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We evaluate the top-bottom interference contribution to the fully inclusive Higgs production cross
section at next-to-next-to-leading order in QCD. Although bottom-quark-mass effects are power sup-
pressed, the accuracy of state-of-the-art theory predictions makes an exact determination of this effect
indispensable. The total effect of the interference at 13 TeV is −1.99ð1Þþ0.30

−0.15 pb, while the pure Oðα4sÞ
correction is 0.43 pb. With this result, we address one of the leading theory uncertainties of the cross
section.
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Introduction.—The discovery of the Higgs boson at the
Large Hadron Collider (LHC) by the ATLAS [1] and
CMS [2] Collaborations was a major breakthrough for the
field of particle physics. A comprehensive understanding of
the newly found boson and all its properties is pivotal to
investigating possible new physics scenarios. Among the
many aspects of Higgs physics phenomenology, the pro-
duction cross section is central. This quantity is dominated
(∼90% at 13 TeV center-of-mass energy) by the gluon-
fusion channel gg → H, where two gluons couple to the
Higgs boson via a quark triangle loop. Thus, extensive
efforts have been devoted to determining the cross section
of this channel precisely. One direction toward better
accuracy is to include higher orders in the strong coupling
constant αs in the calculation. Since this comes with the
difficulty of calculating amplitudes with more and more
loops, a commonly used approximation is the heavy-top
limit (HTL) given by mt → ∞. This introduces an effective
coupling between gluons and the Higgs, transforming the
loop-induced gg → H process into a tree-level process at
leading order (LO) in the effective theory. In the latter,
calculations are significantly simplified by reducing the
loop order by one and eliminating one of the scales. This
has enabled calculations of the Higgs production cross
section in gluon-gluon fusion at next-to-leading [3,4], next-
to-next-to-leading [5–7], and next-to-next-to-next-to-lead-
ing [8,9] order (NLO, NNLO, and N3LO, respectively).
These works have shown that Higgs production receives
large corrections from higher orders. Notably, the Oðα3sÞ

cross-section contribution surpasses the LO prediction,
while NNLO corrections remain substantial, contributing
roughly 20% to the total rate. N3LO corrections (∼3%)
reduce the scale uncertainties to the percent level. Because
of this remarkable accuracy, it becomes important to
examine potential other sources of uncertainty carefully.
A comprehensive analysis of the status of the cross-section
calculation has been performed in Ref. [10]. While uncer-
tainties stemming from parton distribution functions
(PDFs) and their unavailability at N3LO remain until today,
others have been reduced by calculating the N3LO con-
tribution without a truncated threshold expansion [9]
and by including the mixed QCD-electroweak corrections
[11–14]. All remaining sources of theory uncertainty are
related to effects from finite quark masses. The elimination
of these uncertainties requires calculations in full QCD
beyond the HTL. At LO [15] and NLO [16], this has been
achieved by explicit calculation a long time ago. For higher
orders (HO), it turns out that it is a good approximation to
multiply the HTL result with a rescaling factor containing
the LO impact of a heavy top quark—this procedure is also
known as Higgs effective field theory (HEFT):

σHOHEFT ¼ σLOt
σLOHTL

σHOHTL ≈ 1.065 × σHOHTL; ð1Þ

where the numerical value was calculated using mH ¼
125 GeV and mt ¼ 173.055 GeV. Still, missing finite-
quark-mass effects at NNLO remain a source of uncer-
tainty. In particular, two contributions were each estimated
to amount to ∼1% in Ref. [10]: the exact dependence on the
top mass in all diagrams, where the top quark remains the
only quark which couples to the Higgs, and interference
effects between such top-quark diagrams and diagrams
containing a bottom or charm loop. These finite-quark-
mass effects are generally power suppressed: In the case of
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finite top-mass effects, the cross section contributions are
suppressed by powers of m2

H=4m
2
t close to the production

threshold. For bottom quarks, on the other hand, they are
suppressed bym2

b=m
2
H independently of partonic center-of-

mass energy. The latter suppression originates partly from
the Yukawa coupling constant and partly from the scalar
nature of the interaction vertex, which requires a helicity
flip of the quark. Helicity conservation then demands
that the cross section vanishes as mb → 0, resulting in
an overall suppression of m2

b. However, the cross section
also receives strong logarithmic enhancements of the form
log2ðm2

