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We perform a systematic classification of scalar field theories whose amplitudes admit a double copy
formulation and identify two building blocks at four-point and 13 at five-point. Using the four-point blocks
simultaneously as bootstrap seeds, this naturally leads to a single copy theory that is a gauged nonlinear
sigma model. Moreover, its double copy includes a novel theory that can be written in terms of Lovelock
invariants of an induced metric, and includes Dirac-Born-Infeld and the special Galileon in specific limits.
The amplitudes of these Goldstone modes have two distinct soft behavior regimes, corresponding to a
hybrid of nonlinear symmetries.
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Introduction.—The double copy framework manifests a
remarkable connection between the unique (at lowest order
in derivatives) interacting theories of spin-1 and spin-2: the
amplitudes of general relativity can be written as the
squares of specific color-dual kinematic numerators that
define Yang-Mills (YM) [1,2]. This connection has its
origin in open-closed string duality [3] and is closely
related to the scattering equations approach of [4,5]. The
double copy has since been extended to include super-
symmetric theories and loop level, as reviewed in [6,7], as
well as scalar field theories with enhanced soft limits that
generalize the Adler zero and hence can be seen as
Goldstone theories [8,9].
A natural question regards the uniqueness of the kin-

ematic numerators: Are higher-derivative corrections
encoded in other color-dual kinematic numerators? For
the color-dual kinematic numerator of YM, there is a single
additional possibility at three-point (while at four-point,
there are already eight different tensorial structures [10,11])
that generates the unique F3 correction. Using this as a seed
interaction, double copy compatibility at four-point then
implies the inclusion of a F4 term. Moreover, following the
same logic at five-point requires the further quartic term
D2F4 [12]. It was conjectured to go up to all derivatives,
leading to a UV complete series that is part of the bosonic
open string amplitude [12,13].

A related result was found very recently for higher
derivatives to a specific scalar field theory, the nonlinear
sigma model (NLSM) [14]. Again, higher-derivative cor-
rections to the four-point seed interactions were found to be
constrained by higher-point consistency. The only known
theory that satisfies these constraints at all order (apart from
the NLSM itself) is Z theory, again with an infinite tower of
derivatives [16,17].
In this Letter, we perform a related analysis for scalar

field theories with Goldstone modes. The crucial difference
with [14] is that we do not restrict ourselves to four-point
contact interactions. As we will show, this allows for a
unique additional exchange interaction. Similarly, we
classify all possible double copy scalar seeds at n ¼ 5
and find 29 independent structures, of which 13 generate
physical amplitudes.
Using a linear combination of the two four-point seed

interactions, we then employ the bootstrap procedure to
construct theories for Goldstone modes with a hybrid
character: while the entire theory has a particular soft
degree σmin [where the soft degree σ is defined as An ∼
OðpσÞ when an external momentum p becomes soft], it
contains a subsector that is defined by having σmax ¼
σmin þ 1 instead. We present examples of a single and a
double copy: a gauged version of the NLSM with σmin ¼ 0
and a particular higher-derivative extension of Dirac-Born-
Infeld (DBI) with σmin ¼ 2. As the latter is formulated in
terms of Lovelock invariants, we refer to it as DBI-
Lovelock.
In contrast to the results of [12,14], we find no need for

infinite sets of quartic higher-derivative corrections; in this
sense, our results are more akin to the extended DBI theory
[18–20]. We provide an interpretation for this difference in
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the conclusion, and outline further implications and
generalizations.
BCJ representations.—The double copy or Bern-

Carrasco-Johansson (BCJ) approach [1,2,6,7] has identi-
fied a number of field theories, famously including general
relativity and YM, whose amplitudes can be rewritten in
terms of a sum over ð2n − 5Þ!! trivalent diagrams:

An ¼
X

trivalent

NÑ
D

: ð1Þ

The denominator in the above sum consists of the propa-
gators for every diagram, while the numerator instead is the
product of two so-called BCJ numerators that encode the
characteristics of the particles in the scattering process.
While each trivalent diagram has an associated kinematic
numerator, only ðn − 2Þ! of these are independent; a
convenient basis for these is provided by the Del Duca–
Dixon–Maltoni basis [21].
An important and arguably the simplest example is given

by the color factors that consist of products of structure
constants fabc. At multiplicity n, these are given by a
product of n − 2 structure constants:

Nabc… ¼ fx1abf
x2
x1cfx2……: ð2Þ

When viewed as a representation of the permutation group
Sn, the above numerators satisfy the nested commutator
structure [22]

−Nabcd… ¼ Nbacd… ¼ Nc½ab�d… ¼ Nd½½ab�c�… ¼ …; ð3Þ
which will be referred to as generalized Jacobi identities.
Moreover, the color factors are even or odd under reflection,

Nabcd… ¼ ð−ÞnN…dcba: ð4Þ
We have identified which irreducible representations (irreps)
of Sn the above constraints correspond to, with the dimen-
sions of these irreps adding up to ðn − 2Þ! in every case; see
Table I.
Instead of structure constants, we will be interested in

color-dual kinematic numerators that only contain
Mandelstam variables (scalar numerators for short).
These are relevant for scalar field theories: in single scalar
field theories, the particles only carry momentum informa-
tion and thus Mandelstam invariants. Moreover, in multi-
scalar field theories such as the NLSM with multiple
flavors plus higher-derivative corrections, the color infor-
mation factorizes and thus one of the two BCJ numerators
again only involves Mandelstam variables.
The possibilities can be phrased in terms of Sn repre-

sentations. The set of n external momenta forms the so-
called standard irrep [n − 1, 1] with dimension n − 1.
Lorentz invariants then consist of inner products of
momenta and live in the irrep [n − 2, 2] with dimension
1
2
nðn − 3Þ; these correspond to the Mandelstam invariants.

Moreover, we work in general dimensions and hence are

not affected by Gram determinant considerations that
reduce the number of independent Mandelstam variables.
The above approach reduces the classification of scalar

numerators to a representation theory problem [24] of Sn:
for the number of scalar numerators at a given multiplicity
n and at a given order p in Mandelstam variables, one
simply calculates the symmetric product of p irreps [n − 2,
2] and decomposes this into Sn irreps. A comparison with
the BCJ-required irreps of Table I then directly gives the
number of possible scalar numerators at this order.
Not all scalar numerators will contribute to the ampli-

tude; some solutions N will give a vanishing contribution
to (1), independent of the choice for Ñ. Interestingly, these
gauge solutions can also be characterized by representation
theory: all scalar numerators that can be written as the
product of Mandelstam variables with a specific Sn irrep
drop out of the amplitude. The first example surfaces at
four-point and reads

Nabcd ¼ sabGabcd; ð5Þ
where the convention si…j ¼ ðpi þ � � � þ pjÞ2 is adopted,
and G is a fully antisymmetric tensor and hence lives in the
[1,1,1,1]. We have listed the analogous irrep requirements
at higher multiplicities in Table II. For further details, see
Supplemental Material [25].
BCJ seed classification.—We will now proceed to

systematically classify all scalar numerators at lower
multiplicities at four and five-point [33] using representa-
tion theory.
At four-point, the required BCJ irrep is the window of S4

with dimension 2. The Mandelstam invariants in this case
live in the same irrep. Therefore there is naturally a linear
combination of Mandelstam invariants that satisfies the
BCJ constraints. An explicit construction shows that it is

TABLE I. BCJ-compatible numerators as irreps of Sn.

n Kinematic numerators

4 [2, 2]
5 [3,1,1]
6 [4, 2], [3,1,1,1], [2,2,2]
7 [5,1,1], [4,2,1], [3,3,1], [3,2,1,1], [2,2,1,1,1]
8 [6, 2], [5,2,1], [5,1,1,1], [4, 4], [4,3,1],

