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The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum
information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed
and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes
impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose
theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound
within s-parametrized phase spaces. Our experiment is carried out in a single ultracold 40Caþ ion trapped in a
harmonic potential. By exactly operating the quantum states of the ion, we execute the Landau-Zener model
as an example, where the quantum speed limit as well as the cost are governed by the spectral gap.Wewitness
that our proposed trade-off is indeed tight in scenarios involving both initially eigenstates and initially thermal
equilibrium states. Our work helps understanding the fundamental constraints in shortcuts to adiabaticity
and illuminates the potential of underutilized phase spaces that have been traditionally overlooked.
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Adiabatic dynamics requires an exceptionally slow
evolution of quantum states, posing challenges for practical
applications of quantum technology, which are strongly
restricted by decoherence time. Fortunately, shortcuts to
adiabaticity offers a pathway to achieving identical out-
comes through expedited processes [1]. Transitionless
quantum driving exemplifies such techniques [2–4], whose
core principle is to involve an ancillary counterdiabatic
field H1ðtÞ within t∈ ð0; τÞ. Under the combined
Hamiltonian HðtÞ ¼ H0ðtÞ þH1ðtÞ, the fast quantum
dynamics aligns with the adiabatic process governed solely
by H0ðtÞ. This quantum technology has been extensively
employed to enhance the performance of elementary oper-
ations in quantum information science [5–17], and applied
to other research fields, such as quantum thermodynamics
[18–25], quantum metrology [26], and even the population
engineering of organisms in medical biology [27].
One natural question: what is the maximum speed

achievable by such transitionless driving? Given the inher-
ent trade-offs, a quantum speed limit (QSL) necessarily
constrains the rapidity of this transitionless driving. A
seminal relationship between the cost rate and evolution
speed has been established [18], indicating that instanta-
neous manipulation remains elusive owing to the require-
ment of an infinite cost rate. However, establishing a direct

relationship between the dynamical speed and the driving
cost often encounters obstacles, leading to the prevalent use
of the upper bound of dynamical speed, namely, the QSL,
to associate with the cost rate. Thus, the tightness of this
bound and its ability to accurately reflect the true dynamical
process emerge as two critical factors in assessing the
precision of the trade-off between speed and cost.
Experimentally exploring such relationship is imperative

and typical advancements of QSL experiments so far
include detection of speedup in optical cavity QED systems
[28], observation crossover between Mandelstam-Tamm
and Margolus-Levitin bounds using fast matter wave
interferometry [29], navigation of quantum brachisto-
chrones between distant states of an atom across optical
lattices [30], and execution of logical gates at the QSL in
superconducting transmons [31].
In this Letter, we propose and also verify experimentally

a new trade-off between speed and cost, based on an
optimized QSL bound using the s-parametrized phase
space technique [32]. This approach yields a tight bound
compared to those derived in Wigner phase space or Hilbert
space. We demonstrate that this new trade-off surpasses
the one outlined in [18] that actually lacks tightness [33].
We also justify our findings experimentally in an ion trap
platform using the well-known Landau-Zener (LZ) model,
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which is closely related to the Ising model [34–36] and thus
useful for quantum annealing [37]. In this context, our
present study substantially enhances the understanding
of fundamental constraints governing the speed of quantum
operations. Notably, the tight QSL bound we investigate
here outperforms the traditionally employed Wigner,
Glauber-Sudarshan, and Husimi phase spaces. This finding
strongly supports the notion that rarely used phase spaces
may offer superior performance in certain quantum tasks.
To clarify this new trade-off, we first elucidate briefly the

theory of the cost rate, quantum dynamical speed and limit.
Consider a time-dependent Hamiltonian H0ðtÞ, character-
ized by its instantaneous eigenvalues fϵnðtÞg and eigenstates
fjntig. In ideal situation, the adiabatic dynamics takes an
infinitely long time and would not induce transitions
between the eigenstates. In contrast, for a swift evolution
in transitionless quantum driving without eigenstate tran-
sitions, it is necessary to apply an ancillary counterdiabatic
field with the form of H1ðtÞ ¼ iℏ½∂tðjntihntjÞ; jntihntj� [1].
A suite of cost rate functions for transitionless driving

has been presented [38]. Notably, the most elementary
among them, when disregarding the setup constant, takes
the following subsequent form [18] as

