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Device-independent quantum key distribution allows for proving the security of a shared cryptographic
key between two distant parties with potentially untrusted devices. The security proof is based on the
measurement outcome statistics (correlation) of a Bell experiment, and security is guaranteed by the laws of
quantum theory. While it is known that the observed correlation must be Bell nonlocal in order to prove
security, recent results show that Bell nonlocality is in general not sufficient for standard device-
independent quantum key distribution. In this work, we show that conversely, there is no lower bound on
the amount of nonlocality that is sufficient for device-independent quantum key distribution. Even more so,
we show that from certain correlations that exhibit arbitrarily small nonlocality, one can still extract
unbounded device-independent key rates. Therefore, a quantitative relation between device-independent
key rates and Bell nonlocality cannot be drawn in general. Our main technique comprises a rigorous
connection between self-testing and device-independent quantum key distribution, applied to a recently
discovered family of Bell inequalities with arbitrarily many measurement outcomes.
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Introduction.—Device-independent quantum key distri-
bution (DIQKD) allows two distant parties to establish a
secure cryptographic key without having to trust the
devices they use in the protocol [1–4]. The security of
the key is guaranteed solely by the laws of quantum
physics. DIQKD solves two problems present in other
types of key distribution protocols: it does not rely either
on the hardness of computational problems (like most
nonquantum key distribution schemes [5–7]), or on the
characterization of the devices used in the protocol (like
standard quantum key distribution schemes [8–10]). While
the practicality of DIQKD still poses challenges, the first
proof-of-principle experiments were carried out recently
[11–13], demonstrating that DIQKD can be achieved with
current technology. Remaining challenges include increas-
ing the key rates and the distance over which the protocols
can be implemented, noting that increasing the key rates
naturally leads to an increase in the achievable distance
as well [3,4].
This work is concerned with characterizing fundamental

resources necessary for achieving high key rates. The key
rate of a protocol is the number of secret bits that can be
produced in a given round of the protocol, and we will
compare key rates with Bell nonlocality [14], a naturally
connected notion: in a DIQKD protocol, two parties

measure a bipartite quantum system locally, and the final
key is extracted from the measurement outcomes. It is
known that DIQKD is possible only if these measurement
outcome statistics demonstrate nonlocal correlations (i.e.,
they violate a Bell inequality) [1,2]. It is, however, less clear
how the amount of nonlocality (or Bell inequality violation)
relates to the achievable key rate. In fact, recently it was
shown that nonlocality in itself is not sufficient for the
security of a large class of DIQKD protocols [15]. That is,
there exist correlations that violate a Bell inequality, but
cannot be used for DIQKD using standard techniques. In
this work, we show a somewhat opposing statement: one
can extract unbounded key rates from certain correlations
that violate Bell inequalities arbitrarily weakly. Further-
more, these protocols also only use standard techniques.
Therefore, one can conclude that (standard) DIQKD key
rates and Bell nonlocality are incomparable resources, and
achieving large key rates does not necessarily imply a large
amount of nonlocality.
Preliminaries.—Any DIQKD protocol starts with the

measurement stage: two parties, Alice and Bob, locally
measure their part of a fresh copy of a bipartite quantum
state ρ defined on the tensor product of two Hilbert
spaces, HA ⊗ HB. Every time they measure, it constitutes
a round of the protocol. In every round, they can decide to
perform one of (finitely) many available measurements.
For Alice, these measurement settings are denoted x∈
f0; 1;…; nA − 1g≕ ½nA�, and for Bob, y∈ ½nB�. In each
round they obtain a measurement outcome, labeled by
a∈ ½kA� for Alice and b∈ ½kB� for Bob. Once they have
obtained their respective outcomes, a new round begins
with a fresh copy of ρ. They perform many rounds (in this
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work we are interested in the asymptotic limit of infinitely
many rounds) and record their settings and outcomes,
which concludes the measurement stage.
After this, Alice and Bob estimate the correlation, that is,

the joint probability distribution pða; bjx; yÞ of the out-
comes conditioned on the measurement settings. The
estimation is done by publicly announcing a small subset
of their inputs and outputs, after which this subset of their
data is discarded.
Quantum theory dictates that the correlation will be

given by the Born rule,

pða; bjx; yÞ ¼ tr
��
Ax
a ⊗ By

b

�
ρ
�
; ð1Þ

where fAx
aga and fBy

bgb represent positive-operator-valued
measures (POVMs) for every x and y. It is important to note
at this point that certain quantum correlations are nonlocal,
i.e., roughly speaking they do not have a classical physical
description [14]. The nonlocality of a correlation is
witnessed by the violation of a Bell inequality, a linear
inequality on the correlation that is satisfied by all classical
correlations (classical correlations are said to be in the local
set). It is an important prerequisite for a correlation to
violate a Bell inequality in order for it to be useful for
DIQKD [1,2].
Returning to the steps of a DIQKD protocol, once they

