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Armed with quantum correlations, quantum sensors in a network have shown the potential to outclass
their classical counterparts in distributed sensing tasks such as clock synchronization and reference frame
alignment. On the other hand, this analysis was done for simple and idealized networks, whereas the
correlation shared within a practical quantum network, captured by the notion of network states, is much
more complex. Here, we prove a general bound that limits the performance of using quantum network
states to estimate a global parameter, establishing the necessity of genuine multipartite entanglement for
achieving a quantum advantage. The bound can also serve as an entanglement witness in networks and can
be generalized to states generated by shallow circuits. Moreover, while our bound prohibits local network
states from achieving the Heisenberg limit, we design a probabilistic protocol that, once successful, attains
this ultimate limit of quantum metrology and preserves the privacy of involved parties. Our work
establishes both the limitation and the possibility of quantum metrology within quantum networks.
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Introduction.—Distributed sensing in a network is a
general task of fundamental significance. Remarkably, with
Greenberger-Horne-Zeilinger (GHZ) states over a network
of M parties, it is possible to estimate a global parameter θ
with mean squared error Δ2ðθÞ ∼ 1=M2, achieving the
Heisenberg limit of quantum metrology—with a ΘðMÞ
reduction of error over protocols without entanglement [1].
This fact lies behind the recent interest in distributed
quantum sensing [2–10] including several experimental
demonstrations [11–14] in both finite dimensional systems
and continuous-variable systems.
In practice, however, the distribution of global entangled

states, e.g., multipartite GHZ states, is a daunting task
[15,16]. The decoherence time of multipartite entanglement
leads to experimental limits in transmission and storage
[17], especially for remote parties. A feasible solution is to
use quantum repeaters [18] and consider distributed settings,
i.e., quantum networks [19,20]. Most often the generic
resource states are network states [21–26], prepared by
distributing few-partite entangled sources to different verti-
ces and applying local operations according to a predefined
protocol. On the other hand, typical resources for quantum
metrology like (multipartite) GHZ states and graph states
[27,28] may not be accessible in generic networks
[26,29,30]. Consequently, it is natural to ask how to
characterize the potential of network states in sensing global
parameters, and whether the Heisenberg limit can still be
achieved. These critical questions, however, have been
largely unexplored due to the much more general and
complex nature of network states compared to GHZ states.

In this work, we derive a versatile general upper bound
on the precision of any deterministic protocol for estimat-
ing a (global) parameter using network states, which leads
to sufficient conditions under which the precision is
bounded by the standard quantum limit (SQL) Δ2ðθÞ ∼
1=M (for M parties) and cannot achieve the Heisenberg
limit (HL) Δ2ðθÞ ∼ 1=M2. We then design a probabilistic
sensing protocol [31–38] using local postselection to
achieve the HL, which also features the preservation of
local parameters’ privacy.
Distributed sensing with network states.—A quantum

network state ρ is a multipartite quantum state, whose
structure can be efficiently represented by a hypergraph
GðV; EÞ of Kð¼ jVjÞ vertices and jEj hyperedges (i.e.,
subsets of V). Each vertex represents a local site, and each
hyperedge represents an entanglement source. The network
state ρ is generated via a two-step procedure, where each
entanglement source, represented by a hyperedge e, dis-
tributes an entangled state to every local site in e and then
each local site v applies an arbitrary local operation.
Moreover, all sites can be classically correlated via a
preshared global random variable λ. In other words, a
network state is of the generic form