b=m
2
HÞ, rendering the total interference quite siz-

able. Charm-quark contributions receive an analogous
suppression, which is, however, even stronger due to the
smaller mass value. Top- and bottom-quark-mass effects
are, hence, viewed to be among the leading theory
uncertainties. Recently, the production cross section was
computed with full top-mass dependence at NNLO [17],
confirming the expected size of the top-mass effects. So far,
predictions of the fully inclusive top-bottom interference
cross section are still lacking. A threshold expansion
around ŝ ¼ mH at NLO with next-to-next-to-leading log-
arithmic resummation in the HTL [18] has been used to
estimate the interference to contribute −2.18 pb at NNLO.
On top of that, differential cross-section analyses for
Higgsþ jet production at NLO [19–23] have become
available and confirmed the significance of bottom-quark
effects, especially in the low-pT region. In these studies, the
transverse momentum of the Higgs serves as an infrared
regulator. In the case of the fully inclusive cross section, the
possibility of a vanishing Higgs transverse momentum has
to be taken into account. This necessitates the inclusion of
double-virtual amplitudes and also a numerically stable
implementation of real-radiation amplitudes in infrared-
sensitive regions of the phase space.
In this Letter, we address these points, which enables us

to compute the interference effect for the fully inclusive
Higgs production cross section at NNLO.
Calculation.—In order to compare the size of the top-

bottom interference effects with the known contributions to
the total rate, we adopt the five-flavor scheme, wherein the
bottom quark is included in the proton PDFs. In this scheme,
the bottom quark is treated as massless, in contrast to the
four-flavor scheme, where the bottom quark is absent from
the initial state and treated as a massive particle. The
nonvanishing mass of the bottom quark cannot be com-
pletely disregarded, since, as we already pointed out, the
interference effects are power suppressed by a factor
proportional to m2

b. Hence, we treat the bottom quark as a
massive particle but only inside closed fermion loops that
couple to the Higgs. This approach assures that the resulting
amplitudes are gauge invariant. The reason can be easily
understood, as the calculation is formally equivalent to
introducing a replica bottom quark which is, however,
absent in the PDFs and decoupled from the running of

αs. The Yukawa coupling to the Higgs is an arbitrary
parameter from the perspective of QCD; therefore, the set
of diagrams in which the replica bottom quark couples to the
Higgs must be independently gauge invariant.
To compute the cross section, we perform the phase-

space integration of the relevant amplitudes using
Monte Carlo techniques. For our purposes, we need
amplitudes with both real and virtual corrections to
Higgs production in gluon fusion. Namely, we require
one-loop double-real, two-loop real-virtual, and three-loop
double-virtual amplitudes. The double-real amplitudes are
the same as in the case of a single heavy quark except that
the involved integrals are now also evaluated above the
quark production threshold m2

H > 4m2
q. The amplitudes

have been calculated in Ref. [24], and we use their
implementation inside MCFM [25–27], which itself uses
QCDLoop [28,29] to calculate the scalar integrals. Starting
with the two-loop real-virtual corrections, the amplitude
receives corrections from mixed quark loops, i.e., diagrams
with both a top- and a bottom-quark loop. Fortunately, the
resulting integrals can always be factorized into separate
standard one-loop integrals. The main challenge arises
from two-loop amplitudes with only a single fermion loop.
Here, we follow the strategy outlined in Ref. [17], which
itself is based on Refs. [30,31]. The general idea is to
reduce the amplitude to a set of master integrals, which is
done with the help of the public software KIRA⊕FireFly

[32–36], and then derive a set of coupled differential
equations. The master integrals are functions of three
variables, which are chosen to be

ξ ¼ 1 −
m2

H

ŝ
; λ ¼ t̂

t̂þ û
; and x ¼ m2

q

ŝ
; ð2Þ

where ŝ, t̂, and û are the usual partonic Mandelstam
variables of the process gg → gH or qq̄ → gH and mq

and mH refer to the masses of the heavy quark and the
Higgs boson, respectively. The amplitudes for these proc-
esses are symmetric with respect to λ → 1 − λ, and all other
relevant amplitudes are related by crossing. The boundary
conditions are determined in the limit of large x by a large-
mass expansion as described in Ref. [37]. Subsequently, the
solution on the boundary is transported to physical values
of x using the differential equation for a fixed value of λ
close to the symmetry axis 1=2 and multiple values of ξ. In
the next step, the differential equation is solved in λ to map
out the entire physical parameter space, such that we obtain
a dense grid for the amplitudes, which can then be used for
the Monte Carlo integration.
When performing this integration, it is necessary to

sample phase-space points which differ from the grid
points. The required interpolation is difficult at the boun-
daries if infrared divergences are present. Hence, we
remove them by subtracting the rescaled amplitudes in
the HTL from the full result. The rescaling parameter r is
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chosen specifically so that the LO cross sections in the
effective and the full theory match exactly:

r ¼ σLOt×b
σLOHTL

≈ −0.129; ð3Þ

with mb ¼ 4.779 GeV additionally to the values used for
Eq. (1). This procedure assures that infrared divergences
arise solely from tree-level soft or collinear radiation, which
we subtract with the help of the corresponding splitting
function as well. Afterward, the regulated grid is interpo-
lated using cubic splines, whereas the subtracted terms can
be added back at arbitrary phase-space points, since they
are known as compact analytic expressions. Notice the
resemblance of the rescaling in Eq. (3) to that in Eq. (1).
While the latter employs a rescaling parameter close to one
and is commonly used to correct for finite top-quark mass
effects, the rescaling performed here should be understood
only as a computational trick, which is underlined by the
negative value of r.
The three-loop virtual corrections are exclusively gluon-

initiated, since the Higgs-quark form factor is zero to all
orders of perturbation theory for massless quarks. The
Higgs-gluon form factor, on the other hand, receives
genuine corrections. Contributions containing only a single
type of heavy quarks, i.e., either a top or a bottom quark,
have been evaluated both above and below the quark
production threshold 2mq in Ref. [37]. Results for mixed
heavy-quark contributions have been published recently in
Ref. [38]. In both cases, the authors first employed a high-
energy and/or large-mass expansion of the integrals.
Afterward, they used differential equations to extend the
expansion to very high orders such that the amplitudes can
be calculated precisely.
All contributions have been included in STRIPPER, the C+

+ implementation of the sector-improved residue subtrac-
tion scheme [39–41], in order to correctly deal with all their
infrared divergences. The cancellation of infrared diver-
gences is checked by verifying that all poles in the
dimensional regulator ϵ are compatible with zero within
their Monte Carlo uncertainty.
The masses of the heavy quarks are renormalized in the

on-shell scheme, while the strong coupling constant is
renormalized in the MS scheme with five light quark
flavors. The Lehmann-Symanzik-Zimmermann (LSZ) con-
stant for the gluon field is nontrivial already at the one-loop
order [42]. The LSZ constants for the massless quark fields
are nontrivial starting at two loops, which makes them
irrelevant for the present calculation. Since the bottom
quark is assumed to be massless whenever the fermion loop
is not coupled to the Higgs boson, it does not contribute to
the gluon LSZ constant, and no decoupling constant needs
to be introduced.
Results.—Table I presents the key findings of this

publication. For completeness, we reproduce the HEFT

results and the effects of a finite top-quark mass, whose
value is taken as mt ¼ 173.055 GeV, as in Ref. [17].
Additionally, we provide scale uncertainties, which, in the
case of the NNLO top-quark mass effects, constitute an
additional novel result of this work. The main result is the
top-bottom interference effect σt×b at the same top-quark
mass and a bottom-quark mass of mb ¼ 4.779 GeV, also
including scale uncertainties. A calculation at a lower
value, mt ¼ 170.98 GeV, yields a σt×b compatible with
the result given in Table I within the Monte Carlo uncer-
tainty. For σt − σHEFT at 13 TeV, the Oðα4sÞ contribution
changes slightly from 0.147(1) to 0.151(1) pb, which is
compensated by a shift at Oðα3sÞ, leading to a very
small change of the NNLO result from −0.156ð1Þ to
−0.159ð1Þ pb. Thus, we conclude that the effect of small
variations of the top-quark mass value is too small to be
sensibly quantified. While the size of the NNLO correction
to σt×b is as estimated in Refs. [10,43], our result exhibits
some surprising properties. First, one notices that the top-
bottom interference has an even larger effect than the exact
top-mass dependence compared to HEFT. This is, however,
not too surprising, because the HEFT values already
account for some of the top-mass effects with the rescaling
procedure. Second, the Oðα4sÞ corrections have opposite
sign and similar magnitude compared to the Oðα3sÞ con-
tribution, leading to an almost complete cancellation.
Furthermore, they are more than twice as large as expected
from the NLO scale uncertainties. Together with the fact
that we observe an increased scale dependence at NNLO
compared to NLO, we can conclude that, for top-bottom
interference effects in Higgs production, standard scale
variation at NLO underestimates the magnitude of higher-
order contributions.
Finally, our result for σt×b at 13 TeV can be compared to