have estimated the correlation, Alice and Bob decide
whether the correlation is satisfactory for DIQKD (based
on criteria that we will discuss next). If it is not, they abort
the protocol. If the correlation passes the test, they employ
privacy amplification and error correction on their remain-
ing data (on the recorded inputs and outputs that were not
discarded) [16–18]. This is done via public, but authenti-
cated classical communication channels. At the end of the
privacy amplification and error correction stage, Alice and
Bob are each left with a string of bits that are perfectly
random (as a result of privacy amplification) to any poten-
tial eavesdropper limited by the laws of quantum physics.
Moreover, these strings of bits are exactly the same for
Alice and Bob, as a result of error correction. The asymp-
totic key rate, r, is then defined as the length of this bit
string, divided by the number of rounds, taking the limit of
infinitely many rounds.
One of the seminal results of (device-independent)

quantum key distribution is a universal lower bound on
the achievable key rate from a given correlation. The bound
quantifies the key rate that can be extracted from the
outcomes of the “key settings” x̂ on Alice’s side and ŷ on
Bob’s side, by performing privacy amplification and error
correction via one-way communication from Alice to Bob.
The bound is referred to as the Devetak-Winter rate [19],
and in our context it is given by

r ≥ HðAjEÞ −HðAjBÞ; ð2Þ

where HðAjEÞ ¼ inf jψi;fAx
ag;fBy

bgfHðAjEÞσg is the infimum
over all states jψi∈HA ⊗ HB ⊗ HE that are a purification
of a state ρ on HA ⊗ HB, and over all POVMs Ax

a on
HA and By

b on HB such that the state and the measure-
ments are compatible with the observed correlation,
tr½ðAx

a ⊗ By
bÞρ� ¼ pða; bjx; yÞ. Furthermore, HðAjEÞσ is

the conditional von Neumann entropy of the corresponding
classical-quantum state

σAE ¼
X

a∈ ½kA�
jaihaj ⊗ trAB

��
Ax̂
a ⊗ IB ⊗ IE

�jψihψ j�; ð3Þ

and HðAjBÞ is the conditional Shannon entropy of the
distribution pða; bjx̂; ŷÞ. Note that an analogous bound
holds for the case of one-way communication from Bob
to Alice, and that the bound on r only depends on the
observed correlation pða; bjx; yÞ. Furthermore, this bound
is valid against the most powerful, so-called coherent
eavesdropping attacks [20–22]. If Alice and Bob cannot
establish a positive lower bound for their key rate, they
abort the protocol.
The term HðAjEÞ captures the cost of privacy amplifi-

cation (any eavesdropper’s uncertainty of Alice’s outcome),
while the term HðAjBÞ captures the cost of error correction
(Bob’s uncertainty of Alice’s outcome). Since HðAjBÞ
can be directly computed from the correlation, the difficulty
in estimating the Devetak-Winter bound is in bounding
HðAjEÞ. Indeed, various methods have been proposed to
bound this quantity for arbitrary correlations (and not just
based on Bell inequality violation). General analytic tech-
niques are lacking, while numerical techniques scale rather
badly in the number of settings and outcomes [23–27].
It is important to note that while from a given correlation

bounding HðAjEÞ is the main difficulty, a good bound on
HðAjEÞ does not necessarily imply good (or even positive)
key rates. For this, correlations with small HðAjBÞ need to
be found. Indeed, constant-sized device-independent ran-
domness has been established from a small amount of
nonlocality [28,29], but the same has not been done
for DIQKD.
Self-testing and DIQKD.—In this work, we analytically

tackle the problem of bounding private randomness from a
specific type of correlations. In particular, we expose a
rigorous connection between DIQKD and a strong certifi-
cation technique in Bell nonlocality called self-testing [30].
We say that a correlation pða; bjx; yÞ self-tests the pure
quantum state jψ̃i∈HÃ ⊗ HB̃ and the measurements Ãx

a

on HÃ and B̃y
b on HB̃, if for all quantum states ρ on some

Hilbert spaces HA ⊗ HB and all measurements Ax
a on HA

and By
b on HB such that pða; bjx; yÞ ¼ tr½ðAx

a ⊗ By
bÞρ�, we

have that for every purification jψi∈HA ⊗ HB ⊗ HE of ρ
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there exist Hilbert spaces HA0 and HB0 and local iso-
metries VA∶ HA → HÃ ⊗ HA0 and VB∶ HB → HB̃ ⊗ HB0

such that

ðVA ⊗ VB ⊗ IEÞðAx
a ⊗ By

b ⊗ IEÞjψi
¼ ðÃx

a ⊗ B̃y
bÞjψ̃i ⊗ jauxi ð4Þ

for some state jauxi∈HA0 ⊗ HB0 ⊗ HE and for all x, y, a,
b. The primary aim of self-testing is to characterize
quantum states and measurements solely from the observed
correlation in a Bell experiment, and many examples of
self-testing are known [30].
Our main technical observation linking self-testing and