∂tC ¼ kH1ðtÞk ¼
ffiffiffi

2
p

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h∂tntj∂tnti
p

; ð1Þ

where kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðX†XÞ
p

denotes the Frobenius norm of the
operator X [39].
In the study of dynamical speed, it is commonly

characterized by the time derivative of a metric that denotes
the overlap or disparity between an initial and its sub-
sequent evolved state [40]. In this Letter, we utilize the
relative purity [41], a metric known for its computational
efficiency, denoted by Ptðρ0; ρtÞ ¼ trðρ0ρtÞ=trðρ20Þ [42]
or simply Ptðρ0; ρtÞ ¼ trðρ0ρtÞ [43,44]. Throughout this
work, we will adopt the latter to assess the QSL. However,
the upper bound of evolution speed determined via such
relative purity is not tight [33]. Fortunately, this limitation
can be effectively circumvented through the application
of the recently developed s-parametrized phase space
technique in the context of QSL [32].
The relative purity in s-parametrized phase space is

expressed as Ptðρ0; ρtÞ ¼
R

dμðηÞF−s
ρ0 ðηÞFs

ρtðηÞ [32], where
Fs
AðηÞ is the phase space function of operator A, η is a point

in a phase space that determines the state jηiðη → jηiÞ
in Hilbert space, and the index s labels a family of
Cahill-Glauber phase spaces [45,46]. To acquire an optimal
bound, the changing rate of the relative purity, namely, the
dynamical speed, is bounded by

jṖtðρ0; ρtÞj ≤ sup
s∈ S

Vs
QSLðtÞ; ð2Þ

where Vs
QSLðtÞ¼½R dμðηÞF−s

ρ0 ðηÞ2
R

dμðη0ÞjḞs
ρtðη0Þj2�1=2 [32]

represents the QSL in Cahill-Glauber s-parametrized phase

space, and sup signifies the least upper bound, related to the
phase space parameter s within a set S. Notably, s ¼ 0, 1,
and −1 correspond to the well-known Wigner, Glauber-
Sudarshan, and Husimi phase spaces, respectively [47,48].
Without loss of generality, let us consider N-level

quantum systems. The least upper bound, i.e., Eq. (2), is
achieved when s → −∞ and the tightness of such bound is
ensured by the condition of

bμð0Þ ∝ hνðtÞbλðtÞfνλμ; ð3Þ

where bμðtÞ ¼ 2trðρtTμÞ, hμðtÞ ¼ 2trðHðtÞTμÞ, fνλμ are
totally antisymmetric regarding the interchange of any
pair of its indices, and Tμ are the generators of SUðNÞ
Lie algebra. The summation over repeated Greek indices
is implicit.
Proof.—To prove the condition stated in Eq. (3) for

ensuring the tightness of the QSL upper bound in Eq. (2),
it is essential to demonstrate that F−s

ρ0 ðηÞ and Ḟs
ρtðηÞ

are linearly dependent. For N-level quantum systems,
we have F−s

ρ0 ðηÞ ¼ 1=N þ 2bμð0Þr−sRμ and Ḟs
ρtðηÞ ¼

ð2=ℏÞrsbμðtÞhνðtÞRλfνμλ [33], where rs¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNþ1Þ1þs
p

=2
(s∈R), and Rμ ¼ hηjTμjηi. As s approaches −∞, the value
of r−s tends towards infinity. Consequently, the first term,
1=N, in F−s

ρ0 ðηÞ becomes negligible and can be omitted.
Thus, we can solve the set of simultaneous equations, i.e.,
Eq. (3) to ensure linear relevance between F−s

ρ0 ðηÞ and
Ḟs
ρtðηÞ, and thereby guaranteeing the tightness of the upper

bound in Eq. (2). More details can be found in [33]. ▪
In this Letter, we focus on two-level (qubit) systems

for experimental verification. Vs
QSLðtÞ in Eq. (2) is sim-

plified as [32]