Ref. [18], where the authors calculate it, albeit at a very
large top-quark mass value using the MS scheme for the
bottom-quark mass and Yukawa coupling, using a next-to-
leading logarithmic approximation and obtain −1.42 pb
at LO, −2.05 pb at NLO, and −2.18 pb at NNLO. Since
their NNLO value lies almost within our scale uncertainty,
we can confirm the quality of their approximation.
Additionally, we observe a compelling reduction of the
renormalization-scheme dependence.
To further investigate convergence and scheme depend-

ence, we transformed our results to a mixed renormaliza-
tion scheme, where the bottom mass stays on shell, while
the Yukawa coupling Yb ¼

ffiffiffi
2

p
mb=v is renormalized in the

MS scheme. Contrary to a complete calculation with both
the mass and the Yukawa coupling in the MS scheme, the
mixed scheme is straightforward to implement since
σt×b ∝ Yb. The Yukawa-coupling running was obtained
with CRunDec [47], and the required scheme-translation
constants can be found in Ref. [48]. The results are shown
in Table I. At NNLO, they are compatible with the on-shell
results within scale uncertainties, albeit with a much
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weaker scale dependence. The convergence across different
orders of perturbation theory is substantially improved,
indicating a potentially better convergence of a consistent
MS-scheme result. At present, our on-shell results with

their larger errors seem appropriate as a conservative
estimate for phenomenological applications.
In order to make sure that our calculation is correct and

the surprising features listed above are not due to mistakes

TABLE I. Effects of interference of bottom- and top-quark amplitudes on Higgs production in the gluon-fusion channel at the LHC at
7, 8, 13, 13.6, and 14 TeV. The results are obtained with the NNPDF31_nnlo_as_0118 [44] PDF set with a Higgs mass of mH ¼
125 GeV and quark masses of mt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
23=12

p
mH ≈ 173.055 GeV and mb ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1=684

p
mH ≈ 4.779 GeV. In the second-to-last column,

the bottom Yukawa coupling Yb ¼
ffiffiffi
2

p
mb=v is renormalized in the MS scheme, wheremb;MSðmb;MSÞ ¼ 4.18 GeV. The calculation was

performed at a central scale of μF ¼ μR ¼ mH=2. The scale uncertainties were determined with seven-point variation. The same scale
setting was used in the numerator and denominator in the ratio presented in the last column. The HEFT values have been obtained with
SusHi [45,46].

Order σHEFT [pb] ðσt − σHEFTÞ [pb] σt×b [pb] σt×bðYb;MSÞ [pb] σt×b=σHEFT [%]
ffiffiffi
s

