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Device-independent quantum key distribution allows two users to set up shared cryptographic key
without the need to trust the quantum devices used. Doing so requires nonlocal correlations between the
users. However, in Farkas et al. [Phys. Rev. Lett. 127, 050503 (2021)] it was shown that for known
protocols nonlocality is not always sufficient, leading to the question of whether there is a fundamental
lower bound on the minimum amount of nonlocality needed for any device-independent quantum key
distribution implementation. Here, we show that no such bound exists, giving schemes that achieve key
with correlations arbitrarily close to the local set. Furthermore, some of our constructions achieve the
maximum of 1 bit of key per pair of entangled qubits. We achieve this by studying a family of Bell
inequalities that constitute all self-tests of the maximally entangled state with a single linear Bell
expression. Within this family there exist nonlocal correlations with the property that one pair of inputs
yield outputs arbitrarily close to perfect key. Such correlations exist for a range of Clauser-Horne-Shimony-
Holt values, including those arbitrarily close to the classical bound. Finally, we show the existence of
quantum correlations that can generate both perfect key and perfect randomness simultaneously, while also
displaying arbitrarily small Clauser-Horne-Shimony-Holt violation. This opens up the possibility of a new
class of cryptographic protocol.
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Introduction.—Establishing shared or global random-
ness between two isolated parties is a task achievable using
quantum theory [1–3], but inaccessible to classical physics
without additional assumptions. Quantum key distribution
(QKD), for example, can be performed by making mea-
surements on a shared entangled state, and security is
derived assuming the devices behave according to a
physical model [4]. Meeting the practical requirements
of a model can be challenging, and mismatches between the
model and reality can lead to security problems (see, e.g.,
[5]). However, quantum theory allows us to bypass the
majority of such mismatch issues: entangled quantum
systems can exhibit input-output behaviors that are non-
local [6,7], giving rise to device-independent approaches to
QKD [2,8–13]. The same can be said about the related task
of randomness expansion [14–19].
Given quantum correlations that exhibit some nonlocal-

ity, how much secure key can be extracted device inde-
pendently? To achieve the highest security, we want to find

a lower bound on the amount of key conditioned on the
observed nonlocality. Such lower bounds have been found
in a variety of scenarios, both analytically [10,20,21] and
numerically [22–25].
A related question that has achieved less attention is for

what range of nonlocality is device-independent quantum
key distribution (DIQKD) possible? It has recently been
shown that nonlocality is not a sufficient condition for
DIQKD using standard protocols [26]. More precisely, [26]
showed that there exist quantum correlations, arising from
Werner states [27], with some nonlocality, for which an
upper bound on the secret key rate vanishes. While the
result of [26] does not encompass all possible protocols, it
raises the question of whether there exists a minimum
amount of nonlocality needed for any DIQKD implemen-
tation. A conclusive proof of existence, or contradiction, for
such a bound is currently missing from the literature.
In this Letter, we show that no such bound exists.

Contrasting the work of [26], we show one can find
quantum correlations with arbitrarily small nonlocality that
can be used for DIQKD with a key rate arbitrarily close to
1 bit per pair of shared entangled qubits (we refer to this as
near-perfect DIQKD). This complements existing work
showing the same holds for global randomness expansion
(DIRE) [28,29], which we expand upon here. We also
go one step further: there exist quantum correlations
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with arbitrarily small nonlocality that can be used for both
near-perfect DIQKD and maximum DIRE. To our knowl-
edge this is the first example of such correlations to appear
in the literature, and could open up the possibility for a new
class of cryptographic protocols.
Our results are obtained by self-testing [30–34] quantum

correlations close to the local boundary. We study a
versatile family of bipartite Bell expressions that first
appeared in [35], and encompass those used in the literature
to certify secret key [21] and randomness [29,36]. These
expressions are tangent hyperplanes to the boundary of the
set of quantum correlators, and constitute all self-tests of
the singlet with a single linear Bell expression, when
considering two observers with binary inputs and outputs
[35,37]. Moreover, to prove self-testing we reduce the
problem to qubits via Jordan’s lemma [38]; a self-contained
reduction can be found in the Supplemental Material [39],
which may be of independent interest.
Background.—We consider the minimal Bell scenario

for DIQKD. Let two spacelike separated parties, Alice and
Bob, each hold a device with inputs x; y∈ f0; 1g and
outputs a; b∈ f0; 1g. The devices are characterized by
the joint distribution pðabjxyÞ, which must be no signaling.
A quantum strategy refers to a joint state, ρQ̃AQ̃B