2 × ½4; 2; 2�, [4,2,1,1], [4,1,1,1,1],
2 × ½3; 3; 1; 1�, [3,2,2,1], [3,2,1,1,1], [2,2,2,2], [2,2,1,1,1,1]

TABLE II. BCJ-compatible gauge parameters as irreps of Sn.

n Gauge parameters

4 [1,1,1,1]
5 [2,2,1]
6 [3,2,1], [3,1,1,1]
7 [4, 3], [4,2,1], [4,1,1,1], [3,2,2], [3,2,1,1],

[3,1,1,1,1], [2,2,2,1]
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given by

Nð1Þ
4 ¼ sbc − sac: ð6Þ

Moreover, at quadratic order in Mandelstam, the symmetric
product of two window irreps decomposes into ½2; 2� þ
½4� þ ½1; 1; 1; 1� and hence there is another scalar numerator
for four-point at this order. It takes the form

Nð2Þ
4 ¼ sabðsbc − sacÞ: ð7Þ

The expression (6) corresponds to the four-scalar scattering
with an exchanged gluon, and (7) to the four-point contact
interaction of the NLSM. We will refer to the linear and
quadratic solutions as exchange and contact scalar numer-
ators, respectively.
At higher orders, there are new solutions to the gener-

alized Jacobi. However, it follows from representation
theory that these are always of the form of one of the
two above building blocks, multiplied by Mandelstam
expressions that are separately invariant (and hence can
be used to construct additional solutions to the BCJ
conditions). To see this, note that the number of invariants
at every order is given by the Taylor coefficients of the
Molien series (this coincides with the Hilbert series for the
case of invariant polynomial rings) [34–37]:

HInv
4 ðxÞ ¼ 1

ð1 − x2Þð1 − x3Þ : ð8Þ

This amounts to the statement that all invariants can be
written as arbitrary powers of two primary invariants:

Ið2Þ4 ¼ sabsbc þ sacsbc þ sabsac; Ið3Þ4 ¼ sabsadsac: ð9Þ
Moreover, the number of window irreps at every order in
Mandelstam is generated by

HBCJ
4 ðxÞ ¼ ðxþ x2ÞHInv

4 ðxÞ: ð10Þ
All window solutions are therefore either (6) or (7)
multiplied by an invariant, as also found in [11].
Turning to gauge parameters, the Molien series for the

relevant irrep [1,1,1,1] is given by

HGauge
4 ðxÞ ¼ x3HInv

4 ðxÞ; ð11Þ

which generates the number of gauge parameters at 1 order
higher. Indeed, it turns out that the combination

2Nð2Þ
4 Ið2Þ4 − 3Nð1Þ

4 Ið3Þ4 ð12Þ

is of the form (5) and drops out of the amplitude (1) for any
scalar numerator Ñ. The number of physical BCJ para-
meters is therefore given by

HBCJ
4 ðxÞ − xHGauge

4 ðxÞ ¼ x
1 − x2

þ x2

ð1 − x2Þð1 − x3Þ ; ð13Þ

generated by the linear or quadratic seed solutions (6) and
(7) multiplied by quadratic and/or cubic invariants [38].
At five-point, the story is similar but more complicated.

The five-point Hilbert series for invariants is given by

HInv
5 ðxÞ ¼ ð1þ x6 þ x7 þ x8 þ x9 þ x15Þ=D5ðxÞ; ð14Þ

with the denominator given by

D5ðxÞ ¼ ð1 − x2Þð1 − x3Þð1 − x4Þð1 − x5Þð1 − x6Þ: ð15Þ
Each factor in the denominator corresponds to a primary
invariant, and each term in the numerator to a secondary
invariant; for example, ð1 − x2Þ represents the contribution
from a quadratic primary invariant, whereas x6 represents a
sextic secondary invariant. The difference is that primary
invariants can appear at any power to form new invariants,
while there can only be a single secondary invariant. The
latter restriction is due to relations between products of
invariants, referred to as syzygies [34,36].
The BCJ irreps, instead, are given by [3,1,1] correspond-

ing to the “hook” Young tableau. The Molien series for this
is [40]