p ¼ 7 TeV

Oðα2sÞ þ5.85 � � � −0.708 −0.439
LO 5.85þ1.56

−1.11 � � � −0.708þ0.13
−0.19 −0.439þ0.10

−0.16 −12
Oðα3sÞ þ7.14 −0.0604 −0.226 −0.264
NLO 12.99þ2.89

−2.14 −0.0604þ0.021
−0.037 −0.934þ0.09

−0.07 −0.703þ0.11
−0.12 −7.2þ1.0

−0.8
Oðα4sÞ þ3.28 þ0.0386ð2Þ þ0.121ð3Þ −0.026ð2Þ
NNLO 16.27þ1.45

−1.61 −0.0218ð2Þþ0.035
−0.009 −0.813ð3Þþ0.10

−0.04 −0.729ð2Þþ0.04
−0.01 −5.0þ1.0

−0.8
ffiffiffi
s

p ¼ 8 TeV

Oðα2sÞ þ7.39 � � � −0.895 −0.554
LO 7.39þ1.98

−1.40 � � � −0.895þ0.17
−0.24 −0.554þ0.13

−0.20 −12
Oðα3sÞ þ9.14 −0.0873 −0.268 −0.323
NLO 16.53þ3.63

−2.73 −0.0873þ0.030
−0.052 −1.163þ0.10

−0.08 −0.877þ0.13
−0.14 −7.0þ1.0

−0.8
Oðα4sÞ þ4.19 þ0.0523ð2Þ þ0.167ð3Þ −0.022ð2Þ
NNLO 20.72þ1.84

−2.06 −0.0350ð2Þþ0.048
−0.013 −0.996ð3Þþ0.12

−0.05 −0.899ð2Þþ0.04
−0.02 −4.8þ0.9

−0.8
ffiffiffi
s

p ¼ 13 TeV

Oðα2sÞ þ16.30 � � � −1.975 −1.223
LO 16.30þ4.36

−3.10 � � � −1.98þ0.38
−0.53 −1.22þ0.29

−0.44 −12
Oðα3sÞ þ21.14 −0.303 −0.446ð1Þ −0.623ð1Þ
NLO 37.44þ8.42

−6.29 −0.303þ0.10
−0.17 −2.42þ0.19

−0.12 −1.85þ0.26
−0.26 −6.5þ0.9

−0.8
Oðα4sÞ þ9.72 þ0.147ð1Þ þ0.434ð8Þ þ0.019ð5Þ
NNLO 47.16þ4.21

−4.77 −0.156ð1Þþ0.13
−0.03 −1.99ð1Þþ0.30

−0.15 −1.83ð1Þþ0.08
−0.03 −4.2þ0.9

−0.8
ffiffiffi
s

p ¼ 13.6 TeV

Oðα2sÞ þ17.47 � � � −2.117 −1.311
LO 17.47þ4.67

−3.32 � � � −2.12þ0.40
−0.57 −1.31þ0.31

−0.47 −12
Oðα3sÞ þ22.76 −0.338 −0.464ð1Þ −0.659ð1Þ
NLO 40.23þ9.07

−6.77 −0.338þ0.11
−0.18 −2.58þ0.20

−0.12 −1.97þ0.28
−0.28 −6.4þ0.9

−0.8
Oðα4sÞ þ10.47 þ0.162ð1Þ þ0.464ð9Þ þ0.022ð6Þ
NNLO 50.70þ4.53

−5.14 −0.176ð1Þþ0.14
−0.03 −2.12ð1Þþ0.33

−0.16 −1.95ð1Þþ0.09
−0.03 −4.2þ0.9

−0.8
ffiffiffi
s

p ¼ 14 TeV

Oðα2sÞ þ18.26 � � � −2.213 −1.370
LO 18.26þ4.88

−3.47 � � � −2.21þ0.42
−0.59 −1.37þ0.32

−0.49 −12
Oðα3sÞ þ23.86 −0.362 −0.475ð1Þ −0.682ð1Þ
NLO 42.12þ9.51

−7.10 −0.362þ0.12
−0.20 −2.69þ0.21

−0.13 −2.05þ0.29
−0.29 −6.4þ0.9

−0.8
Oðα4sÞ þ10.98 þ0.171ð1Þ þ0.488ð9Þ þ0.027ð6Þ
NNLO 53.10þ4.75

−5.39 −0.191ð1Þþ0.15
−0.04 −2.20ð1Þþ0.34

−0.17 −2.03ð1Þþ0.09
−0.03 −4.1þ0.9

−0.8

PHYSICAL REVIEW LETTERS 132, 211902 (2024)

211902-4



in the calculation, we have successfully reproduced the
fixed-order differential distributions at the central scale
presented in Refs. [22,49]. This serves as a check of the
real-virtual and real-real contributions. For checks of the
three-loop Higgs-gluon form factor by comparison to
previous work [50,51], we refer to Ref. [37].
Conclusions and outlook.—We have computed the

top-bottom interference contribution to the Higgs produc-
tion cross section in gluon-gluon fusion at NNLO.
The result addresses one of the most important remaining
theory uncertainties for this process. We find that the
effect is sizable and, therefore, crucial for precision
predictions at the percent level. The result is compatible
with conservative estimates previously available in the
literature. Interestingly, the scale uncertainties grow slightly
from NLO to NNLO. It has been noticed [22,43] that the
interference can be very sensitive to the choice of the
renormalization scheme. When changing only the renorm-
alization of the bottom Yukawa coupling to MS, compatible
results with weaker scale dependence are obtained. Since it
is questionable if such a mixed renormalization scheme is
consistent in the context of the complete standard model
and since the standard in the Higgs Working Group is to
renormalize the bottom mass in the MS scheme [10], a
calculation in the MS scheme for both mb and Yb would be
highly desirable. Furthermore, the effect of a finite bottom
mass in loops which do not couple to the Higgs, i.e., in the
four-flavor scheme, has seen recent attention in an approxi-
mation at leading power in 1=mH [52]. As a first rough
assessment of such effects, we observe that contributions
including b-quark PDFs contribute only 0.037 pb to our
σt×b result at NNLO and 13 TeV. We expect the effect of a
switch to the four-flavor scheme to be of a similar order of
magnitude. Still, a complete calculation in this scheme
remains of major interest. We defer a dedicated analysis
comparing the calculation presented in this Letter to an
exact calculation in the MS scheme and/or the four-flavor
scheme to future work. Because of the open questions
regarding the scheme choice, we refrain from providing
values for top-charm interference, even though the methods
used in this work can be readily applied to obtain them. It
seems sensible to first address the impact of scheme choice
before considering this very small effect, where the usage
of the five-flavor scheme as explained above might no
longer be appropriate.
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