, and sets of
observables Ãx ¼ M̃0jx − M̃1jx, B̃y ¼ Ñ0jy − Ñ1jy, where
fM̃ajxga, fÑbjygb are projective measurements (which can
be assumedwithout loss of generality according toNaimark’s
dilation theorem [45]) on the physical Hilbert spacesHQ̃A

or
HQ̃B

held by Alice and Bob. We consider an adversarial
scenario in which Eve holds a purification jΨiQ̃AQ̃BE

of ρQ̃AQ̃B

and can set the quantum behavior of each device (i.e.,
which measurements each input corresponds to). Eve’s
aim is to establish nontrivial correlations between the
classical register A holding Alice’s outcomes and E, while
remaining undetected. Such correlations will allow Eve to
learn information about Alice’s raw key when Alice mea-
sures, e.g., X ¼ x; this is described by the postmeasure-
ment classical-quantum state ρAEjX¼x¼

P
a jaihajA⊗ρajxE ,

where ρajxE ¼TrQ̃AQ̃B
½ðM̃ajx⊗IQ̃BE

ÞjΨihΨj� is the subnormal-
ized state held by Eve conditioned on Alice getting a
when x is measured. The global postmeasurement
classical-classical-quantum state ρABEjX¼x;Y¼y is defined
analogously, and the behavior is recovered via the Born rule
pðabjxyÞ¼TrQ̃AQ̃BE

½ðM̃ajx⊗Ñbjy⊗IEÞjΨihΨj�.
As we are restricting ourselves to binary inputs and

outputs, the nonlocality of the resulting joint behavior can
be quantified in terms of its Clauser-Horne-Shimony-
Hold (CHSH) value [46], ICHSH ¼ hA0ðB0 þ B1Þiþ
hA1ðB0 − B1Þi, where hAxByi are the correlators, hAxByi ¼P

abð−1ÞaþbpðabjxyÞ, which equal Tr½ðÃx ⊗ B̃yÞρQ̃AQ̃B
�

when the behavior is quantum. The local and quantum
bounds are given by 2 and 2

ffiffiffi
2

p
, respectively, and it is well

known that there is a unique quantum state and sets of
measurements that achieve the quantum bound, up to
local isometries. It is in this sense that the CHSH inequality

self-tests the corresponding state (which is maximally
entangled) and measurements.
We consider DIQKD protocols based on spot checking

with two measurements per party and a single Bell
inequality (see, e.g., [[4], Section 4.4] for an example
using the CHSH inequality [47]). In order to compute the
secret key rate the relevant quantities are the conditional
von Neumann entropies HðAjX ¼ x; EÞ and HðAjX ¼ x;
Y ¼ y; BÞ, where X ¼ x and Y ¼ y are the inputs used for
key generation. The latter entropy, which is independent of
Eve’s system, captures the cost for Alice and Bob to
reconcile their raw keys and can be estimated directly from
the statistics. The former captures the randomness in
Alice’s raw key conditioned on Eve, and must be lower
bounded in terms of the observed behavior Pobs, or some
functions fi of Pobs (for instance, fi might be a Bell
expression). The asymptotic secret key rate is then bounded
by the Devetak-Winter formula [48]

rkey ≥ max
x;y

�
inf½HðAjX ¼ x; EÞρAEjX¼x

�

−HðAjX ¼ x; Y ¼ y; BÞρABjX¼x;Y¼y

�
; ð1Þ

where the infimum is taken over states and measure-
ments compatible with fiðPobsÞ. Analogously, the global
randomness rate is defined by the quantity rglobal ¼
maxx;y infHðABjX ¼ x; Y ¼ y; EÞρABEjX¼x;Y¼y

. The asymp-
totic rates can serve as a basis for rates with finite statistics
using tools such as the entropy accumulation theorem
[13,49,50].
To achieve a key rate arbitrarily close to 1 bit per

entangled state shared, we consider the family of three
parameter Bell inequalities from [35] whose maximal
quantum violation self-tests a unique state and measure-
ments (up to local isometries). In this case we consider a
single functional f ¼ hBθ;ϕ;ωi with observed value η, and
denote the rate Rkey