HBCJ
5 ðxÞ ¼ ðx3 þ 2x4 þ 4x5 þ 5x6 þ 6x7 þ 6x8 þ 5x9

þ 4x10 þ 2x11 þ x12Þ=D5ðxÞ ð16Þ
and are thus given by the numerator structures multiplied
by primary invariants.
The gauge parameters in this case are generated by the

irrep [2,2,1]; the number of such irreps at every order is
generated by

HGauge
5 ¼ ðx2 þ x3 þ 3x4 þ 3x5 þ 3x6 þ 4x7 þ 4x8

þ 3x9 þ 3x10 þ 3x11 þ x12 þ x13Þ=D5ðxÞ: ð17Þ
However, in this case the number of distinct resulting gauge
parameters (at 1 order higher) is somewhat smaller and
given by

ðx3 þ x4 þ 2x5 þ 3x6 þ 2x7 þ 3x8 þ 4x9 þ 3x10

þ 2x11 þ 2x12 þ x13Þ=D5ðxÞ: ð18Þ
This difference comes about as some BCJ parameters can
be split into Mandelstam times [2,2,1] in multiple ways.
The resulting number of physical BCJ parameters at every
order is given by the difference of (16) and (18) and can be
written as a sum of fractions with positive coefficients,

HPhys
5 ðxÞ ¼ ðx4 þ 2x5 þ 2x6 þ 4x7 þ 3x8Þ=D5ðxÞ

þ ðx9 þ x10Þ
ð1 − x2Þð1 − x4Þð1 − x5Þð1 − x6Þ ; ð19Þ

but this decomposition is not unique. Modulo the primary
invariants of the denominators, this series consists of 14
different hook structures. However, one of these can be
written in terms of a secondary invariant, implying that
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there are 13 independent hook structures that can be used as
five-point seed interactions.
BCJ bootstrap.—From six-point on, a systematic clas-

sification of scalar numerators becomes more complicated.
The six-point Molien series for invariants is

HInv
6 ðxÞ ¼ ð1þ 2x5 þ 5x6 þ 7x7 þ 9x8 þ 11x9 þ 13x10

þ 14x11 þ 21x12 þ 24x13 þ 28x14 þ 32x15

þ 26x16 þ 22x17 þ 13x18 þ 7x19 þ 3x20

þ x21 þ x22Þ=D6ðxÞ ð20Þ
in terms of the following denominator containing the
primary invariants

D6ðxÞ¼ ð1−x2Þð1−x3Þ2ð1−x4Þ3ð1−x5Þ2ð1−x6Þ: ð21Þ
Thus, there are nine primary invariants and 239 secondary
ones. The Molien series of the BCJ irreps and gauge
parameters can be established in a similar manner.
However, deriving the final number of independent struc-
tures requires the explicit forms of the primary and
secondary invariants and is problematic due to complicated
relations (with syzygies of syzygies [34,42]). We will not
attempt such a general classification to all orders, and only
list the number of physical and gauge parameters at lowest
orders in Table III.
Moreover, we will focus on the subset of six-point

interactions that follow from four-point seeds; in other
words, we will require that they are BCJ “bootstrappable”
from four-point seed interactions, similar to [14]. This
implies in particular that at singular channels such as
sabc → 0, the amplitude should factorize into two four-
point amplitudes. In turn, this implies that a scalar
numerator of OðspÞ factorizes as

lim
sabc→0

NðpÞ
6 ¼

X

q

cqN
ðp−qÞ
4 ðabcxÞNðpþqÞ

4 ðxdefÞ; ð22Þ

where x denotes the internal leg. As the lowest four-point
scalar numerator is linear in Mandelstam, the first N6

