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We present lattice-QCD results for the electromagnetic form factors of the proton and neutron including
both quark-connected and -disconnected contributions. The parametrization of the Q2 dependence of the
form factors is combined with the extrapolation to the physical point. In this way, we determine the electric
and magnetic radii and the magnetic moments of the proton and neutron. For the proton, we obtain at

the physical pion mass and in the continuum and infinite-volume limit
ffiffiffiffiffiffiffiffiffiffiffi

hr2Eip
p

¼ 0.820ð14Þ fm,
ffiffiffiffiffiffiffiffiffiffiffiffi

hr2Mip
p

¼ 0.8111ð89Þ fm, and μpM ¼ 2.739ð66Þ, where the errors include all systematics.
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Introduction.—The so-called proton radius puzzle, i.e.,
the observation of a large tension in the proton’s electric
(charge) radius extracted either from atomic spectroscopy
data of muonic hydrogen [1,2] or, alternatively, from
corresponding measurements on electronic hydrogen [3]
as well as ep-scattering data [4,5], has gripped the scientific
community for more than 10 years and triggered a vigorous
research effort designed to explain the discrepancy.
Recent results determined from ep-scattering data

collected by the PRad experiment [6] and from atomic
hydrogen spectroscopy [7–9] (with the exception of
Ref. [10]) point towards a smaller electric radius, as
favored by muonic hydrogen and dispersive analyses of
ep-scattering data [11–18]. To allow for a more reliable
and precise determination of the proton’s electromagnetic
form factors from which the radii are extracted, efforts are
underway to extend ep-scattering experiments to unprec-
edentedly small momentum transfers [19–21], which are
complemented by plans to perform high-precision mea-
surements of μp cross sections [22,23].
While the situation regarding the electric radius is

awaiting its final resolution, one also finds discrepant
results for the proton’s magnetic radius. Specifically, there
is a tension of 2.7σ between the value extracted from the A1
ep-scattering data alone and the estimate from the corre-
sponding analysis applied to the remaining world data [24].

Clearly, a firm theoretical prediction for basic properties of
the proton and the neutron, such as their radii and magnetic
moments, would be highly desirable in order to assess our
understanding of the particles that make up the largest
fraction of the visible mass in the Universe.
In this Letter we present our results for the radii and

magnetic moment of the proton computed in lattice QCD.
Compared with previous lattice studies [25–42], our
calculation is the first to include the contributions from
quark-disconnected diagrams while controlling all sources
of systematic uncertainties arising from excited-state con-
tributions, finite-volume effects and the continuum extrapo-
lation. We determine the proton’s magnetic radius

ffiffiffiffiffiffiffiffiffiffiffiffi

hr2Mip
p

with a total precision of 1.1%, which is competitive
with recent analyses of ep-scattering data [4,15,16,24].
Moreover, our lattice QCD estimate for the proton’s
magnetic moment is in good agreement with experiment.
Our result for the electric radius, which has a total precision
of 1.7%, is consistent with the value determined in muonic
hydrogen within 1.5 standard deviations.
Lattice setup.—Our aim is to compute the electric and

magnetic Sachs form factors GEðQ2Þ and GMðQ2Þ of the
proton and neutron. The electric form factor at zero
momentum transfer yields the nucleon’s electric charge,
i.e.,Gp

Eð0Þ ¼ 1 andGn
Eð0Þ ¼ 0, whereas the magnetic form

factor at Q2 ¼ 0 is identified with the magnetic moment,
GMð0Þ ¼ μM. The radii can in turn be extracted from the
slope of the form factors at zero momentum transfer,

hr2i ¼ −
6

Gð0Þ
∂GðQ2Þ
∂Q2

�

�

�

�

Q2¼0

: ð1Þ
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The only exception to this definition is the electric radius
of the neutron, where the normalization factor 1=Gð0Þ
is dropped.
For our lattice determination of these quantities, we use

the ensembles generated by the coordinated lattice simu-
lations [43] effort with 2þ 1 flavors of nonperturbatively
OðaÞ-improved Wilson fermions [44,45] and a tree-level
improved Lüscher-Weisz gauge action [46], correcting for
the treatment of the strange quark determinant using the
procedure outlined in Ref. [47]. Table I shows the set of
ensembles entering the analysis: they cover four lattice
spacings in the range from 0.050 to 0.086 fm, and several
pion masses, including one slightly below the physical value
(E250). Further details on our setup of the simulations and
the measurements of the two- and three-point functions of
the nucleon can be found in the companion paper [48].
To extract the effective form factors from two- and

three-point correlation functions, we employ the ratio
method [49] and the same estimators for the effective
electric and magnetic Sachs form factors as in Ref. [41].
For further technical details, we again refer to the
companion paper [48]. The effective form factors are
constructed for the isovector (u − d) and the connected
isoscalar (uþ d) combinations, as well as for the light and
strange disconnected contributions. In the isovector case,
the disconnected contributions cancel. The full isoscalar
(octet) combination uþ d − 2s, on the other hand, is
obtained from the connected and disconnected pieces as

Geff;uþd−2s
E;M ¼ Geff;conn;uþd

E;M þ 2Geff;disc;l−s
E;M : ð2Þ

Note that the disconnected part only requires the difference
l − s between the light and strange contributions, in which
correlated noise cancels and which can be computed
efficiently by the one-end trick [50–52].