ρ ¼
X
λ

pλρλ; ρλ ¼
�
⨂
v∈V

ΦðλÞ
v

��
⨂
e∈ E

σe

�
; ð1Þ

where ΦðλÞ
v is a channel acting on sensor v, and σe is an

entangled state shared between sensors v∈ e.
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The goal of distributed sensing is for a group of far-apart
sensors, each having access to an unknown local signal, to
estimate one (usually global) parameter, e.g., the average of
all local parameters [39]. To accomplish this goal, the local
sensors have access to a joint network state in each round
of the experiment. In general, a deterministic protocol
consists of three phases: (i) Network state distribution:
Each entanglement source e distributes an entangled state
(e.g., Bell pairs or GHZ states) among its associated local
sites (sensors) fv∈Vjv∈ eg. Each sensor performs a local
operation. Eventually, the sensors share a network state ρ.
(ii) Signal acquisition: The sensors obtain local signals.
Explicitly, the state goes through a unitary evolution
Uðθ⃗Þ ¼ expf−iPs∈S Hsθsg, where fθsg are unknown
parameters with generators fHsg and S consists of subsets
of V. We denote by M ≔ jSj the cardinality of S. A
generator Hs acts trivially on a sensor v if v ∉ s. The
global state becomes ρðfθsgÞ after signal acquisition.
(iii) Parameter estimation: The parameter of interest is a
function fðfθsgÞ of fθsg. The form of f is known to all
sensors. Depending on this function, a measurement is
performed on the global state ρðfθsgÞ and an unbiased
estimate θ̂ of θ is extracted from the measurement outcome
statistics. Note that, in practice, the type of measurements
that could be performed is often restricted (e.g., to be local).
Here we show a stronger result (Theorem 1) that holds
without any constraint on what kind of measurements may
be performed.
For example, Fig. 1(a) shows a network of K ¼ 3

sensors (v1, v2, v3) with a shared bipartite entangled state
(E ¼ ffv1; v2g; fv1; v3g; fv2; v3gg) between each pair of
sensors. There are M ¼ 3 parameters, each collected by an
individual sensor (S ¼ ffv1g; fv2g; fv3gg).
A general lower bound on the estimation error.—

Consider the task of estimating a global parameter that
is an arbitrary linear combination of the local parameters

θðα⃗Þ ≔ α⃗T θ⃗ ¼ P
s αsθs, where α⃗ is a vector of dimension

M [40]. The mean squared error can be expressed as

Δ2ðθðα⃗ÞÞ ¼ α⃗TCov
�
fθ̂sg

�
α⃗; ð2Þ

where Covðfθ̂sgÞ is the covariance matrix of the estimators
fθ̂sg for fθsg: ðCovÞij≔E½ðθ̂i−θiÞðθ̂j−θjÞ� for 1≤i, j ≤ M.
Our first main result is a general lower bound on the

error of any deterministic protocol for an arbitrary network
state. Compared with works in distributed sensing [2–9],
our bound captures not only the impact of the sensing
task, but also the architecture of the network. More
explicitly, we identify a key quantity in determining the
error scaling, named the influence of the local signal s:
ks ≔ maxe∈ E;e∩s≠0jft∈Sjt ∩ e ≠ 0gj. Intuitively, ks is the
maximum number of local signals influenced by s via an
entanglement source within the network. Note that ks
depends on both the sensing task and the network.
Theorem 1.—When estimating a global parameter

θðα⃗Þ ¼ α⃗T θ⃗ given a network state ρ with structure
GðE;VÞ, the mean squared error of any deterministic
protocol is lower bounded as

Δ2ðθðα⃗ÞÞ ≥
X
s

α2s
4νksVarðρ; HsÞ

: ð3Þ

HereHs is the generator of θs, Varðρ; HsÞ is the variance of
Hs with respect to ρ, and ν is the number of rounds that the
experiment is repeated.
In principle, the bound (3) can be extended to the more

general multiparameter case where the cost function is of
the form Tr½WCovðfθ̂sgÞ� for some weight matrix W ≥ 0.
In fact, we prove the bound by combining the (matrix)
Cramér-Rao bound [42,43] Covðfθ̂sgÞ ≥ ð1=νÞF−1

Q with
the following bound on the quantum Fisher information
(QFI) matrix (see [44] for its explicit definition) for the
parameters fθsg:

FQðρ; fHsgÞ ≤ diagf4ksVarðρ; HsÞgs; ð4Þ

where ρ denotes the network state, and FQðρ; fHsgÞ
denotes the quantum Fisher information matrix of the state

ρθ⃗ ≔ Uðθ⃗ÞρUðθ⃗Þ† with Uðθ⃗Þ ≔ e−i
P

s
Hsθs . Its proof can

be found in the Supplemental Material [44].
We now check how the error scales with respect toM, the

number of local parameters. In Eq. (3), the variance
Varðρ; HsÞ can be bounded as Varðρ; HsÞ ≤ kHsk2 ≤
h2max (with k · k being the operator norm), where hmax ≔
maxskHsk is independent ofM. For estimating the mean of
fθsg, we have α⃗ ¼ ð1=M;…; 1=MÞT , and thus α⃗T α⃗ ∼ 1=M.
Further, denoting by kmax the maximum of the influence ks,
Eq. (3) implies

(a)

(b)

FIG. 1. (a) A cyclic network consisting ofM ¼ 3 sensors. Here
each pair of sensors share a Bell state jB0i ¼ ½ðj00i þ j11iÞ= ffiffiffi

2
p �

via a source. (b) Steps 2–5 of Protocol 1 are illustrated for one of
the noncenter sensors, v2.
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Δ2ðθðα⃗ÞÞ ¼ Ω
�

1

M · kmax · h2max

�
: ð5Þ

A key implication of our result is that genuine M-partite
network entanglement is necessary for achieving the HL in
a network. When Δ2 ∼ 1=M2, Eq. (5) requires kmax to scale
with M. As long as s ∩ s0 ¼ 0 for any pair of local signals,
kmax is upper bounded by maxe∈ E jej, which captures the
range of genuine entanglement in the network [21]. Our
result thus establishes a crucial connection between this
core property of a generic network and quantum metrology,
requiring it to scale with M to achieve the HL. Since
network entanglement is a stronger and more natural
resource for network scenarios than multipartite entangle-
ment [21], our result extends the main result of Ref. [48],
where the necessity of M-partite entanglement was estab-
lished. Our bound also shows that local pre-processing
cannot be used to gain an advantage in metrology with
shared entangled states between limited numbers of parties.
Furthermore, it is revealed by our bound that not only the

amount of entanglement but also the architecture of the
network is important, when analyzing each influence ks
instead of kmax. As an example, consider the task shown in
Fig. 2, where the state processes an amount of genuine
network entanglement that scales with M but fails to
achieve the HL. A sufficient condition for the bound (5)
to attain the HL is to have all vertices covered by M
hyperedges. Constructing a sensing protocol for such
network states is an interesting direction for future work.
Error bound as an entanglement witness.—The bound

(4) on FQ (and, equivalently, Theorem 1) can also be used
as a witness of genuine multipartite network entanglement
[21]. Previous works have shown that QFI with respect to a
noninteracting Hamiltonian can detect genuine k-body
entanglement, which cannot be produced by probabilistic
mixing of pure states in which no more than (k − 1) parties
are entangled [49,50], and that an interacting Hamiltonian
can be used to rule out fully separable states [51]. Our result
extends both types of results to cover genuine network k
entanglement [21], defined as entanglement that cannot be
generated in a network in which sources are distributed to at
most k − 1 parties at a time. Because of the entanglement

distribution and the inclusion of the parties’ local channels,
witnessing genuine k-network entanglement is stronger
than witnessing genuine k-body entanglement.
For example, consider a one-dimensional spin model

with nearest-neighbor coupling: H ¼ P
M
i¼1Hi such that

each Hi acts nontrivially only on sites i and iþ 1. In terms
of a network, each vertex is a site i and each s is a pair
ði; iþ 1Þ. If the state can be prepared from r-partite
sources, then it is easily seen that ks ≤ 2r, where the upper
bound is achieved when the particles from the same source
do not interact with each other. For such a state ρ,
Theorem 1 yields

