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An advanced cooling scheme, incorporating entropy engineering, is vital for isolated artificial quantum
systems designed to emulate the low-temperature physics of strongly correlated electron systems.
This study theoretically demonstrates a cooling method employing multicomponent Fermi gases with
SUðN Þ-symmetric interactions, focusing on the case of 173Yb atoms in a two-dimensional optical lattice.
Adiabatically introducing a nonuniform state-selective laser gives rise to two distinct subsystems: a central
low-entropy region, exclusively composed of two specific spin components, acts as a quantum simulator
for strongly correlated electron systems, while the surrounding N -component mixture retains a significant
portion of the entropy of the system. The total particle numbers for each component are good quantum
numbers, creating a sharp boundary for the two-component region. The cooling efficiency is assessed
through extensive finite-temperature Lanczos calculations. The results lay the foundation for quantum
simulations of two-dimensional systems of Hubbard or Heisenberg type, offering crucial insights into
intriguing low-temperature phenomena in condensed-matter physics.
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Simulating a large-scale quantum-mechanical system
poses a formidable computational challenge in nearly all
areas of physics. Recent remarkable developments in
experimental techniques have paved the way to directly
simulate complex many-body physics in a quantum system
by using an alternative controllable system realized on
experimental platforms such as ultracold atomic and mole-
cular gases [1–4], Rydberg atom arrays in optical tweezers
[5–9], trapped ions [10,11], photonic systems [12,13],
quantum dots [14], and superconducting circuits [15].
The applications of such quantum simulations extend
across a wide range of issues in diverse fields, including
condensed-matter physics, atomic physics, quantum
chemistry, high-energy physics, and cosmology [16–20].
Engineering a low-temperature quantum system of Fermi

particles with two internal states is of particular importance
in the realm of quantum simulation studies [21–23]. This is
attributed to the fact that electrons, possessing a spin
quantum number of 1=2, play a key role in solid-state
physics. Particularly within strongly correlated electron
systems (SCESs), various phenomena bear both fundamen-
tal scientific importance and practical applications, such as
Mott insulators, high-temperature superconductivity [24],
quantum magnetism [25], geometric frustration [26], the
Kondo effect [27], and more. A straightforward method to
replicate these SCESs involves confining cold fermionic
atoms, e.g., 6Li, with two different hyperfine states in an

optical lattice potential [28–41].While this setup is advanta-
geous for creating large-size lattice systems of the Hubbard
type in any dimension, achieving low temperatures to
observe highly quantum phenomena has posed a long-
standing and significant challenge.
Cold-atom systems, well isolated from the thermal

environment, require precise entropy control for studying
low-temperature physics. In the recent work of Mazurenko
et al. [40], a meticulously designed confinement potential
was prepared using a digitalmicromirror device to divide the
system into two subsystems: a central disk-shaped region
comprising approximately 80 sites, each hosting nearly one
atom, and a larger surrounding region with significantly
lower density. The sparsely populated atoms in the latter
subsystem form a metallic phase, serving as an entropy
reservoir due to their high degree of mobility and effectively
cooling down the central target region [42]. This approach
has successfully generated a low-entropy state of two-
component fermions, exhibiting long-range antiferromag-
netic correlations in a two-dimensional optical lattice [40].
However, achieving even lower temperatures, essential for
studying phenomena like high-temperature superconduc-
tivity and quantum spin liquids [43], requires an additional
ingenious twist in conjunction with this entropy engineering
method utilizing the motional degrees of freedom.
In this Letter, we explore an entropy engineering scheme

utilizing SUðN Þ atomic gases, aiming to use it for

PHYSICAL REVIEW LETTERS 132, 213401 (2024)