We express all dimensionful quantities in units of the
gradient flow time t0 [53] using the determination of tsym0 =a2

from Ref. [54]. Only in the final step, i.e., after the
extrapolation to the physical point, are the radii converted
to physical units by means of the estimate of the Flavor
Lattice Averaging Group for Nf ¼ 2þ 1 from Ref. [55],

ffiffiffiffiffiffiffiffiffiffiffi

t0;phys
p ¼ 0.14464ð87Þ fm. ð3Þ

Excited-state analysis.—Due to the strong exponential
decay of the signal-to-noise ratio for baryonic correlation
functions with increasing source-sink separation [56,57],
an explicit treatment of the excited-state systematics is
required in order to extract the ground-state form factors
from the effective ones [58]. In this Letter, we employ the
summation method [59–61]. It exploits the fact that the
contributions from excited states to effective form factors
are parametrically more strongly suppressed when the
insertion of the electromagnetic current is summed over
time slices between the source and sink. In the asymptotic
limit, the slope of the summed correlator ratio with respect
to the source-sink separation tsep yields the ground-state
form factor [34,41].
In our analysis, we monitor the stability of fit results for

different starting values tmin
sep of the source-sink separation.

Rather than selecting one particular value of tmin
sep on each

ensemble, we perform a weighted average over tmin
sep , where

the weights are given by a smooth window function [62,63]
[cf. Eq. (18) in the companion paper [48] ].
This averaging strategy is illustrated in Fig. 1 for the

isoscalar combination at the first nonvanishing momentum
on ensemble E300. One finds that the window averages
agree within their errors with what one can identify as
plateaux in the blue points. This is observed for practically
all other ensembles and momenta employed in the analysis,
and hence we conclude that the window method reliably
isolates the asymptotic value. Moreover, it reduces the
human bias arising from manually picking one particular
value for tmin

sep on each ensemble, because we use the
same window parameters in units of t0 on all ensembles.
Since our window average does not yield a significantly
smaller error in comparison with the individual points
entering the average (cf. Fig. 1), we are confident that our
error estimates are sufficiently conservative to exclude
any systematic bias in estimating the ground-state form
factors.
Further crosschecks on our excited-state analysis,

including a detailed comparison with an alternative
approach based on two-state fits to the effective form
factors, can be found in Appendix B of the companion
paper [48]. We did not find any evidence that our preferred
strategy presented above introduces a systematic bias or
underestimates the errors, but is on the contrary rather
conservative in this regard.

TABLE I. Overview of the ensembles used in this Letter.
Further details are contained in Table I of the companion
paper [48].

ID β tsym0 =a2 T=a L=a Mπ (MeV)

C101 3.40 2.860(11) 96 48 227
N101a 3.40 2.860(11) 128 48 283
H105a 3.40 2.860(11) 96 32 283
D450 3.46 3.659(16) 128 64 218
N451a 3.46 3.659(16) 128 48 289
E250 3.55 5.164(18) 192 96 130
D200 3.55 5.164(18) 128 64 207
N200a 3.55 5.164(18) 128 48 281
S201a 3.55 5.164(18) 128 32 295
E300 3.70 8.595(29) 192 96 176
J303 3.70 8.595(29) 192 64 266

aThese ensembles are not used in the final fits but only to
constrain discretization and finite-volume effects.
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Direct BχPT fits.—To extract the radii from the form
factors, we need to describe theQ2 dependence of the latter.
As in Refs. [34,41], we employ two different methods: our
preferred procedure is to combine the parametrization of
the Q2 dependence with the extrapolation to the physical
point (Mπ ¼ Mπ;phys, a ¼ 0, L ¼ ∞) by fitting our form
factor data directly to the expressions resulting from
covariant baryon chiral perturbation theory (BχPT) [64].
This is presented in the following. Alternatively, we have
implemented the more traditional strategy of first perform-
ing a generic parametrization of the Q2 dependence on
each ensemble, followed by extrapolating the resulting
radii to the physical point. A cross-check of our main
analysis with this two-step approach can be found in the
companion paper [48].
For our main analysis, we fit our form factor data to the