DIQKD is that whenever a correlation self-tests some
quantum state and measurements, the parties can extract
private randomness from their measurements. In fact, it is
sufficient that the weaker form of Eq. (4),

ðVA ⊗ VB ⊗ IEÞðAx̂
a ⊗ IB ⊗ IEÞjψi

¼ ðÃx̂
a ⊗ IB̃Þjψ̃i ⊗ jauxi; ð5Þ

holds for some fixed x̂ and for all a. Equation (5) follows
from Eq. (4) by fixing x ¼ x̂ and summing up over b, and
note that further summing up over a, we obtain

ðVA ⊗ VB ⊗ IEÞjψi ¼ jψ̃i ⊗ jauxi: ð6Þ

The reason why condition (4) is sufficient for certifying
private randomness is because the term HðAjEÞ in Eq. (2)
can be computed analytically if the correlation is self-
testing [or the weaker condition (5) holds] as follows. For
all tripartite states jψi and measurements Ax

a compatible
with the observed correlation, we have

σAE ¼
X
a

jaihaj ⊗ trAB½ðAx̂
a ⊗ IB ⊗ IEÞjψihψ j� ¼

X
a

jaihaj ⊗ trAB
�ðV†

AVA ⊗ V†
BVB ⊗ IEÞðAx̂

a ⊗ IB ⊗ IEÞjψihψ j
�

¼
X
a

jaihaj ⊗ trÃA0B̃B0
�ðVA ⊗ VB ⊗ IEÞðAx̂

a ⊗ IB ⊗ IEÞjψihψ jðV†
A ⊗ V†

B ⊗ IEÞ
�

¼
X
a

jaihaj ⊗ trÃA0B̃B0
��ðÃx̂

a ⊗ IB̃Þjψ̃iÃ B̃ ⊗ jauxiA0B0E
��hψ̃ jÃ B̃ ⊗ hauxjA0B0E

��

¼
X
a

jaihaj ⊗ tr
�ðÃx̂

a ⊗ IB̃Þjψ̃ihψ̃ jÃ B̃

�
trA0B0 ðjauxihauxjA0B0EÞ ¼

�X
a

pAðajx̂Þjaihaj
�
⊗ σE; ð7Þ

where σE ¼ trA0B0 jauxihauxjA0B0E is some fixed quantum
state onHE, pAðajx̂Þ ¼

P
b pða; bjx̂; yÞ is Alice’s marginal

distribution, and we used the conditions (5) and (6). The
conditional von Neumann entropy in Eq. (2) is then given
by (for all states and measurements compatible with the
correlation)

HðAjEÞσ ¼ HðAEÞσ −HðEÞσ
¼ H

�X
a

pAðajx̂Þjaihaj ⊗ σE

	
−HðσEÞ

¼ H

�X
a

pAðajx̂Þjaihaj
	
þHðσEÞ −HðσEÞ

¼ HðfpAðajx̂ÞgaÞ ¼ HðAÞ; ð8Þ
where we used that the von Neumann entropy is additive
under the tensor product. Therefore, the entropy HðAÞ of
Alice’s outcome from measurement x̂ is private, that is, no
eavesdropper can guess it better than random. Note that a
similar argument is used in the proofs of Ref. [29].
In order to promote this device-independent randomness

certification statement to device-independent quantum key
distribution, we need a measurement on Bob’s side such
that its outcome is correlated with the outcome of setting x̂

of Alice. Such a choice maximizes the Devetak-Winter
bound in Eq. (2) by minimizing HðAjBÞ. While such a
highly correlated measurement setting ŷ might already be
part of the setup that gives rise to the self-testing corre-
lation, notice that adding an extra setting on Bob’s side does
not change the calculation for Alice’s private randomness.
In particular, Eq. (5) still holds, as deriving this equation
does not refer to the extra setting on Bob’s side, which also
highlights the general utility of condition (5). Therefore, for
every correlation certifying Eq. (5), one can aim to find the
best possible measurement for Bob that maximizes the
device-independent key rate, i.e., given jψ̃i and fÃx̂