Vs
QSLðtÞ ¼

1

2ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s þ jb⃗0j2
q

jh⃗t × b⃗tj; ð4Þ

where b⃗t ¼ trðρtσ⃗Þ and h⃗t ¼ trðHðtÞσ⃗Þ. When the initial
state is pure, we haveΔE ¼ 1

2
jh⃗t × b⃗tj and jb⃗0j2 ¼ 1. Thus,

the s-parametrized QSL bound of the qubit system in
Eq. (4) is rewritten as Vs

QSLðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3s
p

ΔE=ℏ, which is a
Mandelstam-Tamm type bound [49]. In certain specialized
scenarios, such as a qubit system initially prepared in
one of the eigenstates of H0ð0Þ, we may discern analyti-
cally the relationship between the speed limit and the
cost rate. After some algebra, Eq. (4) becomes Vs

QSLðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3s þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih∂tntj∂tnti

p

, which leads to a new concise trade-
off between the QSL and the cost rate

Vs
QSLðtÞ
∂tC

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3s þ 1
p

ffiffiffi

2
p

ℏ
; ð5Þ

governed by the s parameters in phase spaces. Clearly, the
optimal trade-off between the true dynamical speed and
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cost rate is upper bounded by jṖtj=∂tC ≤ V−∞
QSLðtÞ=∂tC ¼

1=
ffiffiffi

2
p

ℏ [50].
In the remainder of this Letter, we will verify exper-

imentally the proposed trade-off in the ion-trap platform,
using the LZ model under various initial states. Our
experiment is carried out with a single ultracold 40Caþ
ion confined in a linear Paul trap, see Fig. 1(a), whose axial
and radial frequencies are, respectively, ωz=2π ¼ 1.01 and
ωr=2π ¼ 1.2 MHz under the pseudopotential approxima-
tion. The quantization axis is defined by a magnetic field of
approximately 6 G at the trap center, which is with respect
to the axial direction at an angle 45°. Prior to the experi-
ment, we have cooled the ion down to near the ground state
of the vibrational modes by Doppler and resolved sideband
cooling, which is sufficient to avoid detrimental effects of
vibrational modes on our operations.
As plotted in Fig. 1(b), we encode the qubit in electronic

states j42S1=2; mJ ¼ þ1=2i (labeled as jgi) and j32D5=2;
mJ ¼ þ5=2i (labeled as jei) with mJ the magnetic quan-
tum number, and the qubit is manipulated by an ultrastable
narrow linewidth 729-nm laser with the Lamb-Dicke
parameter ∼ 0.1. As elucidated below, we will consider
experimentally both the initially prepared eigenstate and
the initially prepared thermal equilibrium state (TES), i.e.,
ρegð0Þ ¼ exp½−βH0ð0Þ�=Z0 with the partition function
Z0 ¼ trfexp½−βH0ð0Þ�g and β ¼ 1=kBT (where T denotes
the temperature and kB is Boltzmann constant).
For the latter case, we need to introduce an extra energy
level j42P3=2; mJ ¼ þ3=2i (labeled as jpi) for initial state
preparation. jpi couples to jei by a 854-nm laser (with Rabi
frequency Ω1) and dissipates to jgi with the decay rate
of Γe=2π ¼ 23.1 MHz. Using this dissipative channel,

we can rapidly acquire the required TES via reinforcement
learning [33].
Figure 1(c) plots the scheme of our experimental steps

for implementing a LZ model. Here the LZ model is
described by H0ðtÞ ¼ Δσx þ gðtÞσz, where Δ is the energy
splitting, gðtÞ is the time-dependent field, and σi∈ ðx;zÞ is
the Pauli operator. The instantaneous eigenstates of
LZ are jψ−ðtÞi ¼ sin½θðtÞ�jgi − cos½θðtÞ�jei and jψþðtÞi ¼
cos½θðtÞ�jgi þ sin½θðtÞ�jei with cos½2θðtÞ� ¼ gðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2ðtÞ þ Δ
p

and sin½2θðtÞ� ¼ Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2ðtÞ þ Δ
p

. According
to Ref. [4], the corresponding ancillary counterdiabatic
term is given by