full expressions of Ref. [64] without explicit Δ degrees of
freedom. The fits are performed for the isovector and
isoscalar channels separately, but for GE and GM simulta-
neously. This allows us to properly treat the correlations
between different Q2 and also between GE and GM.
Different gauge ensembles, on the other hand, are treated
as statistically independent. In the isovector channel, we
include the contributions from the ρ meson in the expres-
sions for the form factors, while in the isoscalar channel, we
include the leading-order terms from the ω and ϕ reso-
nances. The physical pion mass Mπ;phys is fixed in units of
ffiffiffiffi

t0
p

using its value in the isospin limit [65],

Mπ;phys ¼ Mπ;iso ¼ 134.8ð3Þ MeV; ð4Þ

i.e., we employ
ffiffiffiffiffiffiffiffiffiffiffi

t0;phys
p

Mπ;phys ¼ 0.09881ð59Þ. Here, we
neglect the uncertainty of Mπ;iso in MeV since it is
completely subdominant compared to that of

ffiffiffiffiffiffiffiffiffiffiffi

t0;phys
p

,
which enters in the conversion of units.

We perform several such fits with various cuts in the
pion mass (Mπ ≤ 0.23 GeV and Mπ ≤ 0.27 GeV) and the
momentum transfer (Q2 ≤ 0.3;…; 0.6 GeV2), as well as
with different models for the lattice-spacing and/or finite-
volume dependence, in order to estimate the corresponding
systematic uncertainties. The variations of the results due to
the cuts are in most cases much smaller than their statistical
errors and will be included in our quoted systematic errors.
We reconstruct the proton and neutron form factors as
linear combinations of the BχPT formulas for the isovector
and isoscalar channels, evaluating the low-energy constants
as determined from the separate fits in these channels.
For further technical details of the fits, we refer to the
companion paper [48].
The major benefits of the direct approach compared to

the two-step procedure have been previously observed in
our publication on the isovector electromagnetic form
factors [41]: First, including multiple ensembles as well
as GE and GM in one fit significantly reduces the resulting
errors on the radii. Second, it greatly increases the number
of degrees of freedom in the fit, which has a stabilizing
effect with regard to lowering the momentum cut.
Model average and final results.—Since we do not have

a strong a priori preference for one specific setup of the
direct fits, we determine our final results and total errors
from averages over different fit models and kinematic cuts.
For this purpose, we use weights derived from the Akaike
information criterion [66–70]. In order to estimate the
statistical and systematic uncertainties of our model aver-
ages, we adopt a bootstrapped variant of the method from
Ref. [71]. Our procedure is explained in more detail in the
companion paper [48]. As our final results, we obtain

hr2Eip ¼ ½0.672� 0.014ðstatÞ � 0.018ðsystÞ� fm2; ð5Þ

hr2Mip ¼ ½0.658� 0.012ðstatÞ � 0.008ðsystÞ� fm2; ð6Þ

FIG. 1. Isoscalar electromagnetic form factors at the lowest nonvanishing momentum (Q2 ≈ 0.067 GeV2) on ensemble E300 as a
function of the minimal source-sink separation entering the summation fit. Each blue point corresponds to a single fit starting at the value
given on the horizontal axis. The associated weights in the average are represented by the red diamonds, with the gray curves and bands
depicting the averaged results.
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μpM ¼ 2.739� 0.063ðstatÞ � 0.018ðsystÞ; ð7Þ

hr2Ein ¼ ½−0.115� 0.013ðstatÞ � 0.007ðsystÞ� fm2; ð8Þ

hr2Min ¼ ½0.667� 0.011ðstatÞ � 0.016ðsystÞ� fm2; ð9Þ

μnM ¼ −1.893� 0.039ðstatÞ � 0.058ðsystÞ: ð10Þ

We note that the precision of the magnetic radius of the
proton,

ffiffiffiffiffiffiffiffiffiffiffiffi

hr2Mip
p

¼½0.8111�0.0074ðstatÞ�0.0050ðsystÞ�fm,
is commensurate with that of its electric counterpart,
ffiffiffiffiffiffiffiffiffiffiffi

hr2Eip
p

¼ ½0.820� 0.009ðstatÞ � 0.011ðsystÞ� fm.
To further compare our results to experiment we perform

model averages of the form factors themselves. The results
are plotted in Fig. 2 for the proton. One observes that the
slope of the electric form factor as obtained from our
calculation is closer to the PRad measurement [6] than to
that of the A1 collaboration [4]. The magnetic form factor,
on the other hand, agrees well with the A1 data. Moreover,
our estimates reproduce within their errors the experimental
results for the magnetic moments both of the proton and
of the neutron [72]. The plots for the neutron corresponding
to Fig. 2 in this Letter are contained in Fig. 7 of the
companion paper [48].
In Fig. 3, our results for the electromagnetic radii and