Δ2ðθðα⃗ÞÞ ≥
XM
i¼1

α2i
8νrVarðρ; HiÞ

: ð6Þ

If the model is translationally invariant and αi ¼ 1=M
for every i (i.e., to estimate the average θ̄), the above
bound is reduced to Δ2ðθ̄Þ ≥ 1=½8νrMVarðρ; H1Þ�. More
generally, for a model with bipartite interactions and τ
nearest neighbors per site, we see that Δ2ðθ̄Þ ≥
1=½4ντrMVarðρ; H1Þ�; for instance, a d-dimensional cubic
lattice has τ ¼ 2d. The case of an Ising model was studied
in Ref. [51] for r ¼ 1, taking Hi ¼ 1

2
Zi þ ðϵ=4ÞZiZiþ1. By

optimizing over pure fully separable states, they find the
upper bound on the QFI to be M½1þ ð5ϵ2=4Þ� for ϵ ≪ 1

and M½1
2
þ ϵþ ðϵ2=2Þ� for ϵ > ϵc ≈ 0.7302. Our bound

gives M½2þ 2ϵþ ðϵ2=2Þ�, which is less tight, but has
the advantage of being easily extended to r > 1 without
the need to search for optimal states.
Precision bounds for shallow circuits.—Our technique

can also be applied to scenarios where an entangled probe
state is prepared from a circuit with local gates of a finite
depth. We first consider an unentangled (i.e., fully sepa-
rable) state ρ input into a circuit composed of l-local gates.
This has depth D, meaning that there areD layers such that
the gates are nonoverlapping within each layer. The gates
have corresponding unitaries Uj;α, where j labels the
layer and α the index within the layer. The unitary for
the full circuit is U ¼ ð⊗αD Ud;αDÞ…ð⊗αi U1;α1Þ. The
output from the circuit σ ¼ UρU† is used as a probe for
sensing rotations generated by a p-local Hamiltonian
H ¼ P

M
i¼1 Hi, where each Hi acts locally. Then the QFI

is FQðσ; HÞ ¼ FQðρ; U†HUÞ. The locality q of the trans-
formed Hamiltonian U†HU can be bounded using the
depth D. We can give different bounds depending on the
structure of the circuit. This follows from a light cone
argument as described in Ref. [52].
With no particular geometry, the weight of each

Hamiltonian term (i.e., number of subsystems acted upon)
increases by a factor of atmost l under the application of each
layer. Therefore, we have q ≤ lDp. A more useful bound
cannot be obtained unless we know the circuit structure. If,
for example, the circuit forms a one-dimensional chain with

FIG. 2. Genuine network entanglement of order M is not
sufficient for Heisenberg scaling. Consider a task of estimating
the average of 2M local parameters in a network, which consists
of a hyperedge e with cardinalityM andM edges e1;…; eM. The
network state has genuine M-partite network entanglement, but
the squared error scales as 1=M by Eq. (5) since there are M
vertices with ks ¼ 2.
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l ¼ 2 andH being 1-local, then we see thatU†HU has terms
interacting q≤2Dþ1 neighbors. It follows thatFQðσ;HÞ≤
4q

P
M
i¼1Varðρ;U†HiUÞ≤4ð2Dþ1ÞPM

i¼1Varðρ;U†HiUÞ.
The HL can therefore only be approached ifD ∼M. A two-
dimensional square lattice works similarly, replacing q ≤
D2 þ ðDþ 1Þ2 by counting the number of lattice points
reachable from a given starting point inD unit steps. Hence,
we now only need a shallow circuit withD ∼

ffiffiffiffiffi
M

p
to get the

HL. In general, with local geometry, we would require D to
be similar to the size of the system. Using this idea, we can
also bound the QFI when the parameter of interest is
embedded in the circuit U (see [44] for details).
Achieving the Heisenberg limit via postselection.—Next