H1ðtÞ ¼ −
ℏg0ðtÞΔ

2½Δ2 þ g2ðtÞ� σy; ð6Þ

which allows us to investigate Eqs. (4) and (5). Thus, the
combined Hamiltonian is HðtÞ ¼ H0ðtÞ þH1ðtÞ and can
be rewritten as

HðtÞ ¼ Ω̃ðtÞðeiφ̃ðtÞσþ þ e-iφ̃ðtÞσ−Þ þ gðtÞσz: ð7Þ

Equation (7) is a modified form of the LZ model with the
effective Rabi frequency Ω̃ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Δ2 þ ðΞÞ2
p

and the
phase φ̃ðtÞ ¼ arctan½Ξ=ð2ΔÞ�, where Ξ ¼ −ðℏg0ðtÞΔ=
2½Δ2 þ g2ðtÞ�Þ. So our LZ model can be carried out by
exactly controlling the irradiation power and the phase of
729-nm laser, under the government of Eq. (7).
Here we first verify the proposed trade-off from the

initially prepared pure state, i.e., an eigenstate jψþð0Þi.
In this case, with the counterdiabatic field, i.e., Eq. (6)
applied, the system evolves around the instantaneous
eigenstate jψþðtÞi. For the condition far from the adiabatic
limit, we choose Δ ¼ Ω0=4 and gðtÞ ¼ ðΩ0=2Þ cosðπt=τÞ
with Ω0=2π ¼ 40 kHz, and consider various time
periods τ. For an intuitive comparison of QSL and cost
rate, we set ℏ ¼ 1. Figures 2(a) and 2(b) plot the theoretical
simulation of the QSL based on Eqs. (1) and (4), including
Vs
QSL with Wigner phase space s ¼ 0 or s ¼ −∞ and the

cost rate ∂tC. It is evident that Vs¼0
QSL is less accurate for

shorter time period, indicating that Vs¼−∞
QSL is better for

describing the QSL in the case of short time periods.
Comparing Figs. 2(a) and 2(b), we see that the cost rate
varies consistently with the speed, showing that faster
manipulation requires higher energy consumption.
Experimentally, we focus on the case of τ ¼ 50 μs. The

initial state jψþð0Þi is prepared by applying a carrier-
transition pulse with θ ¼ 0.8524π and φ̃ ¼ π=2. Variation
of the characteristic parameters of the LZ model is made
by operational sequences with 20 steps, as sketched in
Fig. 2(c). The powers, frequencies, and phases of the lasers
are controlled via acousto-optic modulators and an arbitrary
waveform generator. After applying the laser pulses, we
measure the population in the excited state jei in three

(a)

(c)

(b)

FIG. 1. (a) The ion trap system, where the 729-nm laser beam is
in parallel with the axial direction, and the 854-nm laser irradiates
with an angle 45° with respect to the axial direction. (b) Level
scheme of the 40Caþ ion, where the double-sided arrows and the
wavy arrow represent the laser irradiation and dissipation,
respectively. (c) The experimental steps starting from the initial-
ization to the final detection.
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directions, labeled as Pi∈ ðx;y;zÞ
e , which constructs the

quantum tomographic results of ρt [33], see Fig. 2(d).
To examine the optimal QSL, we compare the results

from Eq. (4) to the actual dynamical speed of the quantum
state, i.e., jṖtj¼ jtrðρ0ρ̇tÞj¼ 1

ℏjtrðρ0HðtÞρtÞ− trðρ0ρtHðtÞÞj
with ρ0 ¼ jψþð0Þihψþð0Þj. Figure 2(e) presents the exper-
imentally measured dynamical speed jṖtj, facilitating a
comparison with the QSL employing various phase space
parameters, such as s ¼ −∞ and s ¼ 0 (Wigner phase
space). We find that, although both Vs¼−∞

QSL and Vs¼0
QSL have

maximal values at t ¼ 27.5 μs, varying consistently with
jṖtj, the former is tight at t ¼ 29 μs (see proof in Ref. [33]),
indicating that Vs¼−∞