θ;ϕ;ωðηÞ. Achieving the quantum bound
self-tests a pure (in fact, maximally entangled) state that
therefore must be uncorrelated with Eve, allowing us to
directly compute the entropy from the observed behavior.
We find HðAjX ¼ 0; EÞ ¼ 1, and HðAjX ¼ Y ¼ 0; BÞ ¼ ϵ
for any epsilon ϵ∈ ð0; 2 − ð3=4Þ logð3Þ�, giving a key rate
1 − ϵ that tends to 1 as ϵ → 0, while at the same time
having a CHSH value arbitrarily close to classical bound.
We also use Rglobal

θ;ϕ;ω ðηÞ to denote the randomness rate based
on the same functional.
Methods.—Our main results are derived from studying

the family of self-testing Bell expressions in [35], also
recently reported in [37]. We provide a new self-testing
proof, and all claims are proven in the Supplemental
Material [39].
Proposition 1.—Let θ;ϕ;ω∈R. Define the family of

Bell expressions, labeled hBθ;ϕ;ωi,

cosðθþϕÞcosðθþωÞhA0ðcosωB0−cosϕB1Þi
þcosϕcosωhA1ð−cosðθþωÞB0þcosðθþϕÞB1Þi: ð2Þ

PHYSICAL REVIEW LETTERS 132, 210802 (2024)

210802-2



Then the following hold: (i) the local bounds are given by
�ηLθ;ϕ;ω, where ηLθ;ϕ;ω is defined as

max
�

��� cosðθ þ ωÞ cosðωÞ�cosðθ þ ϕÞ � cosðϕÞ���

þ�� cosðθ þ ϕÞ cosðϕÞ�cosðθ þ ωÞ � cosðωÞ����: ð3Þ

(ii) If

cosðθ þ ϕÞ cosðϕÞ cosðθ þ ωÞ cosðωÞ < 0; ð4Þ

then the quantum bounds are given by �ηQθ;ϕ;ω, where

ηQθ;ϕ;ω ¼ sinðθÞ sinðω − ϕÞ sinðθ þ ωþ ϕÞ: ð5Þ

(iii)
��ηQθ;ϕ;ω

�� > ηLθ;ϕ;ω ⇔ (4) holds.
(iv) If (4) holds, then up to local isometries there is a

unique strategy that achieves hBθ;ϕ;ωi ¼ ηQθ;ϕ;ω:

ρQAQB
¼jψihψ j; where jψi¼ j00iþ ij11i

ffiffiffi
2

p ;

A0¼σX; A1¼ cosθσXþsinθσY;

B0¼ cosϕσXþsinϕσY; B1¼ cosωσXþsinωσY: ð6Þ

Special cases of the above family have already found
applications in device-independent (DI) cryptography. For
example, it contains all bipartite expressions found in
[29,36], which certify maximum global DI randomness.
One can also recover the marginal-free subfamily of the
tilted CHSH inequalities [28,51], which have found use in
DIQKD [21,52] and robust self-testing of the singlet [53].
Moreover, it has been shown [35,37] that the family (2)
constitute an infinite family of hyperplanes tangent to the
boundary of the quantum set of correlations with uniform
marginals,Qcorr, and constitute every self-test of the singlet
with a single linear function of the correlators in this
scenario. We discuss these connections in more detail in the
Supplemental Material [39].
Perfect randomness from arbitrarily small nonlocality.—

First we consider all strategies that certify maximum global
randomness in this scenario using a maximally entangled
state, certified by a single Bell expression. This contains the
subfamily in [29], where the randomness versus nonlocality
relationship was studied using a one parameter family of
Bell expressions; here we review and extend this to a two
parameter subfamily of (2).
Proposition 2.—For any s∈ ð2; 3 ffiffiffi

3
p

=2�, there exists a
tuple ðθ;ϕ;ωÞ satisfying (4), along with a set of quantum
correlations achieving Rglobal