aga from
condition (5), one can attempt to find a measurement fBŷ

bgb
minimizing HðAjBÞ.
Unbounded key from arbitrarily small nonlocality.—

Using the above techniques, we will now prove that from
correlations arbitrarily close to the local set (and therefore
violating any Bell inequality arbitrarily weakly) one can
extract logðdÞ bits of device-independent key for any integer
d ≥ 2. For this purpose, we need to use Bell inequalities
with d outcomes. Various recent works have looked at
such scenarios (also in the context of DIQKD) [31–34],
and a family of inequalities particularly suitable for our
purposes was introduced in Ref. [35]. The inequalities are
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parametrized by an integer d ≥ 2 and overlap matrix O,
whose elements are characterized by two orthonormal bases
on Cd, which we choose to be fjjigd−1j¼0 and fjekigd−1k¼0. The
elements of the overlap matrix are then given by

Ojk ¼ jhjjekij: ð9Þ

In the Bell scenario, Alice has 2 measurement settings with d
outcomes each and Bob has d2 settings with 3 outcomes
each, and we denote the settings of Bob by the pair jk, where
j; k∈ ½d� (notice that we swapped the role of Alice and Bob
compared to Ref. [35]). For every d ≥ 2 and every overlap
matrix such that Ojk < 1 for all j, k (equivalently, Ojk > 0

for all j, k) the authors of Ref. [35] construct a nontrivial Bell
inequality, i.e., a Bell inequality that has a quantum
violation:

Bd ¼
Xd−1
j;k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −O2

jk

q �
pðj; 0j0; jkÞ − pðj; 1j0; jkÞ

þ pðk; 1j1; jkÞ − pðk; 0j1; jkÞ�

−
1

2

Xd−1
j;k¼0

�
1 −O2

jk

��
pBð0jjkÞ þ pBð1jjkÞ

�
; ð10Þ

where pBðbjjkÞ is Bob’s marginal distribution.
Moreover, the authors of Ref. [35] show that the

maximal quantum violation can be achieved by sharing
a locally d-dimensional maximally entangled state jϕþ

d i ¼
ð1= ffiffiffi

d
p ÞPd−1

j¼0 jjji, and Alice’s measurements being
fjjihjjgd−1j¼0 for x ¼ 0 and fjekihekjgd−1k¼0 for x ¼ 1 (together
with appropriate measurements for Bob that we do not
describe here for the sake of simplicity).
While the maximal violation of these inequalities does

not provide a self-test in the usual sense, in Ref. [35] it is
shown that for every state ρ onHA ⊗ HB giving rise to the
maximal violation, there exist local isometries VA∶ HA →
Cd ⊗ HA0 and VB∶ HB → Cd ⊗ HB0 (with HA0 isometric
to HA and HB0 isometric to HB) such that

ðVA ⊗ VBÞρðV†
A ⊗ V†

BÞ ¼ jϕþ
d ihϕþ

d j ⊗ σA0B0 ð11Þ

for some quantum state σA0B0 on HA0 ⊗ HB0 . Our new
contribution to this certification is to show that the maximal
violation implies that Alice’s measurement corresponding
to setting x ¼ 0 satisfies

VAA0
aV

†
A ¼ jaihaj ⊗ Ã ∀ a∈ ½d� ð12Þ

for some fixed operator Ã on HA0 and that

VBV
†
B ¼ ICd ⊗ B̃; ð13Þ

for some fixed operator B̃ on HB0 [36]. Note that
Eqs. (11)–(13) do not constitute self-testing in the usual
sense: Eq. (11) is expressed in terms of mixed states, the state
and measurement certification are decoupled, and only one
measurement of Alice and none of Bob’s measurements are
certified. Nevertheless, using recent results on the general
theory of self-testing [38], we can show that Eqs. (11)–(13)
imply condition (5) [36]. Therefore—by the earlier
arguments—the resulting conditional von Neumann entropy
will again satisfy