magnetic moment of the proton are compared to recent
lattice determinations and to the experimental values. We
note that the only other lattice result including disconnected
contributions is ETMC19 [39], which, however, has not
been extrapolated to the continuum and infinite-volume
limits. Our estimate for the electric radius is larger than the
results of Refs. [38–40], while Ref. [32] quotes an even
larger central value.
We stress that any difference between our estimate and

previous lattice calculations is not related to our preference
for direct fits to the form factors over the conventional

approach via the z expansion, as the latter yields consistent
values for the radii (cf. the companion paper [48]). For the
magnetic radius, our result agrees with that of Refs. [38,39]
within 1.2 combined standard deviations, while that of
Ref. [31] is much smaller. Our statistical and systematic
error estimates for the electric radius and magnetic moment
are similar or smaller compared to other lattice studies,

FIG. 2. Electromagnetic form factors of the proton as a function of Q2. The orange curves and bands correspond to our final results
at the physical point with their full uncertainties obtained as model averages over the different direct fits. The light orange bands indicate
the statistical errors. The black diamonds represent the experimental ep-scattering data by the A1 collaboration [4] obtained
using Rosenbluth separation, and the green diamonds the corresponding data by PRad [6]. The experimental value of the magnetic
moment [72] is depicted by a red cross.

FIG. 3. Comparison of our best estimates for the electromag-
netic radii and the magnetic moment of the proton with
other lattice calculations, i.e., Mainz21 [41], ETMC20 [40],
ETMC19 [39], PACS19 [38], and CSSM/QCDSF/UKQCD14
[31,32]. Only ETMC19 and this Letter include disconnected
contributions. The Mainz21 values have been obtained by
combining their isovector results with the Particle Data Group
(PDG) values for the neutron [72]. We also show this estimate
using our updated isovector results (cf. the companion paper
[48]). The experimental value for μpM is taken from PDG [72]. The
two data points for

ffiffiffiffiffiffiffiffiffiffiffi

hr2Eip
p

depict the values from PDG [72]
(cross) and Mainz/A1 [4] (square), respectively. The two data
points for

ffiffiffiffiffiffiffiffiffiffiffiffi

hr2Mip
p

, on the other hand, show the reanalysis of
Ref. [24] either using the world data excluding that of Ref. [4]
(diamond) or using only that of Ref. [4] (square).
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while being substantially smaller for the magnetic radius.
As a final remark we note that the lack of a data point at
Q2 ¼ 0 complicates the extraction of the magnetic low-Q2

observables in most recent lattice determinations, espe-
cially for z-expansion fits on individual ensembles. By
contrast, the direct approach—in addition to combining
information from several ensembles and from GE and
GM—is more constraining at low Q2, allowing for consid-
erably less variation in the form factors in that regime. We
believe this to be responsible, to a large extent, for the small
errors we achieve in the magnetic radii.
Conclusions.—We have performed the first lattice QCD

calculation of the radii and magnetic moment of the proton
to include the contributions from quark-connected and
-disconnected diagrams and present a full error budget.
The overall precision of our calculation is sufficient to make
a meaningful contribution to the debate surrounding the
proton radii. Our final estimates are listed in Eqs. (5)–(10).
As an important benchmark, we reproduce the exper-

imentally very precisely known magnetic moments of the
proton and neutron [72] within our quoted uncertainties. A
detailed discussion of our results for the neutron radii can
be found in the companion paper [48]. Our result for the
electric (charge) radius of the proton is much closer to the
value inferred from muonic hydrogen spectroscopy [2]
and the recent ep-scattering experiment by PRad [6] than to
the A1 ep-scattering result [4]. For the magnetic radius,
on the other hand, our estimate is well compatible with
the analyses [4,24] of the A1 data and exhibits a 2.8σ
tension with the other collected world data [24]. The
analyses of combined A1þ PRad data [16] and A1 data
alone [15], based, respectively, on dispersive and disper-
sively improved fit Ansätze, arrive at values of

ffiffiffiffiffiffiffiffiffiffiffiffi

hr2Mip
p

that
are significantly larger than the A1-data analysis [24] and in
tension with our result. This could partly be due to
unaccounted-for isospin-breaking effects. The shape of
the magnetic form factor determined in our lattice calcu-
lation, however, agrees very well with the measurement
by A1 [4] over the whole range of Q2 under study.
Returning to the (electric) proton radius puzzle, our

lattice results lend further support to the emerging con-
sensus that the issue has essentially been settled [73–75].
Meanwhile, the situation regarding the magnetic radius
remains to be clarified.
Our programs use the QDPþþ library [76] and deflated

SAPþ GCR solver from the OPENQCD package [77], while
the contractions have been explicitly checked using the
Quark Contraction Tool [78].
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