θ;ϕ;ω ðηQθ;ϕ;ωÞ ¼ 2 and ICHSH ¼ s.
The subfamily self-tests σX for both Alice and Bob, along

with jψi¼ðjþ;yþiþj−;y−iÞ=
ffiffiffi
2

p
, where j�iðjy�iÞ are the

eigenstates of σX (σY). This is achieved by setting ω ¼ π,
resulting in a two parameter family of Bell expressions

certifying uniform randomness when X ¼ 0, Y ¼ 1,
and (4) holds: cosðθ þ ϕÞ cosðθÞhA0ðB0 þ cosðϕÞB1Þi−
cosðϕÞhA1ðcosðθÞB0 þ cosðθ þ ϕÞB1Þi. Figure 1 shows the
valid regions of ðθ;ϕÞ space for perfect randomness
certification.
Near-perfect key from arbitrarily small nonlocality.—

Next we turn our attention to DIQKD. We consider the key
rate achievable using the strategies in Proposition 1, and
which CHSH values are compatible.
Proposition 3.—For any s∈ ð2; 5=2�, and any

ϵ∈ ð0; 2 − ð3=4Þ logð3Þ�, there exists a tuple ðθ;ϕ;ωÞ
satisfying (4), along with a set of quantum correlations
achieving Rkey

θ;ϕ;ωðηQθ;ϕ;ωÞ ¼ 1 − ϵ and ICHSH ¼ s.
This statement is achieved by self-testing σX for

Alice and cosðϕÞσX þ sinðϕÞσY for Bob, along with jψi.
One can then take ϕ arbitrarily close to π=2; we find
HðAjX ¼ 0; EÞ ¼ 1 from self-testing, and HðAjX ¼ 0;
Y ¼ 0; BÞ ¼ Hbin½ð1þ sinðϕÞÞ=2� ≔ ϵ, where Hbin is the
binary entropy function. Hence in the limit ϕ → π=2, ϵ
tends to 0 and we achieve perfect key. Moreover, at this
limit point, we can choose ðθ;ωÞ such that the CHSH
interval ð2; 5=2� is achieved—see Fig. 2 for an illustration.
Interestingly, the limit point violates (4): at ϕ ¼ π=2 the

Bell expression (2) becomes trivial (the local and quantum
bounds coincide), and we cannot find a single Bell
expression that can certify perfect key. The correlations

FIG. 1. Contour plot of nonlocality, measured using the
maximum of the eight CHSH-type inequalities, for the strategies
in Eq. (6) with ω ¼ π. The points inside the dashed triangles,
excluding the boundary, can be used for perfect DIRE with a
single linear Bell inequality: they satisfy (4) and have a value in
ð2; 3 ffiffiffi

3
p

=2� for one of the CHSH-type inequalities, with the
maximum of ICHSH indicated with the black cross at
θ ¼ ϕ ¼ π=3. Approaching ϕ ¼ −π=2 or ϕ ¼ π=2 inside the
corresponding region also allows arbitrarily good DIQKD. The
black contours indicate ICHSH ¼ 2 for at least one CHSH-type
inequality.
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achieved in this limit [those resulting from the construction
(6)] are nonlocal and were recently studied in [37], where it
was shown such points correspond to nonexposed regions
of Qcorr; our result shows the implications of this for
DIQKD. At least two linear functionals are then required to
uniquely identify the correlations, and, indeed, using all
four correlators one can verify for various values of ðθ;ωÞ,
the limit point satisfies the self-testing criteria of the singlet
given by Wang et al. [54], and a one-parameter subfamily
containing the point with ICHSH ¼ 5=2 was studied in
[ [55], Section 3.4.1], including the nonexposed nature of
the case with ICHSH ¼ 5=2. We can therefore recover
another statement similar to Proposition 3. We express
this using rkeyθ;ϕ;ω, which is the quantity defined by Eq. (1)
evaluated with functionals fi constraining all four corre-
lators to the values generated by the strategy in Eq. (6).
Proposition 4.—For any s∈ ð2; 5=2�, there exists a tuple

ðθ;ϕ;ωÞ, along with a set of quantum correlations achiev-
ing rkeyθ;ϕ;ω ¼ 1 and ICHSH ¼ s.
In other words, if we constrain all four correlators rather

than the Bell inequality of (2), then we achieve perfect key
directly, rather than in a limit. However, the use of four
correlators can have disadvantages in the case of finite
statistics because for a fixed number of shared states larger
error bars are present when estimating four quantities rather
than one; see, e.g., [49,56].