we introduce a concrete protocol. Consider a network state
with a hypergraph topology GðV; EÞ, where each e∈ E
represents a GHZ state shared by all sensors v∈ e. Each
sensor vj can locally access a signal θj, which is a phase
gate e−iθjZj=2 with Zj being the Pauli-Z operator located at
the jth sensor’s place. That is, S is the collection of all
singletons and jSj ¼ jVj. The task is for a center, which
could be any one of the sensors, to estimate an arbitrary
combination of parameters θðα⃗Þ ≔ ð1=MÞPM

j¼1 α̃jθj with
the assistance of all sensors, where with every α̃j ∈Znf0g
and jα̃jj is upper bounded by L for some known con-
stant L∈N�.
Besides the precision of estimation, we require the

parameter estimation to respect the privacy of involved
parties. Concretely, the center requires no other party to
obtain the full knowledge of α⃗. On the other hand, each
sensor wishes to keep its local value θj private while still
assisting the center to estimate θðα⃗Þ.
The standard deterministic protocol of measuring locally

and communicating the outcomes to the center fails the
second requirement unless the network state is of specific
global topology (e.g., being a large GHZ state spanning all
vertices) [53]. We present a probabilistic protocol that
achieves both privacy requirements and, as a bonus, attains
HL when successful, with almost no restriction on the
network topology. Probabilistic protocols are prevalent in
quantum sensing [54–56] and quantum information
processing [31–38]. For metrology, it has been shown to
boost the precision to the HL [31] and beyond [34].
Whether such an appealing feature persists under the
constraint of quantum networks, however, remains largely
unexplored. The protocol runs as described by Protocol 1.
Note that, if α⃗ is known a priori, we need assume only that
the sensors have universal local control and the classical
communication of measurement outcomes to the center can
be delayed until the end. Therefore the sensors also do not
need a quantum memory. However, if the “task allocation”
step is included, the choice of α⃗ is communicated to the
sensors before the measurement step.
For Protocol 1, it is obvious that the first privacy

requirement is fulfilled, as each sensor learns only a single

entry α̃j. Note that in the (most interesting) scenario of a
large network, it can be extremely difficult for the sensors
to conspire and communicate the entire α⃗. In addition, the
probability that an arbitrary clique of sensors succeeds (and
other sensors fail) is independent of the values of fθig. The
conditional state at the center also depends only on θðα⃗Þ
(see [44] for the proof). As a consequence, no additional
information on the local parameters fθig is leaked to the
center whether or not the protocol is successful. The second
requirement of privacy is thus fulfilled.
As for the precision, Protocol 1 makes ML queries in

total to the local signal sources for each run (when
estimating the average, in particular, we have L ¼ 1).
When fα̃jg are (noninteger) rational numbers, one may
still apply the protocol with α̃j replaced by L̃α̃j, where L̃ is
the smallest positive integer such that fL̃α̃jg are all
integers. The queries per run becomes ML̃maxj α̃j. For
a generic irrational α̃j, one may round it to a close rational
number prior to applying the protocol. The protocol
achieves the HL (i.e., QFI ∼M2) as long as G remains
connected after removing the center (i.e., when v� is not a
cut vertex). The proof can be found in [44].
With this, we see that combining local resources and

postselection allows us to achieve the optimal sensing

Protocol 1. Probabilistic metrology of a global parameter
over a network state.

1: (State preparation.) Each source e prepares a jej-qubit GHZ
state and distributes it among v∈ e.

2: (Center election and local pre-processing.) An arbitrary
sensor v� is selected as the center. Each of the other
sensors locally prepares L copies of the plus state
jþi ≔ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ.

