy
x ¼

0.5 for the filled Wannier bands [red in Fig. 2(f)] and
confirms the relation in Eq. (9a). Together with similar
analyses along the y direction, they give rise to a bulk
quadrupole phase diagram shown in Fig. 2(h), where a
nontrivial bulk quadrupole moment appears inside the
isotropic phase boundary (red circle) accompanied by a
bulk gap closure [Eq. (7)]. Therefore, the model realizes
an SPTP whose quadrupole moment is protected by the
k − NS symmetries, and its phase transition accompanies
a bulk-energy closure (rather than Wannier-band gap
closure), indicating a feature of intrinsic HOTI.
Coexistence of intrinsic and extrinsic HOTI features.—

The nonsymmorphic nature of the k − NS symmetries can
cause boundary obstruction within an SPTP under sample
truncation, rendering the simultaneous presence of intrinsic
and extrinsic HOTI features. Figure 3(a) shows the phase
diagram of edge polarization, which differs from the bulk
quadrupole diagram [Fig. 2(h)]. Within the nontrivial
region [Fig. 3(b)], a pair of edge modes (green curves)
appears, and they map to each other under the k − NS
reflection My that remains preserved in a y-open cylinder.
The momentum-resolved probability density of edge bands
is located at opposite ends of the cylinder and displays
momentum half-translation [Figs. 3(c) and 3(d)], which
facilitates the experimental demonstration of k − NS sym-
metry, as we will elaborate below.
Moreover, the phase transition of edge polarization can

occur via either bulk or edge gap closures: hopping strength
variation along the periodic direction leads to an edge gap
closure [Figs. 3(e)–3(g) that cross a dashed line in
Fig. 3(a)], while that along the open direction results in
a bulk gap closure [see Figs. 3(h)–3(j) that cross a solid arc
in Fig. 3(a)]. Such coexistence of BOTP and SPTP
transitions appears because the k − NS reflection along
the open direction of a cylinder is preserved and gives rise
to an SPTP transition, while that along its periodic direction
is broken and a BOTP transition occurs.

Accordingly, despite the nontrivial bulk quadrupole
momentwithin the isotropic circle of the bulk phase diagram
[Fig. 2(h)], four degenerate corner modes [Figs. 3(k),(l)]
only appear within the shaded square of the edge phase
diagram [Fig. 3(a)] under full open boundaries.
Experimental proposals.—We propose an experimental

design to realize the RP2 BZ and the associated high-order
topology based on acoustic resonator arrays [25–27,53,54].
The cavity resonator emulating the site of Fig. 2(c) is
designed to work at the dipole mode where nearest-
neighbor positive and negative couplings are possible
[Fig. 4(a)] [27,53] (see Sec. S11.A of [38] for details).
The coupling strength can be tuned by the tube cross
section and its position with respect to the middle of the
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FIG. 3. Edge-polarization phase diagram with coexistence of
bulk and edge gap closure. (a) Phase diagram of edge polarization
ðpe

x; pe
yÞ of the RP2 quadrupole model. Red and blue refer to

x-open and y-open cylinders, respectively. Solid and dashed lines
refer to bulk and edge gap closure, respectively. (b)–(d) Edge
spectrum (b) of a y-open cylinder under γx ¼ 0.25, γy ¼ 0.5,
where the edge bands (green) are glide-reflection partners (c),(d)
located on the opposite ends of the cylinder. (e)–(g) Edge gap
closure and reopening under hopping variation along the periodic
direction x. (h)–(j) Bulk gap closure and reopening under
hopping variation along the open direction y. (k),(l) Appearance
of four zero corner modes and their �1=2-quantized charge
density under full open boundaries, where γx ¼ 0.25, γy ¼ 0.2,
x-direction unit-cell number Nx ¼ 25. Ny ¼ 25 is consistently
used for panels (b)–(i).
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resonator. To get a wide band gap, a large coupling contrast
is designed between intracell and intercell hoppings, which
are ≈10 Hz and 86 Hz, respectively. Based on these link
building blocks, we design the model [Fig. 2(c)] by
constructing an acoustic resonator array featuring the
checkerboard π flux configuration. Its bulk bands are
shown by blue dots in Fig. 4(b), in good agreement with
the tight-binding theory (solid curves) under an on-site
potential ofω0=2π ≈ 5.37 kHz. The open-boundary spectra
for a 7 × 7 array is plotted in Fig. 4(c), where four in-gap
corner modes appears, as verified by the corner-localized
sound pressure distribution [Fig. 4(d)].
Moreover, the momentum half-translation of the k − NS

symmetries can be experimentally measured. Consider a
cylinder structure [Fig. 4(e)] that can be manufactured via
3D printing. We simulate the structure response under a
point-source excitation on either the top (red) or bottom
(blue) end of the cylinder [Fig. 4(e)]. The Fourier transform
of the recorded pressure distribution of the cylinder (see
Sec. S11.C of [38]) generates the momentum-resolved edge
spectra [Figs. 4(f) and 4(g)]. Inside the bulk gap, an edge

band [red in Fig. 4(f) or blue in Fig. 4(g)] appears under
excitation on the opposite ends of the cylinder, respectively,
and they exhibit a π shift in momentum, which faithfully
realize the tight-binding predictions in Figs. 3(b)–3(d) and
thus demonstrate the presence of the k − NSMy reflection.
Besides the nonsymmorphic constraints on the Berry
curvature [Eq. (6) and Fig. 2(e)], the BOTP edge closure
[Figs. 3(e)–3(g)], and the SPTP bulk closure [Figs. 3(h)–3(j)
can also be experimentally probed bymeasuring a real-space
torus and cylinder, which we discuss in Sec. S11.D and
Sec. S11.B of [38], respectively. The realization of the
k − NS quadrupole insulator is not limited to the acoustic
design presented here; the same physics can be demon-
strated with coupled optical ring resonators, mechanical
metamaterials, and circuits, and we provide more detailed
discussions on these platforms in Sec. S11.E of [38].
Conclusions.—We report a HOTI on a Brillouin RP2

protected by k − NS symmetries via Z2 synthetic gauge
fields. A natural generalization of the present work is to
construct HOTIs on various BZmanifolds like RPn in three-
dimensional momentum space and synthetic dimensions.
Another area of exploration would be to utilize k − NS
symmetries to stabilize semimetallic degeneracies [55], such
as nodal lines and nodal loops. The gauge fields used here
are Z2 U(1) fields, and it is thus interesting to construct
k − NS symmetries with matrix-valued non-Abelian gauge
fields. Furthermore, delving into the non-Hermitian regime
(see a brief discussion in Sec. S10 of [38]), it becomes
relevant to explore how exceptional points and the complex
energy winding and braiding can be influenced by the
k − NS symmetries and the resulting BZ manifolds.

Note added.—During the completion and peer review of
this letter, we noticed several work studying higher-order
topology in models featuring momentum-space nonsym-
morphic symmetries [56–59].
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