that can be bootstrapped is quadratic. Beyond that, we find
up to Oðs4Þ

lim
sabc→0

Nð2Þ
6 ¼ ðsac − sbcÞðsde − sdfÞ;

lim
sabc→0

Nð3Þ
6 ¼ ðsac − sbcÞsabðsde − sdfÞ

þ ðsac − sbcÞðsde − sdfÞsef;
lim

sabc→0
Nð4Þ

6 ¼ ðsac − sbcÞsabðsde − sdfÞsef: ð23Þ

Imposing this BCJ bootstrap fixes Nð2Þ
6 uniquely to

Nð2Þ
6 ¼ ðsac − sbcÞðsde − sdfÞ

þ 1

2
sabcðsae − saf − sbe þ sbfÞ; ð24Þ

while in other cases it still leaves some free parameters that
can be seen as contact interactions that are separately BCJ
compatible. We provide an overview of these numbers in
Table III.
Single copy: The gauged NLSM.—The systematic clas-

sification of seed scalar numerators at four-point and the
corresponding bootstrapped ones at six and higher point
allows for the construction of novel theories that feature
interactions with different soft limits. As a first illustration,
we will propose a single copy theory for an adjoint
Goldstone scalar field, with amplitudes generated by the
product of a color factor with a linear combination of the
different elementary solutions involving Mandelstam.
Moreover, we will use the requirement of σmin ¼ 0 as a
guiding principle. This will result in a gauged version of the
chiral NLSM with symmetry breaking G ×G → G, with
additional interactions due to gluon exchange.
At four-point this theory is generated byC4×ðNð1Þ

4 þNð2Þ
4 Þ,

and therefore has two different contributions to the ampli-
tudes. The corresponding Lagrangian is

L4 ¼ −
1

2
ðDϕÞ2 þ 1

6
f2ϕ2ðDϕÞ2 − 1

4
F2 ð25Þ

up to this order.
Moving to six-point, we consider the schematic form

C6 × ðNð2Þ
6 þ Nð3Þ

6 þ Nð4Þ
6 Þ. While the quadratic scalar

numerator is unique, that is not the case for the cubic
and quartic ones. To unambiguously determine the theory,
we impose the soft limit σmin ¼ 0 at cubic and σmax ¼ 1 at
quartic order; as promised in the introduction, this theory
has different soft degrees with σmax ¼ σmin þ 1. We have to
extend the Lagrangian of the gauged NLSM with terms of
the following form [43]

L6 ¼ L4 þ
1

45
f4ϕ4ðDϕÞ2 − 2f2F3 þ 1

6
f2ϕ2F2 ð26Þ

to generate these amplitudes correctly.
Moving to higher multiplicities, we conjecture that this

pattern continues. For instance, at eight-point, one can take
the amplitude generated by BCJ numerators of the form

C8 × ðNð3Þ
8 þ ::þ Nð6Þ

8 Þ. The corresponding Lagrangian

TABLE III. The number of six-point BCJ-compatible scalar
numerators (split into physical and gauge parameters) and
invariants at OðspÞ. The last column lists the number of scalar
numerators that are compatible with the BCJ bootstrap.

p BCJ Phys Gauge Inv Bootstrap

1 1 1 0 0 0
2 3 3 0 1 1
3 9 8 1 2 2
4 23 18 5 4 3
5 54 38 16 6 8
6 121 79 42 13 24
7 246 151 95 19 53
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will include all terms above plus ϕ6ðDϕÞ2 and possibly F4

and F2ϕ4. Note that all terms are gauge covariant, and will
thus result in σmin ¼ 0 amplitudes. Moreover, the purely
scalar two-derivative part reduces to the NLSM with
σmax ¼ 1. Thus one should think of this theory as the
NLSM with subleading terms included. These are dictated
by a combination of nonlinear symmetries (e.g., the
structure of two-derivative terms), gauge invariance (i.e.,
the covariant derivatives), and BCJ consistency (e.g., the F3

and F2ϕ2) [46].
Double copy: DBI-Lovelock.—As a second example we

propose a double copy theory that involves a single scalar
field and that is fully determined by two different nonlinear
symmetries, with BCJ compatibility arising as a result. This
theory turns out to be the double copy of a gauged and an
ungauged NLSM.
We again start from the full classification at four-point.