0031-9007=24=132(21)=213401(6) 213401-1 © 2024 American Physical Society

https://orcid.org/0000-0002-7683-4453
https://orcid.org/0009-0006-2087-5674
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.213401&domain=pdf&date_stamp=2024-05-20
https://doi.org/10.1103/PhysRevLett.132.213401
https://doi.org/10.1103/PhysRevLett.132.213401
https://doi.org/10.1103/PhysRevLett.132.213401
https://doi.org/10.1103/PhysRevLett.132.213401


simulating two-dimensional quantum SCESs. Recent
advancements in manipulating cold alkaline-earth-metal(-
like) atoms, including 173Yb and 87Sr [44–55], have spurred
extensive investigations into quantum many-body systems
with SUðN Þ symmetry, where N > 2. This surge in
research has led to predictions of exotic ground states
for various lattice geometries and different values of the
number of components N [56–61], scenarios not typically
observed in electron systems limited to SU(2) or lower
symmetry. Studies on the effects of external fields imposing
a global population imbalance among spin components
have also been conducted [62–64].
The SUðN Þ systems, especially those with a large N ,

offer enhanced cooling efficiency, akin to the Pomeranchuk
cooling mechanism [50,65]. Here, we capitalize on this
advantage and employ an SUðN Þ subsystem as an entropy
reservoir, achieved through imposing a spin-dependent
field potential. While the concept of the entropy engineer-
ing using spin degrees of freedom has been explored in the
seminal work of Ref. [66], it was limited to an exactly
solvable one-dimensional spin-3=2 chain. Quantum
many-body systems on a two-dimensional lattice at finite
temperatures, as considered here, are directly relevant to
long-standing issues in SCESs. However, they pose a
numerical challenge, especially when dealing with a large
number of local states. Below, we perform extensive
numerical computations using the finite-temperature
Lanczos (FTL) method [67,68] to demonstrate the effi-
ciency of the entropy engineering scheme employing an
SUðN Þ entropy reservoir.
We model an SUðN Þ-symmetric Fermi gas in an optical

lattice by the followingN -component Hubbard Hamiltonian
with spin-independent hoppings (t) and interactions
(U > 0) [69]:

ĤHub ¼ −t
X

hi;ji;σ

�
ĉ†i;σ ĉj;σ þ H:c:

�þ U
X

σ<σ0
n̂i;σn̂i;σ0 ;

where ĉi;σ denotes the annihilation operator of a fermionwith
spin σ, which takes N different values, at lattice site i, and
n̂i;σ ≡ ĉ†i;σ ĉi;σ counts the local number of σ fermions. Here,

we take the strong-coupling limit (U=t ≫ 1) of ĤHub under
unit-filling conditions, with a particular emphasis on the spin
degrees of freedom. This leads to the SUðN Þ Heisenberg
model in the fundamental representation [70–72],

Ĥspin ¼ J
X

hi;ji
Ŝi;j

�
J ≡ 2t2

U
> 0

�
; ð1Þ

with Ŝi;j ≡P
σ;σ0 ĉ

†
i;σ ĉi;σ0 ĉ

†
j;σ0 ĉj;σ under the constraintP

σ n̂i;σ ¼ 1, which swaps the spins at neighboring two sites.
The swapping operator Ŝ can be expressed as the linear
combination of the bilinear terms of N 2 − 1 SUðN Þ gen-
erators with equal coefficients [70,71], guaranteeing that

Ĥspin possesses the global SUðN Þ symmetry. Below, we
consider the case of two-dimensional square optical lattice
with lattice constant a, which is relevant to many interesting
SCES materials. Our main focus is on the N ¼ 6 scenario,
which represents the typical case of 173Yb with nuclear spin
components σ ¼ �5=2;�3=2;�1=2, but the other cases
including N ¼ 10 for 87Sr are analogous.
The populations Nσ ≡P

i n̂i;σ are governed by the
chemical potentials μσ of each spin component in
the ground-canonical ensemble. First, let us examine the
entropy characteristics of the spin Hamiltonian Ĥspin in the
presence of uniform “quadratic Zeeman-type” field:

ĤA ¼ −
A
2

X

i

�
Ŝzi
�
2

�
¼ −

A
2

X

i;σ

σ2n̂i;σ

�
: ð2Þ

Here, Ŝzi is the z component of the spin-5=2 operator at site i.
The inclusion of this field term leads to differences
in the chemical potentials such that μ�5=2 − μ�3=2 ¼ 2A

and μ�3=2 − μ�1=2 ¼ A. Although ĤA explicitly breaks the
SU(6) symmetry of the system, the total numbers of atoms
Nσ remain good quantum numbers since

P
i n̂i;σ commutes

with both Ĥspin and ĤA.
We perform extensive numerical computations using the

FTL method [67,68] for Ĥspin þ ĤA. The spin-5=2 Hilbert
space can be decomposed into the subspaces labeled by
quantum numbers Nσ , each indicating the number of lattice
sites with spin σ. The condition

P
σ Nσ ¼ Nsite, with Nsite

denoting the total number of lattice sites, is inherently
satisfied, thereby restricting the number of independent Nσ

to five. We employ the 18-site 3
ffiffiffi
2

p
× 3

ffiffiffi
2

p
rhombic cluster

under periodic boundary conditions, for which the dimen-
sion of the largest subspace (with Nσ ¼ 3 for all σ) is given
by 137 225 088 000. To improve the accuracy in the large-A
region, we carry out the full exact diagonalization for
subspaces whose dimensions are less than 50 000. We
confirm that the finite-size effect is sufficiently small for
T ≳ 0.3J=kB, by checking the convergence with the results
for a 16-site cluster. As a reference for comparison,
we also calculate the entropy characteristics of the simple
SU(2) Heisenberg model on square lattice for the 32-site
4

ffiffiffi
2

p
× 4

ffiffiffi
2

p
cluster.

In Figs. 1(a)–1(c), we show the entropy per site, s=kB,
the population rate, nσ ≡ Nσ=Nsite, for σ ¼ �5=2, and that
for σ ¼ �1=2, respectively, as functions of the temperature
kBT=J and the field strength A=J. As can be seen in
Fig. 1(a), the entropy is larger for smaller A at a given
temperature. This is because when A ¼ 0 the six compo-
nents are equally populated while only the two of six
remain in the limit of A → ∞ [see 1(b)]; the maximum
entropy per site is given by sðmaxÞ ≈ 1.79kB (≈0.69kB) for
six-component (two-component) systems.
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The field of the type described by Eq. (2) induces a
population imbalance of the form N�5=2 > N�3=2 > N�1=2
as seen in Fig. 1(b). Thus, by adiabatically introducing a
similar field but with nonuniform intensity of the Gaussian
shape (height A0 ≥ 0; width w ≥ 0),

Ĥ0
A ¼ −

X

i

AðriÞ
2

�
Ŝzi

�
2

with AðrÞ ¼ A0e
− r2

2w2 ; ð3Þ

where r is the distance from the center, into a homogeneous
six-component mixture, it is expected that two of the six
components, specifically σ ¼ �5=2, are selectively gath-
ered to the central region of the system. This results in the
formation of a low-entropy pseudospin-1=2 subsystem with
j � 5=2i≡ j↑i; j↓i surrounded by high-entropy reservoir
of a six-component mixture, as sketched in Fig. 2(a).
To demonstrate the efficiency of this cooling procedure,

let us consider the simple case where a sufficiently large
number of sites exist inside a disk-shaped region of radius
R ≫ a, and treat the lattice coordinates as a continuous
space. In addition, we employ the local density approxi-
mation [55], in which we assume that the local properties of
the inhomogeneous system at position r are given by the
ones computed in a homogeneous system with field
strength A ¼ AðrÞ. Using the local density approximation,
we can convert the data obtained by the FTL method for
uniform fields (shown in Fig. 1) into the distributions of the

population n�σðrÞ and of the local entropy sðrÞ in the
presence of the Gaussian field AðrÞ. Supposing that the
initial entropy of a homogeneous six-component gas per
site is sini, we determine the temperature of the system T
after inserting the Gaussian field AðrÞ [and the accompany-
ing sðrÞ and n�σðrÞ] such that the adiabatic condition
2π

R
R
0 sðrÞrdr=πR2 ¼ sini is satisfied.