Near-perfect key and randomness from arbitrarily small
nonlocality.—Finally, we consider the possibility of using
the same set of quantum correlations to generate perfect key
from one input combination, and perfect randomness from
another.
Proposition 5.—For any s∈ ð2; 1þ ffiffiffi

2
p � and any

ϵ∈ ð0; Hbin½ð2þ
ffiffiffi
2

p Þ=4�Þ, there exists a tuple ðθ;ϕ;ωÞ
satisfying (4), along with a set of quantum correlations
achieving Rglobal

θ;ϕ;ω ðηQθ;ϕ;ωÞ ¼ 2, Rkey
θ;ϕ;ωðηQθ;ϕ;ωÞ ¼ 1 − ϵ and

ICHSH ¼ s.
This is obtained by simultaneously self-testing σX for

Alice, and both cosðϕÞσX þ sinðϕÞσY and σX for Bob,
along with jψi. Following the same arguments as before,
we can fix ω ¼ π, and take ϕ arbitrarily close to π=2,
resulting in a key rate of 1 − ϵ and global randomness 2 for
input choices X ¼ 0, Y ¼ 0 and X ¼ 0, Y ¼ 1 respectively.
By varying θ, we can achieve the range of CHSH values
ð2; 1þ ffiffiffi

2
p �, as shown in Fig. 2. For the same reasons

discussed in the previous section, there also exists a
nonlimiting statement when the full correlators are
considered.
Proposition 6.—For any s∈ ð2; 1þ ffiffiffi

2
p �, there exists a

tuple ðθ;ϕ;ωÞ, along with a set of quantum correlations
achieving rglobalθ;ϕ;ω ¼ 2, rkeyθ;ϕ;ω ¼ 1, and ICHSH ¼ s.
Discussion.—We have shown that quantum theory

allows perfect DI key to be shared between two users
using correlations that are arbitrarily close to being local.
However, we do not know that any correlation exhibiting
nonlocality, can be used for DIQKD—for instance, as
shown in [26], those that lie in the interior ofQcorr and arise
from measuring experimentally relevant states cannot
generate key using standard protocols. The behaviors we
use for our results are generated by the singlet, and lie on
the self-testable boundary of Qcorr.
Similar statements hold for DI randomness generation,

and we also showed the existence of quantum correlations
that can simultaneously be used either to share key or
generate maximum randomness, while being arbitrarily
close to the local set. This is not only an intriguing feature
of quantum theory, but opens up the possibility for new
protocols exploiting this feature. For example, certifying
global randomness implies 1 bit of blind randomness for
Alice, in which she does not need to trust Bob [57–59].
This prompts an application to QKD postprocessing in
which certified randomness from some outcomes could
help replenish some of the private randomness consumed in
others. We leave the study of such protocols, and other
applications of this construction, to future investigation.
Although we achieve arbitrarily good key using a single

Bell expression, getting perfect key is excluded. On the
other hand, perfect key is possible by testing all four
correlators. This raises the question of the minimum
number of linear quantities required. It would be of further
interest to find the robustness of the present constructions to
noise. We leave these as problems for future investigation.

FIG. 2. Contour plot of nonlocality, measured using the maxi-
mum of the eight CHSH-type inequalities of the strategies in
Eq. (6), at the limit ϕ ¼ π=2. All points on the graph are limit
points of correlations that achieve arbitrarily perfect DIQKD with
a single linear Bell inequality, including the contours with CHSH
values equal to 2, which are shown as black triangles. The black
dashed lines show where perfect DIRE can also be achieved, with
the blue crosses denoting the maximum value of ICHSH ¼ 1þ ffiffiffi

2
p

at θ ¼ π=4, ω ¼ π and θ ¼ 7π=4, ω ¼ 2π. The black crosses
denote the global maximum of ICHSH ¼ 5=2 at θ ¼ π=3, ω ¼
5π=6 and θ ¼ 5π=3, ω ¼ 13π=6.
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Finally, our Letter also highlights how, when given
access to the full set of single Bell functionals that self-
test the singlet in this scenario, one can find interesting
relationships between cryptographic tasks and nonlocality.
It would be interesting to find further applications. For
example, it has been shown how use of the various
subfamilies of Proposition 1 can boost practical DIQKD,
DIRE, and robust self-testing [21,29,60,61]; given access to
their generalizations, further improvements may be found
by optimizing over the entire family of Bell expressions (2).

Note added.—During the writing up of this work we
became aware of a related work [62] that also shows the
possibility of key distribution with arbitrarily small non-
locality using an alternative approach.
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