The scalar numerators Nð1Þ
4 × Nð2Þ

4 yields DBI with the
quartic operator ð∂ϕÞ4. In order to retain the σmin ¼ 2

generalized Adler zero, one must add ð∂ϕÞ2n with specific
coefficients at every order [8]. The full DBI theory is then
given by the measure of

gμν ¼ ημν þ ∂μϕ∂νϕ; ð27Þ
which can be seen as a brane-inducedmetric and is covariant
under [48]

δϕ ¼ cμxμ þ cμϕ∂μϕ; ð28Þ
that generate a nonlinear realisation of 5D Poincare
symmetries.
The BCJ product Nð2Þ

4 × Nð2Þ
4 , instead, yields the special

Galileon (SG) theory,with operator ð∂ϕÞ2ð½Π�2−½Π2�Þ,Πμν¼
∂μ∂νϕ, ½…� ¼ Tr½…�, and the nonlinear symmetry [49]

δϕ ¼ sμνxμxν þ sμν∂μϕ∂νϕ; ð29Þ
resulting in the soft degree σmax ¼ 3.
Can these be combined into a single, extended Goldstone

theory that is BCJ-compatible based on the product

Nð2Þ
4 × ðNð1Þ

4 þ Nð2Þ
4 Þ? We will provide evidence that the

answer to this question is affirmative. The defining property,
similar to DBI and SG, will be the soft limit: all interactions
are required to have at least σmin ¼ 2. This is naturally
satisfied when taking curvature invariants of the metric (27);
a general effective field theory would therefore be

L ¼ ffiffiffiffiffiffi
−g

p ½c0 þ c1Rþ c2R2 þ…�: ð30Þ
However, this does not display the σmax ¼ 3 scaling in any
limit. In order to ensure that the highest-derivative terms
have the SG scaling, one needs to restrict to the specific
Lovelock invariants at every order; these have the special
property of being degenerate and hence do not generate any
corrections with more than two derivatives on a given field
[50]. When evaluated at the induced metric (27), the
Lovelock invariants become total derivatives:

Rn ≡ δμ1ν1…μnνn
α1β1…αnβn

Yn

i¼1

Rαrβr
μrνr ¼ ∂μjðnÞμ: ð31Þ

For illustration, the currents for n ¼ 1, 2 are given by

jð1Þμ ¼ 2

1þ ð∂ϕÞ2 ðϕ
μ½Π� − ϕνΠνμÞ;

jð2Þμ ¼ 4

ð1þ ð∂ϕÞ2Þ2 ð2ϕ
μ½Π3� − 3ϕμ½Π2�½Π�

þ ϕμ½Π�3 þ 3ϕνΠνμ½Π2� − 6ϕκΠκ
λΠλ

νΠνμ

þ 6ϕκΠκ
νΠνμ½Π� − 3ϕνΠνμ½Π�2Þ; ð32Þ

withϕμ ¼ ∂μϕ. At lowest order inϕ, these operators become

ffiffiffiffiffiffi
−g

p
Rn ≃ ð∂ϕÞ2δν1…νn

μ1…μn

Yn

r¼1

ð∂μr∂νrϕÞ; ð33Þ

up to an overall constant. Note that these are exactly the SG
invariants; indeed, both the Lovelock and the SG invariants
trivialize in sufficiently low dimensions D.
We can therefore tune the Lovelock coefficients to have a