QSL represents the optimal QSL we
acquired. This optimality hinges on two factors: one being
the tightness of the bound, and the other its ability to
accurately reflect the actual dynamical speed.
Based on the optimal QSL, we are ready to examine the

optimal trade-off, i.e., Eq. (5), as illustrated in Fig. 2(f).
Note that, although the upper bound of Vs¼−∞

QSL matches
very well the experimentally actual dynamical speed, the
deviation between the two curves is evident in the regime of
t < 29 μs, see Fig. 2(e). We emphasize that the difference
originates from the fact that the QSL curves are nearly

symmetric whereas the curve of the experimental actual
dynamical speed is not [51]. Besides, for the experimental
data, the error bars of the data points after t ¼ 30 μs
become larger and larger with time, which reflect more
imprecision and uncertainty involved in the measurement.
We conjecture that the enlarged uncertainty comes from the
emergence of the complex dynamics when the state evolves
through the avoided crossing area (around 29 μs) of the LZ
model. This uncertainty is amplified in Fig. 2(f) by the cost
rate ∂tCwhose values are rapidly shrinking with t > 29 μs.
Consequently, to verify the optimal trade-off more accu-
rately, it is highly expected to detect the spin states with
ultimate precision.
Next, we consider a more complex situation, verifying the

trade-off in the case of an initially prepared mixed state, i.e.,
a TES. For simplicity of our experimental implementation,
we fix the inverse temperature βΩ0 ¼ 5 × 1028. Similar to
the above case for initially prepared pure state, we design the
operational sequences with 20 steps to vary the characteristic
parameters of the LZ model, as sketched in Fig. 3(a), and
with the laser pulses we measure the quantum tomographic
results of ρt, see Fig. 3(b). Differently, the initial state
prepared in this case is more complicated. We switch on
the dissipative channel (i.e., jei → jpi → jgi) and employ

(a)

(b)

(c)

(e)

(d)

(f)

FIG. 2. Trade-off between speed and cost in shortcuts to adiabaticity for an initially prepared eigenstate. Panels (a),(b) display
theoretical analyses over varying time periods from τ ¼ 25 to 100 μs, while panels (c)–(f) depict experimental implementations with a
fixed time period of 50 μs. (a) Time evolution of speed with respect to various time periods τ, where dashed and solid lines, respectively,
represent Vs¼0

QSL and V
s¼−∞
QSL . Cases of time periods are colored differently. (b) Time evolution of cost rate ∂tC versus various time periods

τ, where cases of time periods are colored differently. (c) Applied 20-step sequences (with each of 2.5 μs) for the laser detuning Δ, the
effective Rabi frequency strength Ω̃ and the effective phase φ̃. (d) Time evolution of the populations Px

e, P
y
e, and Pz

e as defined in [33].
(e) Time evolution of the actual dynamic speed jṖtj in comparison to the two cases of QSL, i.e., Vs¼0

QSL and Vs¼−∞
QSL . (f) Time evolution of

the actual trade-off jṖtj=∂tC in comparison to Vs¼0
QSL=∂tC and Vs¼−∞

QSL =∂tC within the LZ crossing time window. Dots indicate
experimental results, while solid lines represent theoretical predictions. Error bars, reflecting the statistical standard deviation, are
derived from 50 000 measurements for each data point.
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reinforcement learning to prepare the required TES [33]. The
test of our proposed trade-off is executed similarly to the
above case of initially pure state. From the observations in
Figs. 3(c) and 3(d), we may draw the same conclusions as
in the case of the initially pure state that Vs¼−∞

QSL represents
the optimal upper bound of the QSL and thus reaches the
optimal trade-off.
In summary, we have established an optimal trade-off

between the dynamical speed and the cost rate of the
transitionless driving field in the context of shortcuts to
adiabaticity, utilizing the s-parametrized phase space tech-
nique. We have justified both theoretically and experimen-
tally that this novel trade-off stands out from previous
relations by being tight. These findings substantially enhance
our comprehension of the fundamental constraints inherent
in quantum operations, underscoring the impossibility of
arbitrarily fast processes. Moreover, the method and results
of our work promote the understanding that less commonly
utilized phase spaces, which have been largely overlooked,
may offer superior advantages in certain quantum tasks.
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