HðAjEÞσ ¼ HðAÞ ¼ logðdÞ ð14Þ

for the setting x̂ ¼ 0 of Alice [the specific value logðdÞ
follows from the fact that pAðaj0Þ ¼ ð1=dÞ [35] ]. Then,
introducing a d-outcome measurement for Bob that is
perfectly correlated to the x̂ ¼ 0 setting of Alice (e.g., in
the ideal realization one can choose Bŷ

b ¼ jbihbj), we get a
lower bound on the key rate,

r ≥ HðAjEÞ −HðAjBÞ ¼ logðdÞ ð15Þ

for all d ≥ 2 and for all overlap matrices withOjk > 0. That
is, we obtain a family of correlations that certify logðdÞ bits
of secret key. Notice that while these correlations max-
imally violate a Bell inequality (the one characterized by d
and Ojk), in some cases they might be arbitrarily close to
the set of local correlations.
Exploiting precisely this fact, we now show that for

every d ≥ 2, there exist correlations arbitrarily close to the
local set but still certifying logðdÞ bits of secret key. To do
so, for every dwe need to provide an overlap matrixO such
that the correlation maximising the corresponding Bell
inequality from Ref. [35] is arbitrarily close to the local set.
Consider the trivial case of jeki ¼ jki for all k∈ ½d�, leading
to an overlap matrix Ojk ¼ δjk. The corresponding corre-
lation that arises by measuring jϕþ

d i with the measurements
fjjihjjg for both settings x ¼ 0 and x ¼ 1 is local (irre-
spective of the measurement choices of Bob), since Alice’s
measurements are compatible [39]. Now let us perturb
fjekig by a small unitary transformation in a way that leads
to a nontrivial overlap matrix with all elements strictly
positive. One particularly symmetric way to achieve this is
by taking the generalized Pauli X operator

X ¼
Xd−1
j¼0

jjþ 1ihjj ¼
Xd−1
j¼0

ωj
djχjihχjj ¼ eG; ð16Þ

where ωd ¼ eð2πi=dÞ is the dth root of unity, jχji ¼
ð1= ffiffiffi

d
p ÞPd−1

k¼0 ω
jk
d jki is the Fourier basis and G ¼P

d−1
j¼0 ½ð2πi=dÞj�jχjihχjj. Then, consider the unitary oper-

ator parametrized by ε∈ ½0; 1�,
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Uε ≔
Xd−1
j¼0

ωεj
d jχjihχjj ¼ eεG: ð17Þ

Clearly, U0 ¼ I, and Uε is continuous in ε, a consequence
of the well-known fact that the map t ↦ etM is continuous
in t for any matrix M (see, e.g., [40], Chap. 2). Also, for
every ε∈ ð0; 1Þ we have that the overlap matrix of fjjigd−1j¼0

and fUεjkigd−1k¼0 is nontrivial, that is, all of its elements are
strictly positive [36]. As such, by the above arguments, the
correlation that arises by measuring jϕþ

d i with the mea-
surements fjjihjjgd−1j¼0 and fUεjkihkjU†

εgd−1k¼0 (and the
appropriate measurements for Bob) certifies logðdÞ bits
of secure key for every ε∈ ð0; 1Þ and every integer d ≥ 2.
If we now choose ε to be arbitrarily small (but positive),

the resulting correlation, pεða; bjx; yÞ gets arbitrarily close
(e.g., in l1 norm) to the local correlation pε¼0ða; bjx; yÞ,
since the correlation is also continuous in ε (it is quadratic
in Uε ¼ eεG) [36]. Therefore, for any integer d ≥ 2, for
arbitrarily small ε > 0 the correlation pεða; bjx; yÞ certifies
logðdÞ bits of device-independent key, but the correlation
is arbitrarily close to the set of local correlations. That is,
from arbitrarily small nonlocality, one can still certify
unbounded (with increasing d) device-independent key.
Conclusion.—In this work, we exposed a rigorous con-

nection between self-testing and DIQKD as well as device-
independent randomness generation. Thanks to this
connection and the latest developments in high-dimensional
Bell nonlocality, we showed that unbounded device-inde-
pendent key rates can be certified from correlations with
arbitrarily small nonlocality. This result together with recent
findings indicates that DIQKD and Bell nonlocality might be
incomparable resources, and in the search for a fundamental
quantum resource for DIQKD, the amount of nonlocality is
not the right quantity to consider.
It is important to point out that the correlations in this

work that are arbitrarily close to the local set cannot
tolerate even arbitrarily small noise (naturally, as this noise
would map the correlation into the local set). It would
be a practically motivated further research direction to
investigate the relation of robust self-testing and noise-
robust DIQKD. On the fundamental side, further character-
ising what correlations allow for certifying the relations (5)
would lead to insights on the correlations useful for
DIQKD.

Note added.—Recently, the author became aware of the
related independent work of Ref. [41]. The authors there
derive new self-testing statements in the simplest Bell
scenario and prove that constant DIQKD rates (1 bit) can be
achieved from arbitrarily small nonlocality.

M. F. would like to thank Jędrzej Kaniewski and Laura
Mančinska for fruitful discussions.
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