theory that propagates a single scalar field, has σmin ¼ 2 for
all amplitudes (ensuring that it is DBI plus higher-
derivative corrections), and moreover the higher-derivative
amplitude has σmax ¼ 3 (such that it asymptotes to the SG).
This DBI-Lovelock theory is thus defined to all orders (and
in all dimensions) uniquely by its nonlinear symmetries and
associated soft degrees.
We have checked that the amplitudes resulting from the

above theory can be written in terms of a linear combina-
tion of scalar numerators, at least up to this order.
Moreover, the specific linear combination of quadratic,
cubic, and quartic six-point terms that are needed for the
gauged NLSM and the DBI-Lovelock theory are identical.
Conclusion.—This Letter opens up the tantalizing pos-

sibility that various Goldstone theories with hybrid soft
degrees σ adhere to the double copy paradigm. Moreover,
these can be systematically classified using representation
theory of Sn: at four and five-point, respectively, there are
two and 13 scalar numerators in terms of Mandelstam
variables.
Focusing on the former, we have identified a new sector

of scalar field theories that can be BCJ-bootstrapped, over
and beyond the analysis of [14]: the inclusion of the linear
four-point seed interaction introduces lower (instead of
higher) derivative corrections to the NLSM. These allow
for the construction of a gauged NLSM. BCJ compatibility
then requires specific F3 and ϕ2F2 terms. Moreover, the
two four-point seeds can be double copied into an extension
of the special Galileon theory with lower-derivative cor-
rections, which can be phrased in terms of Lovelock
invariants of the DBI metric.
We have demonstrated the bootstrap construction of our

two example theories explicitly at six-point [51]. In both
cases, the theories are strongly constrained by two soft
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degrees with σmax ¼ σmin þ 1: this plays a crucial role in
uniquely determining the scalar numerators. Our theories
therefore appear to be closely related to the so-called
extended DBI theory [18,52], which involves the NLSM
and DBI in specific limits. Indeed this theory can also be
phrased in terms of BCJ numerators [19], and only has a
finite number of operators contributing to n-point ampli-
tudes. Moreover, the on-shell constructibility of this kind of
theory follows from the graded soft theorem proposed
in [20].
Based on the current results, it thus appears there is a

fundamental difference between the higher-derivative cor-
rections of [12,14,15] on the one hand, and hybrid
Goldstone theories such as extended DBI, the gauged
NLSM, and DBI-Lovelock on the other hand: the latter
category does not require an infinite set of higher-derivative
corrections at given multiplicity. We expect that this
difference arises due to the special nature of the highest-
derivative terms in these theories: these have a softer degree
σmax, are related by the nonlinear symmetry and are
separately BCJ-compatible. In contrast, the leading terms
of the higher-derivative corrections F3 and F4 in [12] [at
vanishing gauge coupling, i.e., of the form ð∂AÞn] do not
have a nonlinear symmetry (beyond Abelian gauge sym-
metry) and are not separately BCJ-compatible. A similar
discussion applies to the scalar BCJ bootstrap [14] and the
Kawai-Lewellen-Tye kernel bootstrap [15], whose four-
point seed structures do not include the linear exchange
interaction (6).
Finally, the general analysis of this Letter suggests a

number of novel theories beyond the two examples that we
outlined. At four-point, one can instead take the product

Nð1Þ
4 × ðNð1Þ

4 þ Nð2Þ
4 Þ leading to a combination of DBI with

gravitational interactions; moreover, this can be extended to
have an SOðNÞ flavor along the lines of [22]. More
generally, one can consider the case where both BCJ
numerators have multiple terms of different order in
Mandelstam. At first sight one might expect this to lead
to a theory with three soft degree sectors; it would be
interesting to investigate how this relates to the graded soft
theorem of [20] that only allows for σmin and σmax to differ
by one. We leave this question to future research.

The authors would like to thank Tomáś Brauner, John
Joseph Carrasco, Dijs de Neeling, and Karol Kampf for
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