3: (Signal acquisition.) Each vj ≠ v� passes each plus states
once through the signal θj. The resultant state is (up to an
irrelevant global phase) jþθji⊗L with

jþθji ≔ ð1= ffiffiffi
2

p Þðj0i þ eiθj j1iÞ.
4: (Task allocation.) The center sends the weight α̃j to the jth

vertex.
5: (Local measurement and postselection.) For each sensor vj

(including v�), it first discards L − jα̃jj plus states and
keeps the state jþθji⊗α̃j . Next, if α̃j < 0, the sensor
performs X on each qubits of the plus states. If vj ¼ v� in
this case, it performs X on the single qubit that acquired
the signal. Finally, the sensor performs a binary
measurement fjGHZjihGHZjj; I − jGHZjihGHZjjg,
where jGHZji denotes the GHZ state of all its local qubits
(including the plus states with signals and the qubits from
the sources). For every vj ≠ v�, it declares success if the
first outcome (i.e., jGHZjihGHZjj) is obtained.

6: (Estimation.) Conditioning on all other sensors declaring
success, the probability that v� yields jGHZ�ihGHZ�j is a
function of θ, from which an unbiased estimate θ̂ on θðα⃗Þ
can be obtained.
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precision up to a constant. In contrast, deterministic
protocols are bound by the standard quantum limit (i.e.,
QFI ∼M) by Theorem 1. Note that the few-partite entan-
glement in network states plays an essential role in
achieving the (probabilistic) HL, as a completely local
state remains local after postselection. As a concrete
example, one may consider G being a cyclic network of
M vertices, where each vertex (sensor) vj holds a local
signal with parameter θj [see Fig. 1(a)], and each edge

represents one Bell state jB0i ≔ ð1= ffiffiffi
2

p Þðj00i þ j11iÞ. This
state is obviously local, and by Theorem 1 the performance
of any deterministic protocol is bounded by the standard
quantum limit. On the other hand, Protocol 1, when applied
to this cyclic network [see Fig. 1(b) for an illustration],
achieves the HL.
The overall success probability of Protocol 1 can be

lower bounded as (see [44] for details)

log2psucc ≥ −
�X
v≠v�

jα̃vj þ
X
e∈ E

jej − jEðv�Þj
�
; ð7Þ

with Eðv�Þ being the set of edges containing v� and jej
being the number of vertices contained in e. The probability
psucc vanishes with increasing network size. The advantage
thus vanishes if one takes into account the failed cases,
which is a general limitation of postselected metrology [33]
rather than a defect of Protocol 1.
Protocol 1 also features other interesting advantages.

One is that the sensors could decide which θðα⃗Þ to estimate
after each local signal is applied. Via postselection, they
could “steer” the state to maximize the precision of θðα⃗Þ for
one particular configuration of α⃗. Whenever needed,
the election of the center can even be delayed to after
the acquisition of the signal by a minor modification of the
protocol (i.e., to let every sensor prepare ½ðj0i þ j1iÞ= ffiffiffi

2
p �

states to host the signal). We emphasize that no extra
classical communication (at the “task allocation” step) is
needed if α⃗ is known a priori. Therefore, the extra
classical communication is not the reason for the precision
enhancement.
Existing works of cryptographic quantum metrology

required global entanglement (e.g., GHZ states spanning
the network) [57–61], while our work shows the possibility
of achieving desired privacy when global entanglement is
not accessible. It should also be noted that our discussion
does not cover the verification of probe states, which can be
discussed independently.
Conclusion.—In this work, we explored both the limi-

tation (by deriving a general bound) and the potential (by
designing a probabilistic protocol) of network states in
metrology. Our work opens a new line of research and hints
at more future possibilities along it. For example, it is an
interesting open question whether the protocol can be
extended to the case of reference frame alignment.

The entanglement of the network state and its usefulness
for metrology can be enhanced by LOCC, which depends
on the quality of quantum memory. Since the range of
entanglement affects the success probability, the relation
between the quality of quantum memory and the success
probability is also desirable to investigate as the technology
develops.
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