Figures 2(b) and 2(c) show the results for sini ¼ 1.0kB,
A0 ¼ 20J, and w ¼ 0.2R. It can be seen that a large fraction
of the entropy becomes stored in the surrounding six-
component gas, as expected, along with the redistribution
of the populations. As a result, the entropy per site at the
center becomes much lower [sð0Þ ≈ 0.11kB] than the initial
value sini ¼ 1.0kB. Remarkably, the central region consist-
ing only of two components has a sharp boundary at
r ≈ rSUð2Þ, defined by the condition n�5=2 ≥ 0.499, despite
the smooth shape of the Gaussian field, owing to the fact
that the populations of each component are good quantum
numbers. Removing the spin components except for
σ ¼ �5=2 (↑;↓) from Eq. (1) reveals that the standard
spin-1=2 Heisenberg model with coupling constant 2J is
ideally realized within r < rSUð2Þ. The radius of the SU(2)

(b)

(a)

(c)

FIG. 2. (a) Sketch of the proposed cooling procedure. (b)
and (c) Profiles of local entropy sðrÞ=kB and population rate of
each component nσðrÞ after adiabatic insertion of the Gaussian
field AðrÞ with A0 ¼ 20J and w ¼ 0.2R, respectively. The
horizontal and vertical dotted lines indicate the initial entropy
per site sini=kB ¼ 1.0kB and the radius of the SU(2) region
rSUð2Þ=R ¼ 0.396, respectively. The dashed lines represent the
results under a deviation from ideal initial population imbalance.
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0.1 1 5 10

(b) (c)

(a)

FIG. 1. (a) Entropy per site s=kB, (b) population rate of the spin
components σ ¼ �5=2, and (c) that of σ ¼ �1=2 as a function of
temperature kBT=J and the strength of uniform quadratic Zeeman
field A=J, obtained by the FTL method [67,68] for an 18-site
rhombic cluster. The population rate of the remaining compo-
nents can be calculated with n�3=2 ¼ 0.5 − n�5=2 − n�1=2.
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region and the temperature become rSUð2Þ ¼ 0.396R and
T ¼ 0.753J=kB.
In the experiments using 173Yb atoms, the field term

described by Eq. (3) can be realized using the light shifts by
a linearly polarized light beam with a frequency detuned
from the 1S0 ↔ 3P1 transition [54]. A field strength up to
A0 ¼ 20J and its adiabatic insertion could be reasonably
achieved given a typical energy scale of J [73]. To achieve
the population profile where the entropy reservoir sub-
system consists of balanced six components, one needs to
introduce a global population imbalance at the preparation
stage of the initial homogeneous mixture. This is feasible
by means of the optical-pumping technique [49,54]. In
the case of Fig. 2, the proper global population ratio, given
by integrating nσðrÞ, should be N�5=2∶N�3=2∶N�1=2 ¼
0.258∶0.126∶0.116 for the six components existing
in almost equal amounts at r ¼ R. However, this
condition may not be strictly necessary for experiments.
As demonstrated by the dashed lines in Fig. 2, even
allowing for a certain amount of deviation, such as
N�5=2∶N�3=2∶N�1=2 ¼ 0.24∶0.13∶0.13, the achieved tem-
perature remains stable at T ¼ 0.740J=kB, even with a
slight decrease, attributed to a tradeoff resulting in a slight
shrinkage of rSUð2Þ to 0.393R.
In Figs. 3(a)–3(d), we present the cooling efficiency and

the size of the central SU(2) region for various values of w.
Panels (a),(c) correspond to A0 ¼ 20J, while panels (b),(d)
correspond to A0 ¼ 4J. These results provide guidance on
the required initial entropy of the mixed gas to attain the
desired temperature and the size of the SU(2) region. To
engineer a two-component Fermi system of radius rSUð2Þ ≳
0.4R at temperature, say, T ¼ 0.5J=kB, the cooling curve
indicates that one needs to prepare the initial six-compo-
nent mixture with sini ≈ 0.8kB for A0 ¼ 20J and w ¼ 0.2R,
while the required entropy per site to achieve the same
temperature is quite small (≈0.05kB) if one uses a homo-
geneous two-component gas. Figures 3(e) and 3(f) show
the condition for the initial global population imbalance to
approximately restore the SUðN Þ symmetry at r ¼ R after
adiabatic modification, although it is not strictly enforced
for the purpose, as explained earlier.
It can be seen from the comparison of the curves for

different values of w that the achievable temperature is
lower for a tighter field potential in exchange for a smaller
rSUð2Þ, as naturally expected. When A0 is reduced, the
comparison between Figs. 3(a) and 3(b) tells us that the
cooling efficiency gets better while a lower initial entropy is
required to prepare a large enough SU(2) region. Hence, the
optimal setting for A0 and w is determined comprehen-
sively by the achievable entropy of the initial homogeneous
mixture, the target temperature, and the intended size of the
SCES quantum simulator.
In summary, we have explored an entropy engineering

scheme for two-component Fermi systems employing a
multicomponent mixture of atomic gases. This scheme

involves the adiabatic insertion of a nonuniform field of the
quadratic Zeeman type, which divides the system into a
central low-entropy region with only two specific compo-
nents and a surrounding N -component entropy reservoir.
Taking the case of a two-dimensional optical-lattice system
of 173Yb atoms, which have N ¼ 6 nuclear components
with fully symmetric interactions in the ground state, we
have presented the estimation of the cooling efficiency of
this entropy engineering scheme.
In the experiment of Ref. [40], which utilized the cooling

method relying on the high motional degrees of freedom
of a metallic state serving as an entropy reservoir, the
lowest temperature achieved was estimated to be T=t ¼
0.25ð2Þ=kB for a system of two-component fermions
in a two-dimensional optical lattice, described by the
Hubbard model with U=t ¼ 7.2ð2Þ. This corresponds to
T ≈ 0.9J=kB in our energy unit J ≡ 2t2=U. To attain the
same temperature using the cooling method discussed here

(b)(a)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 3. (a),(b) Temperatures and (c),(d) radius of the SU(2)
region, achieved by the proposed cooling procedure, as functions
of the initial entropy per site. The ideal ratio of the global
population imbalance in the initial homogeneous state is shown in
(e)–(j). The height of the Gaussian field AðrÞ is set to A0 ¼ 20J
for (a),(c),(e),(g),(i) and A0 ¼ 4J for (b),(d),(f),(h),(j), and the
results for different widths (w ¼ 0.1R − 0.4R) are plotted to-
gether. The dotted (dashed) curves in (a),(b) show the temper-
ature-entropy curve of a homogeneous SU(2) [SU(6)] gas as a
reference. The vertical lines represent the maximum entropy per
site for two-component (≈0.69kB) and for six-component
(≈1.79kB).
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with 173Yb atoms, it is necessary to prepare a six-
component mixture with initial entropy of sini ¼ 1.08kB
in the spin part, considering a typical case of A0 ¼ 20J and
w ¼ 0.2R, according to Fig. 3(a). While our focus has been
on the unit-filling region of the entire system in this study,
there exists a lower-density region in the metallic phase
further outside (r > R) in an actual experimental situation.
Therefore, these two methods could be used in conjunction,
offering the expectation of achieving low enough temper-
atures for studying highly quantum phenomena in SCESs.
The proposed cooling method is expected to be even

more effective for a larger value of N , including N ¼ 10

for 87Sr [47,48,52], and can also be applied to multi-
component systems without perfect SUðN Þ symmetry.
Furthermore, the method can be extended to quantum
simulations of low-entropy states in SUðMÞ systems where
2 < M < N by using a field that can selectively gatherM
out of N components in the central subsystem. This opens
up possibilities for realizing exotic SU(3) [56,57,62,63]
and SU(4) [59,64] magnetism, which is also relevant to
the physics of solid-state materials, including nematic
liquid crystals [78–80], transition metal oxides [81], and
graphene [82].
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